
Article
Identification of Drivers of
 Aneuploidy in Breast
Tumors
Graphical Abstract
Highlights
d The authors analyze TCGA sequence data to identify highly

aneuploid breast tumors

d Mitotic transcriptional regulators and target genes are

overexpressed in aneuploid tumors

d Mutations in TP53 co-associate with the overexpression of

mitotic transcription factors

d Overexpression of MYBL2, E2F1, and FOXM1 immediately

reduces mitotic fidelity in tissues
Pfister et al., 2018, Cell Reports 23, 2758–2769
May 29, 2018 ª 2018 The Authors.
https://doi.org/10.1016/j.celrep.2018.04.102
Authors

Katherine Pfister, Justyna L. Pipka,

Colby Chiang, ..., Michael J. Guertin,

Ira M. Hall, P. Todd Stukenberg

Correspondence
pts7h@virginia.edu

In Brief

Pfister et al. analyzed TCGA sequence

data to identify drivers of aneuploidy in

breast tumors. TP53 is mutated in most

aneuploid tumors, and a large number of

genes that control mitosis are

overexpressed. The oncogenes E2F1,

MYBL2, and FOXM1 that regulate mitotic

transcription drive the overexpression of

mitotic proteins to lower the fidelity of

chromosome segregation.

mailto:pts7h@virginia.edu
https://doi.org/10.1016/j.celrep.2018.04.102
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.04.102&domain=pdf


Cell Reports

Article
Identification of Drivers
of Aneuploidy in Breast Tumors
Katherine Pfister,1,2 Justyna L. Pipka,1 Colby Chiang,1,3 Yunxian Liu,1 Royden A. Clark,1 Ray Keller,2 Paul Skoglund,2

Michael J. Guertin,1 Ira M. Hall,1,3,4 and P. Todd Stukenberg1,5,*
1Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
2Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
3McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
4Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
5Lead Contact

*Correspondence: pts7h@virginia.edu

https://doi.org/10.1016/j.celrep.2018.04.102
SUMMARY

Although aneuploidy is found in the majority of
tumors, the degree of aneuploidy varies widely. It is
unclear how cancer cells become aneuploid or how
highly aneuploid tumors are different from those of
more normal ploidy. We developed a simple compu-
tational method that measures the degree of aneu-
ploidy or structural rearrangements of large chromo-
some regions of 522 human breast tumors from The
Cancer Genome Atlas (TCGA). Highly aneuploid tu-
mors overexpress activators of mitotic transcription
and the genes encoding proteins that segregate
chromosomes. Overexpression of three mitotic tran-
scriptional regulators, E2F1, MYBL2, and FOXM1, is
sufficient to increase the rate of lagging anaphase
chromosomes in a non-transformed vertebrate
tissue, demonstrating that this event can initiate
aneuploidy. Highly aneuploid human breast tumors
are also enriched in TP53 mutations. TP53 mutations
co-associate with the overexpression of mitotic tran-
scriptional activators, suggesting that these events
work together to provide fitness to breast tumors.

INTRODUCTION

Aneuploidy is a hallmark of cancer and is high in breast tumors.

Current estimates suggest that 90% of solid tumors contain

whole-chromosome gains or losses (Danielsen et al., 2016; Roy-

lance et al., 2011). The amount of aneuploidy between tumors

and within a tumor is highly variable, suggesting that in addition

to current breast cancer classifications, the degree of aneuploidy

could be used to tailor treatments. However, classification of

tumors requires either simple assays to measure aneuploidy in

tumors or a deeper understanding of the mechanisms that drive

aneuploidy.

The fidelity of mitosis is critical in maintaining a normal

karyotype. Tumor cells sometimes lower the fidelity of mitosis

by unknown mechanisms to generate chromosomal instability

(CIN). It is estimated that �45% of breast tumors develop CIN,

while the rest remain karyotypically stable (Lingle et al., 2002;
2758 Cell Reports 23, 2758–2769, May 29, 2018 ª 2018 The Authors
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Roylance et al., 2011). CIN could drive tumor evolution by driving

loss of heterozygosity (LOH) of tumor suppressors or by gener-

ating imbalances or structural changes that overexpress onco-

genes. How tumor cells develop CIN is an important unanswered

question. Mutations in mitotic proteins can drive aneuploidy in

experimental systems; however, the major mitotic regulators

are rarely mutated in cancer (Bakhoum and Compton, 2012;

Bakhoum et al., 2009; Barber et al., 2008; Cahill et al., 1998,

1999).There are examples implicating known tumor suppressors

and oncogenes in driving CIN; for example, the overexpression

of cyclin D in mouse mammary tissue generates a CIN

phenotype and late-onset tumors. In addition, the Mad2 spindle

checkpoint protein is regulated by E2F and Rb1 and contributes

to their potent oncogenic roles (Casimiro and Pestell, 2012;

Schvartzman et al., 2011; van Deursen, 2007).

Mutations in the TP53 tumor suppressor are associated with

aneuploid tumors (Clark et al., 1992; Kihana et al., 1992), but there

is a debate about how it prevents aneuploidy. Current models

suggest that mutating TP53 does not lower the fidelity of mitosis;

however, cells that arrest in mitosis for an extended period

can trigger tp53 responses that senesce cells (Thompson and

Compton, 2010; Uetake andSluder, 2010). In addition, themisse-

gregation of chromosomes can also trigger a tp53 response,

although there is a current debate regarding whether this is an

immediate response or requires multiple cell divisions (Li et al.,

2010; Santaguida et al., 2017; Soto et al., 2017; Thompson and

Compton, 2010). Together, these data suggest that loss of tp53

function does not cause aneuploidy, but it is critical to allow

aneuploid cells to remain proliferative.

Transcription factors that regulate the transcription of genes

required for mitosis can be oncogenes or tumor suppressors

(Fischer et al., 2016). It is unclear how they provide a selective

advantage to tumor cells and drive tumor progression. The

MuvB transcription complex binds cell cycle promoters and as-

sociates with MYBL2 and FOXM1 in S-phase/G2 to activate the

promoters of a number of genes required for mitosis (Sadasivam

et al., 2012). Both MYBL2 and FOXM1 are oncogenes that are

overexpressed in a subset of breast tumors (Laoukili et al.,

2007). E2F1 drives the transcription of cell-cycle genes in G1

phase, and it plays critical roles in the cell’s ability to initiate pro-

liferation, which is a well-established role in tumor development.

However, E2F1 also binds the promoters of many mitotic genes

that are transcribed in G2, and it is unclear whether this also
.
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contributes to its oncogenic potential (Cao et al., 2011). Interest-

ingly, loss of the tumor suppressor Rb1, which inhibits the E2F1

transcription factor, is associated with aneuploidy (Manning and

Dyson, 2012). Meta-analysis of TP53 downregulated genes sug-

gest that MYBL2, FOXM1, and E2F1 cell-cycle transcriptional

regulators are important targets of the tp53 response (Fischer

et al., 2016).

Measuring CIN requires knowing cell-to-cell variability in chro-

mosome number and structure within a tumor or an assessment

of the rate at which chromosomal changes occur. Therefore, it is

more feasible to measure aneuploidy within tumors. Chromo-

somal changes can be measured by multigene fluorescent in

situ hybridization (FISH), comparative genomic hybridization

(CGH), and counting of anaphase lagging chromosomes, but

these are difficult to perform on biopsies (Bakhoum and

Compton, 2012; McGranahan et al., 2012). Therefore, neither

CIN nor aneuploidy is routinely tested in the clinic. An algorithm

to measure the consequences of CIN (changes in copy number

of whole or parts of chromosomes of dominant cell populations

within the tumor) was developed by comparing the overexpres-

sion of adjacent sets of genes along chromosomes in transcrip-

tional array data (Carter et al., 2006). Carter et al. coined the term

‘‘functional aneuploidy’’ (FA) to distinguish the direct measure-

ment of aneuploidy from CIN, which measures a rate of misse-

gration. Several cell-cycle regulators were found in CIN tumors,

and they identified a CIN signature based on the top 70 genes

that were overexpressed in CIN tumors (CIN70) (Carter et al.,

2006). High expression of the top 25 of these genes indicates

poor prognosis in 12 studies and six different tumor types (Carter

et al., 2006). This report supported a number of other studies

where CIN was correlated with poor prognosis by either FISH

analysis or CGH (Chandhok and Pellman, 2009). There is an op-

portunity to learn more about how CIN develops by segregating

tumors by aneuploidy status in large well-annotated tumor data-

bases such as The Cancer Genome Atlas (TCGA) (2012).

We developed a computational method for measuring aneu-

ploidy and large structural changes of chromosomes from

exome sequence data based on the heterogeneity of allele

frequencies. This allowed us to segregate breast tumors from

the TCGA datasets based on their amount of aneuploidy. We

compared gene expression profiles from tumors with high and

low FA to identify themechanisms that generate highly aneuploid

tumors. Our data confirm that there is a striking correlation be-

tween mutations in TP53 and FA in breast tumors (Pati et al.,

2004; Sigurdsson et al., 2000). Although the genes encoding

the proteins that segregate chromosomes were rarely mutated,

they dominate the proteins that are specifically overexpressed

in highly aneuploid tumors. In addition, regulators of mitotic tran-

scription, MYBL2, E2F1, and FOXM1, were overexpressed in

highly aneuploid breast tumors. We expressed these oncogenes

in Xenopus embryos and followed the first divisions that are

driven by transcription to show the sufficiency of the overexpres-

sion of these three oncogenes to lower the fidelity of mitosis in

non-transformed vertebrate epithelial tissues. Our analysis of

human breast tumors suggests a two-hit model for generating

aneuploidy or CIN (although it cannot predict which hit comes

first). First, the overexpression of the E2F1, FOXM1, and

MYB2L oncogenes lowers the fidelity of chromosome segrega-
tion. Second, the loss of TP53 function enables cells that misse-

gregate chromosomes to remain proliferative.

RESULTS

Measuring theAmount of Aneuploidy in Tumors from the
TCGA by Calculating the Variance of Allelic Frequency
Ratios
We developed a computational method to measure the amount

of aneuploidy in tumors. The method measures changes

in copy number of both whole chromosomes and large

fragments of chromosomes, which we refer to as FA (‘‘functional

aneuploidy’’), as originally termed in the CIN70 work (Carter

et al., 2006). Aneuploidy changes alternate allele frequencies

(AAFs), which can be measured using the exome sequence

data available for TCGA samples. AAF in a tumor is a function

of the chromosome number in each cell and the percentage of

cells that are aneuploid (Figure S1).We developed a simple pipe-

line to visualize the FA within a single human breast tumor using

publically available data from the TCGA consortium (Figure S2).

We identified all heterozygous SNPs for each patient as defined

by allele frequencies between 0.3 and 0.7 in the non-transformed

exome sequence reads. For each heterozygous SNP, we calcu-

late the AAF in the tumor by dividing the number of sequence

reads that identify the alternate allele relative to the total number

of reads aligning to that genomic region. We plot histograms of

the number of SNPs per AAF for each patient’s tumor (Figure 1A;

Data S1). Tumors with minimal FA retained a single peak in the

histogram of heterozygous alleles that was normally distributed

between AAFs of 0.3 and 0.7, as is seen in all matched samples.

In contrast, the range of distributions broadens to include AAFs

between 0.1 and 0.9 in tumors whose heterogeneity is driven by

events that encompass large fragments or whole chromosomes,

since these change the AAF for thousands of SNPs (Figures 1A,

S1, and S2). A trimodal AAF distribution was found inmany of the

tumor plots, even though they lack alleles that were homozygous

in the normal matched sample. These trimodal distributions arise

from LOH events that convert SNP ratios that were heterozygous

and close to 0.5 in the matched normal tissue to ratios that

appear near homozygous in the tumor.

The width of these AAF histograms correlates to the amount of

FA in each tumor. We measured the width of the peaks for 522

breast tumors of various grades and types from the TCGA data-

set by calculating the SD of the allele frequency distribution of all

AAFs between 0.1 and 0.9 (Figure S3; Table S1). We decided on

this simple approach because it is robust and assumption-free.

We used these SDs to rank the tumors, assigning the tumor

with the widest peaks (largest SD) as number 1, while the tumor

with the narrowest peak (smallest SD) as number 522. Examples

of 10 tumors and their relative ranks are shown in Figure 1A. Note

that all the tumors ranked below 200 are qualitatively broader

than plots generated from matched normal sequence data

(compare Figure 1A to the corresponding plots of the normal

samples in Figure S4), while most of the tumors ranked above

300 were similar to plots generated from non-tumor sequence

datasets (Figure S4). Each of the tumors ranked below 200 has

its own characteristic shape and extent of AAF peak broadening,

which represents the amount of tumor heterogeneity. There is a
Cell Reports 23, 2758–2769, May 29, 2018 2759
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Figure 1. Measuring the Aneuploidy

in Tumors by the Broadening of

Allelic Frequency Ratios Calculated from

Sequencing Data

(A) 10 examples of FA histograms, each portraying

the allelic frequencies of the heterozygous SNPs

of human breast tumors. The number in the top

right corner of each plot represents the FA ranking

based on the broadening of the allele frequency

peaks, with 1 being the widest peak and 510 the

narrowest peak. Note that the lower the number,

the broader the central peak of allelic frequencies.

(B) Replots of 5 of the tumors from (A) showing the

allele frequency ratios along chromosome posi-

tions corresponding to coordinates in the GRCh37

genome (so each chromosome runs p arm to q

arm). Note that the LOH events that separate the

central peaks into two often span large segments

of chromosomes or whole chromosomes, which is

consistent with chromosome missegregation

driving the LOH event.

(C) Plot of the frequency of whole (blue) or partial

(red) chromosome LOH for each chromosome.

(D and E) The number of chromosomes with an

LOH event in breast tumors correlates with the

ranking (D) andFAscore (E)of the tumors.R2 values

were calculated by fitting to a second-order poly-

nomial curve in Excel. Our method of LOH quanti-

fication is summarized in Figure S5.
continuumof AAF distributions (Figure S3). The histograms of the

�115 highest FA scored tumors have both broad central peaks

as well as outer peaks from LOH (Data S1). Between �115 and

�226, there are broad central peaks only. In the tumors ranked

from 227 to 320, the peaks transition between noticeable broad-

ening and peaks that appear similar to the matched normal

samples. The final 200 tumors (321–522) resemble the matched

control plots, suggesting that they have low amounts of FA.

For each tumor, we also generated complementary plots that

show the chromosome position of each SNPs AAF score (Figures

1B and S2; Data S2). LOH events generate areaswith few SNPs in

the 0.5 AAF regions, with corresponding dense areas of SNPs

scoring closer to zero and one. The AAF frequencies of most

SNPs are contiguous alongwhole chromosomes or large chromo-

some regions, confirming that aneuploidy and not random point

mutations drives the redistribution of AAF frequencies in tumor

samples (Figure 1B). We quantified the number of chromosomes

with a region of LOH that spanned a large region of a chromosome

(scoringmethod is outlined in Figure S5A; see also Figure 1C). Our
2760 Cell Reports 23, 2758–2769, May 29, 2018
analysis confirmed the high percentages

of LOH in chromosomes 11, 16, and 17

found in breast tumors (Lindblom et al.,

1993; Nagayama and Watatani, 1993),

which validates our analysis (Figure 1C).

We also found large amounts of LOH in

chromosomes 1 and 8. They were then in-

jected with either control RNA or the RNA

encoding the three transcription factors

(FOXM1, E2F1, and MYBL2) in two of the

four cells of Stage 3 embryos (Figures 5E
and 5F). The tumors ranked lower than �200 showed a stronger

correlation of chromosomes with LOH events than the other 322

tumors, which is consistent with about 40% of breast tumors hav-

ingstrongCIN.Whole-chromosomeevents thatareexpected from

missegregation of chromosomes during mitosis were more

strongly represented in the tumors ranked 1–200 (R2 = 0.66; Fig-

ure S5B), while they were rare in the tumors ranked from 300 to

522. LOH along large regions of chromosomes, but not spanning

the entire chromosome, had similar distributions but were not as

tightly linked toour ranking (R2=0.53; FigureS5C).Together, these

analyses confirm that our method can segregate tumors by the

amount of aneuploidy of the cells within the tumor and also that

missegregation of whole chromosomes contributes to the FA of

high-ranking tumors.

Identification of the Mechanisms Generating FA in
Breast Tumors
We used the Variant Annotation, Analysis and Search Tool

(VAAST) (Yandell et al., 2011) to identify the genes that had higher
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Figure 2. Identification of Genes Mutated in Aneuploid Tumors

(A) Histogram showing the distribution of FA scores of the 522 analyzed human

breast tumors. The boxes highlight the distributions of the 100 highest and

lowest scoring tumors.

(B) The number of chromosomes with LOH events was compared in the 100

highest and lowest aneuploid tumors to demonstrate that the analysis stratifies

tumors by aneuploid status. The p value was generated by Welch two-sample

t test in R.

(C) All genes significantly mutated in the high aneuploid tumor sets were iden-

tified by comparing the sequence data from the 100 highest and lowest ranked

tumors using the VAAST program. The p values were calculated by VAAST.

(D) p53 mutations are correlated with functional aneuploidy in the 250 top

ranked tumors.
numbers ofmutations in the 100 tumorswith the highest FA score

compared to the 100 with the lowest FA score (dotted boxes in

Figure 2A). The average number of chromosomes with an LOH

event (whole or partial) in the two groups were 15.6 and 0.97,

respectively, demonstrating that we are segregating tumors by
FA status (Figure 2B). Mutations in TP53 were highly enriched in

the high FA tumors (p = 1.53 10�140; Figure 2C). TP53 mutations

have previously been connected to aneuploidy in tumors, vali-

dating our method (Li et al., 2010; Thompson and Compton,

2010). The strong association is consistent with a growing body

of literature arguing that tp53 arrests non-transformed cells in

G1 following a prolonged mitotic arrest or the missegregation of

a chromosome (Hayashi et al., 2012; Jeon and Lee, 2013; Krzy-

wicka-Racka and Sluder, 2011; Uetake and Sluder, 2010). Forty

of the 50 tumors with the most FA contained TP53 mutations.

Interestingly, the percentage of tumors with TP53 mutations

decreased as a function of FA rank for the 250 tumors with

the most FA (linear-by-linear association test, test statistic =

30.21842; p = 3.863 10�8), and then therewas poorer correlation

in the following 246 tumors that are likely to have low FA status

(test statistic = 1.222109; p = 2.689310–1) (Figure 2D) (Agresti,

2007). There were no other genes strongly associated with FA,

although mutations in four other genes, including spindle regu-

lator cytoplasmic dynein (heavy chain), were statistically signifi-

cant. However, the relevance of these genes is unclear, as they

tend to be large genes and the enrichment in FA tumors was

not very strong. Activating mutations in PIK3CA (p = 3310–3), fol-

lowed bymutations inMAP3K1 (p = 8310–3), were enriched in the

low-FA tumors, although this is probably driven by the predomi-

nance of these mutations in luminal tumors that were enriched

in the low-FA tumor group (Figure 6). Thus, the only gene whose

mutation was strongly enriched in high-FA tumors was TP53.

We also compared the RNA expression data to identify the

genes that were overexpressed in FA tumors. All genes were

ranked from 1 being the most overexpressed in the high-FA

group to �18,000 being the most overexpressed in the low-

FA group. We refer to the Breast FA100 gene set (BrFA100;

Table S2) as the 100 genes the were the most overexpressed

in the high-FA tumors. The BrFA100 contained 30 genes that

were also in the CIN70 list generated by independent method-

ology in multiple tumor types (Figure 3A; Table S3). Gene

ontology (GO) analysis demonstrated that the BrFA100 is highly

enriched in genes involved in the cell cycle, as the top two GO

terms were cell cycle (p = 5.3 3 10�81) and cell-cycle phase

(p = 1.3 3 10�77). ‘‘Cell cycle’’ is a broad GO term set that con-

sists of 1,355 genes, so we asked which stage of the cell cycle

was best represented. Twenty of the top 30 GO terms repre-

sented mitotic segregation of chromosomes, suggesting that

genes controlling mitosis were driving this gene signature

(Table S4). We ran the BrFA100 gene sets through the STRING

database, which uncovered a highly noded network of 58 crit-

ical mitotic regulators (Figure 3B), including nine mitotic kinases

(AURKA, AURKB, TTK/MPS1, GSG2/Haspin, CHEK1, NEK2,

BUB1, CDK1, and MELK) and 13 kinetochore proteins (Table

S2). There was also a subset of cell-cycle regulators, but these

were dominated by the proteins that control the entry into

mitosis and contained proteins such as Cyclin B2/CCNB2,

Cyclin A2/CCNA2, CDK1, CKS1B, CDC25A, and CDC25C.

Finally, there were 17 genes associated with DNA replication

(DNA Rep), and 14 in DNA repair. These data corroborate the

CIN70 study (Carter et al., 2006) and greatly extend the idea

that aneuploidy (and, likely, CIN) is associated with overexpres-

sion of mitotic proteins.
Cell Reports 23, 2758–2769, May 29, 2018 2761
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Figure 3. Regulators of Mitosis Are Overex-

pressed in Aneuploid Breast Tumors

The 100 most overexpressed genes in the high-

FA-ranking tumors (BrFA100) were identified by

comparing RNA expression data of the 100 high-

FA and low-FA tumors.

(A) The overlap of the BrFA100 genes, the CIN70

list, and genes present in 3–6 previously published

proliferation signatures (Multiple Proliferation

Signatures).

(B) STRING diagrams (http://string-db.org) of the

BrFA100 list show a highly noded grouping of

mitotic regulators, mitotic cell-cycle genes, and

DNA replication and repair proteins. The top 10 GO

terms of the BrFA100 list shows a strong enrich-

ment of cell-cycle genes, which is driven by a high

M-phase gene enrichment (Table S4).

(C) Specifically, we plotted the relative fold

enrichment of genes in the chromosome segre-

gation GO term in the BrFA100, CIN70, and six

different proliferation signatures.

See also Table S4.
Fifty-six of the BrFA100 genes are found in at least 3 of 6 pro-

liferation signatures (Figures 3A and S6A) (Cohen et al., 2013;

Fischer et al., 2016). We found that most proliferation signatures

contained about 10-fold enrichment of mitotic regulators, while

the CIN70 contained �18-fold enrichment and the BrFA100

contained over 25-fold enrichment (Figure 3C). We conclude

that aneuploid tumors overexpress a large number of genes

associated with proliferation, but there is stronger enrichment

for genes involved in mitosis.

Mitotic Transcriptional Regulators Drive the
Overexpression Patterns Seen in High-FA Tumors
To determine the mechanism of overexpressing the mitotic

genes, we asked whether any transcription factors were overex-

pressed in high-FA tumors. There were 8 transcription factors in
2762 Cell Reports 23, 2758–2769, May 29, 2018
our 100 proteins, and 6 of these control

the cell cycle (MYBL2, FOXM1, E2F1,

RBL1/p107, E2F7, and E2F8). Specif-

ically, the oncogenes MYBL2, FOXM1,

and E2F1 (ranked 9th, 10th, and 38th)

were of interest due to their roles as

master transcriptional activators of genes

required for mitosis (Cao et al., 2011;

Grant et al., 2013; Sadasivam and

DeCaprio, 2013; Sadasivam et al., 2012).

Combining the target genes of the

DREAM, MMB, and FoxM1/MuvB tran-

scriptional complexes accounts for 92 of

the 100 genes in the BrFA100 (Figure 4A)

(Fischer et al., 2016). Overexpression of

FOXM1, MYBL2, and E2F1 mRNA (z > 2)

correlated with FA scores (Figure 4B).

Overexpression of these three genes

was correlated with FA status in all four

breast tumor subtypes (Figure S5D).

There was also strong overlap of the
BrFA100 with genes identified in a meta-analysis as downregu-

lated by TP53 (Figure 4C). The drivers of this gene signature

were shown to be DREAM, FOXM1, and MMB. The BrFA100

contained 91 of the top 486 genes that were overexpressed after

multiple treatments that downregulated tp53 function.

We mined publically available chromatin immunoprecipitation

followed by sequencing (ChIP-seq) datasets to examine whether

MYB2L, FOXM1, and E2F1 bind the promoters of the genes in

the BrFA100 lists (Cao et al., 2011; Grant et al., 2013; Sadasivam

et al., 2012). At least one of the three transcription factors binds

to the promoter of 82 of the 100 genes, and 49 of the BrFA100

genes are bound by at least two of the transcription factors (Fig-

ures 4D and S6B; Table S3). Twenty-two of the genes bound all

three transcription factors, including the three most overex-

pressed proteins TPX2, Plk1, and Aurora B/AURKB. For this

http://string-db.org


Figure 4. Mutations in TP53 and Overex-

pression of E2F1, MYB2L, and FOXM1 Are

Highly Associated in Breast Tumors

(A) The overlap of BrFA100 and target genes of

mitotic transcriptional regulation complexes

DREAM, FoxM1-MuvB/MMB, and Rb-E2F.

(B) The percentage of tumors in each group of 50

(ranked by aneuploid status) with 1, 2, or 3 of the

transcription factors MYBL2, FOXM1, and E2F1.

(C) Venn diagram of the overlap of the BrFA100

with the top 400 genes downregulated by TP53

(p53 expression score of less than�10, as listed in

Fischer et al., 2016).

(D) Venn diagram to show the overlap of ChIP-seq

datasets for E2F1, MYB2L, and FOXM1 with the

BrFA100 list. Gene lists are shown in Table S3.

(E) Association p values of TP53, E2F1, MYB2L,

and FOXM1 as individual pairs. p values

were obtained through Fisher exact tests with

Benjamini-Hochberg multiple test corrections.

(F) The percentage of tumors in each group of 50

that have a TP53 mutation and 1, 2, or 3 overex-

pressed transcription factors.

(G) Association of TP53, MYBL2, E2F1, and

FOXM1 in 960 human breast tumors of the TCGA.

Plots were generated at the cBioPortal (www.

cbioportal.org). (G’) The percentage of the 960

tumors with a TP53 mutation and either an

amplification (AMP) of the gene as defined by a

positive GISTIC score or an upregulation (Up) of

the mRNA as defined by a Z score > 2. TF,

transcription factor.

See also Table S3.
analysis, we used a subset of the FOXM1ChIP-seq data that was

listed as the 270 ‘‘high-confidence’’ binding regions; interest-

ingly, they contained 35 of the BrFA100 genes (exact hypergeo-

metric probability, p < 9310–18). These data suggest that the

overexpression of the three transcription factors could drive

the overexpression of mitotic proteins that we find overex-

pressed in functionally aneuploid breast tumors. Interestingly,

E2F1 and FOXM1 were members of the 16 genes that were

not bound by any of the transcription factors, while MYBL2

was only in the E2F1 ChIP-seq set. This suggests that the

mechanisms that overexpress these oncogenes are indepen-

dent of the events that cause the expression of the bulk of the

BrFA100 list.

We conclude that the BrFA100 signature can be explained by

the overexpression of the mitotic transcriptional regulators

MYBL2, FOXM1, and E2F1 and that this correlation is stronger

(91/100 genes) than general proliferation signatures (56/100).

A Two-Event Model for Aneuploidy in Breast Tumors
To determine whether TP53works in conjunction with themitotic

transcriptional regulators to generate FA, we asked whether the
Cell R
tumors that contained mutated TP53

also overexpressed E2F1, FOXM1, and

MYBL2. The co-association of every

combination of TP53 mutations and the

overexpression of MYBL2, FOXM1, or
E2F1 are highly significant and provided in Figure 4E. This asso-

ciation suggests that these genes work together to provide an

advantage to tumor progression.

Overall, our bioinformatics suggest a two-event model for the

generation of aneuploidy in breast tumors. First, the overexpres-

sion of the oncogenes MYBL2, E2F1, and FOXM1 is the causa-

tive event of the chromosomemissegregation, perhaps because

this event leads to the transcriptional overexpression of a large

number of mitotic regulators. Second, loss of tp53 is required,

which, we postulate, allows the cells that missegregate chromo-

somes to remain proliferative as suggested by the literature

(Hayashi et al., 2012; Jeon and Lee, 2013; Krzywicka-Racka

and Sluder, 2011; Santaguida et al., 2017; Uetake and Sluder,

2010). To estimate the number of aneuploid tumors that could

be explained by this two-hit model, we ranked the percentages

of tumors that had both TP53 mutations and overexpressed

the transcription factors according to our FA scores (Figure 4F).

Sixty percent of the 50 top tumors could be explained by this

two-hit model and the co-occurrence of TP53 mutations, and

overexpression of the mitotic transcription factors correlated

strongly with FA score. In Figures 4G and 4G’, we visualize the
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co-occurrence in over 900 breast tumors. This analysis also

shows the co-occurrence of TP53mutations and overexpression

of one of the three transcription factors in 14.5% of all breast

tumors (Figure 4G’). It makes the point that these events may

have oncogenic potential beyond generating aneuploidy, since

there is a small set of tumors that either have TP53 mutated

without overexpressing mitotic transcriptional regulators or

that overexpress either MYBL2, FOXM1, or E2F1 without

mutating TP53. Overall, our data suggest that 39.6% of the

100 most aneuploid breast tumors become aneuploid because

they lose tp53 function and overexpress one of the transcrip-

tional regulators of mitosis (Z > 2). If we increase the stringency

to requiring overexpression of 2 of the 3 transcription factors,

then approximately 25.4% of highly aneuploid tumors would

be explained by the model.

Overexpression ofMYBL2, E2F1, and FOXM1Generates
Lagging Anaphase Chromosomes in Non-transformed
Vertebrate Epithelial Tissues
We developed a system to connect the results of our bioinfor-

matics approach to missegregation of chromatids in mitosis.

Our goal was to visualize the first mitosis after overexpression

of FoxM1, E2F1, and MybL2 in a non-transformed vertebrate

tissue. To do this, we used early embryos of the frog Xenopus

laevis. RNA encoding transcription factors can be injected into

embryos and translated into proteins; however, they are not

active during the first 12 division cycles that lack transcription

(Newport and Kirschner, 1982). After this time (�8 hr post-

fertilization), the embryo undergoes the mid-blastula transition

(MBT) when transcription begins. Therefore, the immediate

action of transcription factors can be measured by visualizing

the mitoses of divisions directly after MBT (stages 8 and 9).

We injected mRNA encoding the human MYBL2, E2F1, and

FOXM1 transcription factors into two-cell Xenopus embryos.

For controls, we injectedmRNAswith a stop codon inserted after

10 amino acids of each transcription factor. Western blot anal-

ysis of post-MBT embryo lysates confirmed the expression of

hMYBL2, hE2F1, and hFOXM1 in the embryos injected with

the functional RNAs (Figure 5A). The epithelial tissue above the

blastocoel (animal cap) can be easily dissected from the em-

bryos without affecting normal cell divisions, providing an oppor-

tunity to collect relatively flat tissue from multiple embryos. The

animal cap tissue from FOXM1, MYBL2, and E2F1 (triple)-over-

expressing or control RNA-expressing embryos was fixed,

stainedwith the DNA stain (TOPRO-3), and imaged on a confocal

microscope to visualize the chromosomes (representative

images are shown in Figure 5B). Individual chromatids between

segregating anaphase chromosomemasses (lagging chromatid)

could be detected in 25% of all anaphase events in triple-over-

expressing embryos, compared to less than 5% in singly in-

jected control RNA (30 pg) and 8% in embryos injected with

three times the amount of control RNA (100 pg) (Figure 5C). In

embryos where RNA for only one of the transcription factors

was injected, there was an increase in the number of lagging

chromatids over controls, but in each case, these values were

also significantly lower than the triple-overexpressing clutch-

mates. To further characterize these mistakes in mitosis, we

also examined micronuclei in fixed animal cap tissue. Anaphase
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lagging chromosomes often become micronuclei in the subse-

quent interphase, because nuclear envelope formation happens

before the lagging chromatid joins the mass of segregating

chromatids (Zhang et al., 2013). Approximately 3.5% of triple-

overexpressing cells had visible micronuclei, while the single-

overexpressing embryos had micronuclei in 1.5%–2% of cells.

Again, the triple-injected embryos displayed a significantly

higher percentage of micronuclei than both controls or singly

overexpressing clutchmates (Figure 5D).

To confirm that the lagging chromatids and micronuclei were

caused by missegregation of chromosomes, we performed

time-lapse confocal microscopy of animal caps directly after

MBT. Moreover, we designed an experiment where the controls

and triple-injected cells could be visualized in the same animal

cap to control for frog-to-frog variability. In these experiments,

embryos were injected at the one-cell stage with RNA for a

GFP-tagged histone H2B to follow mitotic events. They were

then injected with either control RNA or the RNA encoding the

three transcription factors (FOXM1, E2F1, and MYBL2) in two

of the four cells of stage 3 embryos (Figures 5E and 5F). Fluores-

cent dextran was used to label the cells that were either

control or triply overexpressing, and there was no experimental

variability if the dextran was injected into control or triple-overex-

pressing cells (data not shown). After MBT, this treatment will

generate areas of the animal cap that contain both control and

triply overexpressing cells that can be distinguished by the fluo-

rescent dextran. More than 20 videos of animal caps from sepa-

rate in vitro fertilizations weremade and analyzed. Again, we saw

a significantly higher level of abnormal divisions in the triply over-

expressing half of animal caps, compared to the internal control

(Figure 5E). Embryos overexpressing only one of the transcrip-

tion factors—in this case, the Xenopus version of MybL2—

showed an intermediate value of lagging chromatids during

mitosis, similar to the trend seen in fixed cap analysis (Figure 5F).

We conclude that overexpression of three oncogenic transcrip-

tion factors in human breast tumors was sufficient to generate

aneuploidy in an nontransformed vertebrate epithelial tissue.

We also used the Xenopus system to determine whether pre-

venting new translation of tp53 lowered chromosome segrega-

tion. However, this analysis is complicated by the fact that

tp53 protein is maternally loaded, and the protein is required

for early embryonic development (Wallingford et al., 1997). We

created two Morpholino oligonucleotides specific to Xenopus

TP53.While injection of either Morpholino had little effect on pro-

tein levels at stage 9, we saw a significant decrease in protein

levels by later stages (Figure S6C). We find that there is no in-

crease in the number of lagging chromosomes or micronuclei

upon injection of TP53 Morpholino at stage 9 (Figure S6D).

These data are consistent with a large body of literature that

suggests TP53 mutations do not directly lower the fidelity of

mitosis (Santaguida et al., 2017; Soto et al., 2017; Thompson

and Compton, 2010; Uetake and Sluder, 2010).

Segregation of Human Breast Tumors by FA Status
Tumors of all four subtypes of breast cancer (basal-like, luminal

A, luminal B, and Her2 enriched) were represented in the 522

tumors analyzed by our computational method. All four of the

tumor subtypes contained both high- and low-FA-score tumors



Figure 5. Overexpression of hE2F1, hFOXM1, and hMYBL2 Is Sufficient to Generate CIN Phenotypes in Xenopus Embryos

(A) 2-cell-stage embryos were injected with either RNA containing stop codon after 33 nt (�) or functional hE2F1, hFoxM1, and hMybL2 (+), as detected by

western blot.

(B) Representative images of TOPRO-stained normally dividing animal caps and two of the most common CIN phenotypes seen in triple-overexpressing

embryos. Yellow arrows indicate a lagging chromatid; blue arrow indicates a micronucleus.

(C andD) Quantification of lagging chromatids (C) andmicronuclei (D) in control, triply overexpressing, or singly injected embryos through fixed-animal cap analysis.

(E) Representative time-lapse series of an animal cap expressing H2B:GFP with normally dividing control cells (co-injected with Ruby-Dextran) or CIN-like

phenotypes seen in neighboring triple-overexpressing cells. Blue arrows indicate abnormal divisions seen as lagging chromatids and micronuclei. Time points

chosen to show anaphase events.

(F) Quantification of lagging chromatid events as seen in time-lapse videos of control embryos, triply overexpressing embryos, and overexpression of only xMYBL2.

Full supplemental videos are available upon request. Scale bars represent 40 mm in all images. **p < 0.01; ***p < 0.001; ****p < 0.0001, one-way ANOVA and

Bonferroni post-test statistics,. Error bars represent ±SEM. 8 hpf, 8 hr post-fertilization.
(Figure 6A). Over one third of the high FA tumors were of the

Basal-like subtype, compared to the low-FA group, which only

contained 8 basal tumors. Luminal A tumors dominated the

low FA group. These data suggest that aneuploidy could be

used to further stratify tumors beyond current diagnostics.
It has beenpreviously suggested that CIN is a predictor of prog-

nosis.WegeneratedKaplan-Meier plots to compare the 200 high-

est and lowest FA-scoring tumors for all four tumor types. We did

not have enough statistical power to predict diagnosis for most

tumor subtypes. However, women with luminal B tumors fared
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Figure 6. Characterization of the Tumors Scored asHigh and LowFA

(A) Tumor subtype distribution of the 100 tumors scored as the highest FA and

lowest FA.

(B) Kaplan-Meier curve demonstrating that FA status indicates good prognosis

for the luminal B subtype of tumors.

(C) Our two-hit model for the generation and propagation of functional

aneuploidy; note that we do not indicate which event takes place first.
better if they had high FA scores (Figure 6B). The concept that pa-

tients with high levels of CIN have improved prognoses is consis-

tent with a number of previous studies (Birkbak et al., 2011; Roy-

lance et al., 2011, Zhang et al., 2016). We conclude that our

algorithm to measure FA has prognostic value for breast tumors.

DISCUSSION

We have used a bioinformatic approach to segregate breast

tumors in the TCGA that are highly aneuploid (both whole-
2766 Cell Reports 23, 2758–2769, May 29, 2018
chromosome loss and loss of large fragments of chromosomes)

from breast tumors of more normal ploidy. TP53 was the only

protein whose loss of function was strongly associated with

the high-FA tumors. In addition, our analysis argues that the

overexpression of oncogenes E2F1, FOXM1, andMYBL2, which

we find overexpressed specifically in high-FA tumors, is suffi-

cient to lower the fidelity of chromosome segregation in verte-

brate epithelial tissues. The frequency of anaphase lagging chro-

mosomes was consistent with those predicted for optimal tumor

progression by CIN (Bakhoum and Compton, 2012). Not only are

E2F1, FOXM1, and MYBL2 oncogenes, but they also have a role

in non-transformed tissues as master controllers of the mitotic

transcriptional program. In fact, E2F1, FOXM1, and MYBL2

bind the promoters of a large percentage of the mitotic regula-

tors that we also found overexpressed in high-FA breast tumors.

Bioinformatic Methods to Measure FA
There is an unmet need for a simple reliable measurement of

aneuploidy or CIN status for tumors (McGranahan et al., 2012;

Zasadil et al., 2016). Our data suggest that a combination of

TP53 mutation and overexpression of MYBL2, FOXM1, and

E2F1 may be diagnostically relevant. In addition, as tumor

sequencing becomes more prevalent, our bioinformatic method

provides the basis for a simple diagnostic test to measure FA in a

human tumor.

Our FA algorithm is an improvement in several ways on the

CIN70 algorithm, which has been useful and is the only available

technology to measure FA from genomic data (Carter et al.,

2006). First, our scoring is based on a direct measurement of

genome-wide tumor variation, not simply on correlations of

gene expression data. Second, the increase in publically avail-

able datasets allowed us to focus on mechanisms for breast

tumors where the CIN70 work required the mixing of tumor

types. Our methodology should be generalizable to other tumor

types. Third, we generated not only a score for approximating

CIN but also two plots that provide great insight into the subtle-

ties and complexities of heterogeneity within the tumor. Fourth, it

is compatible with next-generation sequencing, which will be the

future of personalized medicine.

A Model for Generation of Aneuploidy in Breast Tumors
Our data support a two-event model for generation of FA (Fig-

ure 6C). First, TP53 is a CIN suppressor, and our data support

previous findings that the loss of tp53 function is strongly asso-

ciated with aneuploidy in tumors (Li et al., 2010; Thompson and

Compton, 2010). Second, overexpression of mitotic transcrip-

tional regulators drive the missegregation of chromosomes in

mitosis. While it is unlikely that this is the only mechanism to

generate CIN, we calculate that this two-step mechanism may

act in about 40% of the most aneuploid breast tumors and

15% of all breast tumors.

Our data are consistent with a growing body of literature re-

porting that an important role of tp53 is to trigger senescence

or cell-death pathways after the missegregation of chromo-

somes (Hinchcliffe et al., 2016; Lambrus et al., 2015;

Orth et al., 2012; Uetake and Sluder, 2010), and we suggest

that aneuploidy or CIN usually develops after this pathway is

lost. The strong co-association of TP53 mutations with the



overexpression of MMB/FOXM1 mitotic regulators has also

been previously shown; in fact, MMB/FOXM1 drives the tran-

scriptional responses that are found after tp53 loss. Our data

suggest that the evolutionary advantage of this co-association

would be the generation of genomic instability through CIN,

although it is formally possible that theMMB/FOXM1mitotic reg-

ulators provide a function that allows tumors to survive the loss

of tp53 without causing aneuploidy. To distinguish between

these models, we tested whether overexpression of MYBL2,

FOXM1, and E2F1 generated CIN phenotypes. In untransformed

Xenopus embryonic tissue, mitotic transcriptional regulator

overexpression was sufficient to generate anaphase lagging

chromatids at rates comparable to those of CIN in tumors,

providing a strong causal link between mitotic transcriptional

regulation and CIN.

We don’t know how E2F1, FOXM1, and MYBL2 overexpres-

sion lowers the fidelity of mitosis, but the simplest model is

that they drive the overexpression of a large number of mitotic

regulators, which lowers the robustness of mitotic pathways.

For example, the proteins involved in the resolution and preven-

tion of merotelic kinetochore microtubule attachments (Aurora

B, Borealin, Survivin, Bub1, MPS1, Plk1, Sgo1, and Ndc80) are

all regulated by E2F1 and FOXM1/MMB and overexpressed in

human CIN breast tumors, which could be the underlying cause

of lagging anaphase chromatids. It is also consistent with recent

studies that FOXM1 is a central regulator of kinetochore gene

transcription and the fact that centromere gene expression can

predict patient outcomes (Banerjee et al., 2014; Laoukili et al.,

2005; Thiru et al., 2014; Zhang et al., 2016).

We suggest that the Xenopus animal cap system is an ideal

system to assay the development and the consequences of FA

because it combines (1) very low background missegregation

rates with (2) outstanding observation of mitotic events bymicro-

scopy and (3) the employment of a non-transformed vertebrate

tissue that would become the skin and neural tissues of a frog,

if not manipulated; (4) the ability to rapidly manipulate these

events by loss- and gain-of-function methodologies; and

(5) the ability to quickly replace loss-of-function experiments

with mutants.

EXPERIMENTAL PROCEDURES

Further details of all procedures can be found in the Supplemental Experi-

mental Procedures.

Xenopus Embryo Injection and Analysis

Capped RNA was diluted to 25 pg/nL at 2.5-nL injections, with a final concen-

tration of 30–100 pg per embryo. Animal caps were cut and visualized at

stages 8–9. Embryos were injected with transcription factor (TF)-specific or

control RNAs (dual stop codons 10 amino acids downstream of the

translational start site); for live-cell imaging, embryos were coinjected with

nuclear label-H2B:GFP in PCS2+ vectors as described earlier in the text.

Scoring of FA from Exome Sequencing Data

The FA score was calculated from tumor exome sequencing data by

measuring the variant allele frequency (also known as ‘‘allele balance’’)

distribution at heterozygous germline SNPs, where heterozygous germline

SNPs are defined by variant calls and genotypes in the matched normal

data. The variant allele frequency (VAF) of each SNP is calculated by dividing

the number of reads containing the alternate SNP allele by the total number of
reads that align to that base in the reference genome. In high-FA tumors,

numerous LOH and CNA events will cause VAF deviations at large numbers

of SNPs across the entire genome, resulting in markedly broader VAF distribu-

tions that are obvious from genome-wide VAF histograms (as in Figure 1). The

FA score is derived from the SD of VAF measurements in the tumor exome

sequencing data across all heterozygous germline SNPs.

Quantification and Statistical Analysis

All statistical tests are specified in the text or figure legends, and details can be

found in the Supplemental Experimental Procedures.

DATA AND SOFTWARE AVAILABILITY

Contact Ira Hall (ihall@wustl.edu) for MATLAB code to generate allele

frequency plots.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, four tables, and two data files and can be found with this article

online at https://doi.org/10.1016/j.celrep.2018.04.102.
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(1993). Deletions on chromosome 16 in primary familial breast carcinomas

are associated with development of distant metastases. Cancer Res. 53,

3707–3711.

Lingle, W.L., Barrett, S.L., Negron, V.C., D’Assoro, A.B., Boeneman, K., Liu,

W., Whitehead, C.M., Reynolds, C., and Salisbury, J.L. (2002). Centrosome

amplification drives chromosomal instability in breast tumor development.

Proc. Natl. Acad. Sci. USA 99, 1978–1983.

Manning, A.L., and Dyson, N.J. (2012). RB: mitotic implications of a tumour

suppressor. Nat. Rev. Cancer 12, 220–226.

McGranahan, N., Burrell, R.A., Endesfelder, D., Novelli, M.R., and Swanton, C.

(2012). Cancer chromosomal instability: therapeutic and diagnostic chal-

lenges. EMBO Rep. 13, 528–538.

Nagayama, K., and Watatani, M. (1993). Analysis of genetic alterations related

to the development and progression of breast carcinoma. Jpn. J. Cancer Res.

84, 1159–1164.

Newport, J., and Kirschner, M. (1982). A major developmental transition in

early Xenopus embryos: II. Control of the onset of transcription. Cell 30,

687–696.

Orth, J.D., Loewer, A., Lahav, G., andMitchison, T.J. (2012). Prolonged mitotic

arrest triggers partial activation of apoptosis, resulting in DNA damage and p53

induction. Mol. Biol. Cell 23, 567–576.

Pati, D., Haddad, B.R., Haegele, A., Thompson, H., Kittrell, F.S., Shepard, A.,

Montagna, C., Zhang, N., Ge, G., Otta, S.K., et al. (2004). Hormone-induced

chromosomal instability in p53-null mammary epithelium. Cancer Res. 64,

5608–5616.

Roylance, R., Endesfelder, D., Gorman, P., Burrell, R.A., Sander, J.,

Tomlinson, I., Hanby, A.M., Speirs, V., Richardson, A.L., Birkbak, N.J., et al.

(2011). Relationship of extreme chromosomal instability with long-term

survival in a retrospective analysis of primary breast cancer. Cancer Epidemiol.

Biomarkers Prev. 20, 2183–2194.

Sadasivam, S., and DeCaprio, J.A. (2013). The DREAM complex: master coor-

dinator of cell cycle-dependent gene expression. Nat. Rev. Cancer 13,

585–595.

Sadasivam, S., Duan, S., and DeCaprio, J.A. (2012). The MuvB complex

sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.

Genes Dev. 26, 474–489.

Santaguida, S., Richardson, A., Iyer, D.R., M’Saad, O., Zasadil, L., Knouse,

K.A., Wong, Y.L., Rhind, N., Desai, A., and Amon, A. (2017). Chromosome

mis-segregation generates cell-cycle-arrested cells with complex karyotypes

that are eliminated by the immune system. Dev. Cell 41, 638–651.e5.

Schvartzman, J.M., Duijf, P.H., Sotillo, R., Coker, C., and Benezra, R. (2011).

Mad2 is a critical mediator of the chromosome instability observed upon Rb

and p53 pathway inhibition. Cancer Cell 19, 701–714.

Sigurdsson, S., Bödvarsdottir, S.K., Anamthawat-Jonsson, K., Steinarsdottir,

M., Jonasson, J.G., Ogmundsdottir, H.M., and Eyfjörd, J.E. (2000). p53 abnor-
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Supplemental Experimental Procedures: 

CONTACT FOR REAGENT AND RESOURCE SHARING (pts7h@virginia.edu, kep9v@virginia.edu) 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS  
Xenopus Embryo preparation and injection 
Embryos were obtained from X. laevis females which were injected with 800 U of human chronic gonadotropin 
into the dorsal lymph sac 16h before use. Eggs were laid into 1/3x MBS (88 mM NaCl, 1 mM KCl, 0.7 mM 
CaCl2, 1mM MgSO4, 5mM HEPES (pH7.8), 2.5 mM NaHCO3, pH 7.8) and fertilized by adding macerated 
testes. At 20 min after fertilization, embryos were dejellied in 2% cysteine (in 1/3 MBS, pH 8.0) and rinsed 
several times with 1/3x MBS. Completely dejellied embryos were maintained in 1/3x MBS at RT until 
microinjection. Injections were performed in 5% Ficoll solution in 1x MBS at one-cell to four-cell stages 
depending on the experiment. Half an hour after the last injection, embryos were returned to 1/3xMBS. DNA 
plasmids containing human E2F1 (HA-E2F-1 wtpRcCMV) and MybL2 (pCDNA3) were purchased from 
Addgene. The FOXM1 clone was obtained from the human ORFeome and cloned into pCSF107mT through 
Gateway cloning. The control RNAs were generated by inserting a stop codon 33 nucleotides after the start 
site of transcription for each of the plasmids of E2F1, MybL2, and FOXM1. The primers used to generate these 
clones are as follows: 
E2F1 5’GCGGCCCATGATAGCCGGCGCTGGAG, 
R:CTCCAGCGCCGGCTATCATGGGCCGC 
FoxM1: 5’CGTCGGCCACTGATTTAGTAAAGACGGAGGCTGC, 
R:GCAGCCTCCGTCTTTACTAAATCAGTGGCCGACG 
MybL2: 5’CGCTGCGAGGATCTGTAGTAGCTGCACTACCAGGACACAG 
R:CTGTGTCCTGGTAGTGCAGCTACTACAGATCCTCGCAGCG. 
Capped RNA was generated using mMESSAGE mMACHINE SP6 or T7 kit (AM1344, AM1345; Thermo 
Fischer Scientific). A dilution to 25pg/nl at 2.5nl injection, with a final concentration of 30-100pg per embryo, 
gave phenotypes in the triply-over expressing embryos and no discernable phenotype in the control RNA 
injections, therefore this concentration was used in all experiments. For live cell imaging embryos were 
coinjected at 2-cell stage with a membrane label-GAP43:RFP and nuclear label-H2B:GFP in PCS2+ vectors. 
As directed by Gene Tools LLC, the Morpholino stock was made at 1mM in diH2O so that when injected into 
the embryo there was a final concentration of 5-10uM in the embryo, a concentration that has been validated 
through multiple other Morpholino studies and shows no off-target toxicities or effects. The sequences are as 
follows: 
Translation Blocking: 5’ CCATGCCGGTCTCAGAGGAAGGTTC 3’ 
Splice Blocking: 5’ GGGACTCACCGTGCAGGTAACAGAC 3’ 
 
METHOD DETAILS  
Scoring of FA from exome sequencing data 
The FA score was calculated from tumor exome sequencing data by measuring the variant allele frequency 
(also known as “allele balance”) distribution at heterozygous germline single nucleotide polymorphisms 
(SNPs), where heterozygous germline SNPs are defined by variant calls and genotypes in the matched normal 
data. The variant allele frequency (VAF) of each SNP is calculated by dividing the number of reads containing 
the alternate SNP allele by the total number of reads that align to that base in the reference genome. 
Heterozygous germline SNPs are expected to be found at a VAF of approximately 0.5, with minor deviations 
occurring due to stochastic sampling of chromosomes during exome sequencing. Loss of heterozygosity (LOH) 
events and copy number alterations (CNA) cause VAF deviations at heterozygous SNPs by altering the copy 
number of one SNP allele relative to the other SNP allele. For example, an LOH event that is fixed among 
tumor cells will result in heterozygous SNPs within the altered genomic segment to have VAF values of 0 or 1 
(depending on which allele is lost), with subclonal alterations causing intermediate values. In high-FA tumors, 
numerous LOH and CNA events will cause VAF deviations at large numbers of SNPs across the entire 
genome, resulting in markedly broader VAF distributions that are obvious from genome-wide VAF histograms 
(as in Figure 1). The FA score is derived from the standard deviation of VAF measurements in the tumor 
exome sequencing data across all heterozygous germline SNPs. 
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Immunofluorescence and Live Imaging 
Fixed cell immunofluorescence microscopy was performed on St. 8.5-9 embryos (approximately 8-9 hours post 
fertilization) that were fixed overnight at -20C in Dent’s solution (80% methanol, 20% DMSO). They were 
postfixed in methanol for 9h or overnight at -20C. Embryos were then hydrated and dissected in Tris-buffered 
saline (150mM NaCl, 50mM Tris; pH 7.4) with 1% SDS detergent (TBS and Tween 20 [TBST]. The dissected 
caps were subjected to a DNA stain (TOPRO 3, 1:20000 dilution) for 30- 60 min at RT, and dehydrated in 
Methanol overnight. Pre-imaging, fixed caps were cleared in Murray’s solution (2:1 Benzyl Benzoate, Benzyl 
Alcohol) 15- 30 min, mounted on slides (Histomount, Life Technologies). Images were taken by Axiovert 200 
microscope (Carl Zeiss) with PerkinElmer-RS spinning disk confocal system illuminated by a krypton/argon 
laser, using a 40x or 60x oil immersion objective (NA 1.4; Carl Zeiss), with images acquired by an electron 
multiplying charge coupled device camera (Hamamatsu C9100) using Velocity software. For live imaging 
experiments, capped RNA was generated using an SP6 mMessage mMachine kit (Ambion). Xenopus laevis 
embryos were injected while suspended in 5% Ficoll solution at 2-cell stage with 50-150pg of RNA. To 
visualize mitotic events embryos were co-injected membrane label (GAP43:RFP) and nuclear label 
(H2B:GFP). Triple mutants were additionally co-injected with 30pg of each of the transcription factors 
overexpressed, whereas the controls were injected with an equal concentration of control RNA. At NF stage 8, 
embryos were devitellined and the animal cap portion was removed by microsurgery and sandwiched between 
coverslips before imaging. A time-lapse movie of the layer of cells that make up the blastocoel roof was made 
on a Zeiss 780 Confocal Microscope with the 25x objective and a framing rate of 30 s. We thank Robert Rotzin 
for help with the live imaging acquisition. To quantify chromosome instability phenotypes in animal caps, we 
assessed every anaphase event that could be clearly visualized and scored it as having an anaphase lagging 
chromosome (a chromosome clearly left at the area of the metaphase plate without significant stretching of 
chromatin toward either pole), a multipolar anaphase (chromosomes segregating in more than 2 directions), 
anaphase bridging (chromatin stretched between the segregating anaphase masses) or normal anaphase 
segregation (controls n=187 in 18 movies, triple injection n=436 in 12 movies). Movies included anaphase 
events in stages 8-9.5. Statistical significance was measured using a one-way ANOVA with a Bonferonni post-
test. 
 
Embryos lysates and immunoblotting 
Embryos lysates for western blotting were collected at stages 7, 8, 9 for both control and triply-overexpressing 
embryos as described in [S5]. Blots were stained with a 1:500 dilution of anti- E2F1 (clones KH20 &KH95, 
mixed mouse monoclonal IgGs, 05-379; Millipore), anti-FoxM1 (G- 5: sc-376471, Santa Cruz 
Biotechnology,Inc.), anti- MybL2 (phospho T487, ab76009; Abcam), p53 X-77, MA1-12549, Thermo Fisher 
Scientific), and anti-α-tubulin (Dm1α, 1:2000 dilution) used as a loading control. Secondary antibodies 
conjugated to HRP at a 1:10,000 dilution were visualized using Amersham ECL Prime Western Blotting 
Detection Reagent, (GE Healthcare) and imaged with Chemi Doc Bio-Rad system. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS  
Identification of significantly mutated genes in high- vs. low-FA tumors. 
For mutation burden analysis, we used the official somatic mutation calls from the Level 2 Illumina exome 
sequencing VCF files in the TCGA project database, which are derived from precisely the same exome 
sequencing datasets that we used to measure FA. We then used the VAAST software package (version 1.0.4) 
[S1]to identify genes that were significantly mutated in the 100 tumors with the highest FA scores relative to the 
100 tumors with the lowest FA scores using the following command line parameters: “-m lrt--codon_bias --gp 
10000 -r 0.001”. We then performed the reverse enrichment experiment to identify genes that were significantly 
mutated in the 100 tumors with the lowest FA scores relative to the 100 tumors with the highest FA scores 
using the same parameters. To test whether the number of TP53 mutations was linearly correlated with 
aneuploidy ranking, we performed a linear-by-linear association test using R. We performed separate tests for 
the most aneuploid (Rank 1-250) and least aneuploid (Rank 251-522) tumors binned into groups of 50. 
 
Identification of genes that are overexpressed in high-FA tumors (the BrFA100 gene list) 
To identify genes whose expression was correlated with FA, we calculated the Pearson correlation coefficient 
between the highest and lowest FA scored tumors described above and gene-level RNA expression values 
obtained from TCGA. This correlation-based approach is identical to that previously used to identify the CIN70 
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gene list [S2] although we note that the prior study used a different CIN scoring method and RNA expression 
array platform. 
 
DATA AND SOFTWARE AVAILABILITY 
Bioinformatic analysis 
Co-association analysis was performed at the CBioPortal Web site by inputting the four genes and determining 
if there were any associations of either mutations or RNA expression patterns. Venn Diagram in figure 4D was 
generated by inputting the referenced gene sets into the Venn diagram maker at Bioinformations and 
Evolutionary genomics at Ghent (http://bioinformatics.psb.ugent.be/webtools/Venn/). GO analysis was 
performed at http://www.geneontology.org/page/go-enrichment-analysis [S3]. String network diagram was 
produced using the String Webportal tool (http://string-db.org) limiting interactions to actions with the highest 
confidence ratios[S4]. To generate the masks that highlight the genes involved in mitosis, cell cycle and DNA 
replication and began with G0 terms but also performed manual curations based on pubmed searches using 
the gene and associated processes. The masks were generated by hand to include these manually curated 
lists. Contact Ira Hall (ihall@wustl.edu) for Matlab code to generate Allele Frequency Plots. 
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RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-E2F1 (clones KH20 & KH95) Milipore 05-379 
Anti-MybL2 phospho T487 Abcam Ab76009 
Anti-FoxM1 Santa Cruz Sc-376471 
Anti-alpha-tubulin Abcam Ab7291 
Anti-p53 ThermoFisher MA1-12549 
Biological Samples 
Chemicals, Peptides, and Recombinant Proteins 
Dextran, tetramethylrhodamine (and fluorescein),  
70,000 MW, Lysine Fixable 

ThermoFisher D1818, D1823 

TO-PRO-3 Stain ThermoFisher T3605 
Critical Commercial Assays 
mMessage mMachine  ThermoFisher  AM1344, AM1345 
Deposited Data 
Experimental Models: Cell Lines 
Experimental Models: Organisms/Strains 
Xenopus laevis Embryos Nasco In house colony, 

Dr. R Keller 
laboratory 

Recombinant DNA 
pCS2H2B-GFP/pCS2H2B-RFP Stukenberg Lab, 

developed at 
Wallingford Lab, 
University of Texas, 
Austin 

 

pCS2GAP43-RFP/pCS2GAP43-GFP Ray Keller Lab  
pCDNA3-MybL2, HA-E2F-1-wt-pRcCMV Addgene  
pCSF107mT-FoxM1 humanORFeome, 

XenopusORFeome 
 

Sequence-Based Reagents 
Primers for generating Control RNAs 
Full sequences in supplemental materials 

Invitrogen, Fisher 
Scientific 

 

Xenopus p53 Morpholinos 
Full sequences in supplemental materials 

Gene Tools, LLC. Xp53-TrBl: GFP 
MO, Xp53-
SpliceMO: GFP 

Software and Algorithms 
VAAST version 1.0.4   
CBioPortal   
Bioinformations and Evolutionary genomics 
http://bioinformatics.psb.ugent.be/webtools/Venn/ 

  

http://biovenn.nl   
Other 
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Supplemental Figures and Legends. 
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Figure S1. Why aneuploidy changes the AAF of heterozygous alleles (Related to Figure 1). We calculate the 
AAF of a SNP by the number of next gen sequence reads of the alternate allele divided by the number of total 
reads for that locus. All heterozygous SNPs will generate an AAF around 0.5 in a normal sample. However, in 
the theoretical case where there is an extra chromosome in about half the cells in the tumor then the 
heterozygous SNPs on that chromosome will both increase (if they are the alternate allele) or decrease if they 
are the allele on the reference genome. The AAF is dependent upon both the amount of aneuploidy (in this 
case 3 chromosomes) and the percentage of the cells in the tumor that have that aneuploidy (50% of the cells). 
In this theoretical case, the AAF for all the heterozygous SNPs on the extra chromosome will be either 0.42 or 
0.58. 
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Figure S2. The pipeline used to measure aneuploidy in tumors (Related to Figure 1). Germline heterozygous 
SNPs are identified from breast cancer TCGA exome data based on their presence in paired normal samples. 
After calculation of alternate allele frequencies (AAFs; top plots), heterozygous SNPs are defined as those with 
an AAF>=0.25 and AAF<=0.75 in the normal sample (middle plots). When one generates histograms 
quantifying the number of initially heterozygous SNPs with various AAF the distribution in the tumor samples 
then one can detect aneuploidy and tumor heterogeneity by two different mechanisms. First the central peak 
around AAF broadens. Second, if there is LOH of chromosomes in a large percentage of the cells then all of 
the SNPs now generate AAF peaks at 0 or 1, which generate peaks that are outside the central peak. We also 
generate a second plot for each tumor (bottom plots). In these plots the AAF is on the Y-axis and Chromosome 
position is on the X-axis and each SNP is given a single dot. The tumor used in this example was scored as 
having the 14th most functional aneuploidy of 522 tumors. 
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Figure S3. Method of scoring FA according to the AAF plots (Related to Figures 1,2). We generated line 
graphs that represent the shape of the associated AAF plot and then calculated a standard deviation of the 
associated curve, as visualized by the width of the peaks. 
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Figure S4. AAF histograms of the Normal (non-transformed) samples (Related to Figure 1). Here we show the 
matched normal samples from the patients whose tumors are shown in Figure 1A. The ranking of each tumor 
is shown as the number in the top left corner of each histogram. 
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Figure S5. Method of distinguishing between whole and partial LOH events (Related to Figure 1 and 4). A) We 
manually visualized the chromosome position vs. AAF plots. We scored every chromosome of every tumor by 
determining if there were two major peaks maxima below AAF 0.25 and greater than 0.75 that spanned along 
a chromosome. These AAF ratios were chosen to rule triploidization events that generated peaks at 0.33 and 
0.67. Note that it is possible that we miscall a chromosome LOH event if there are more than 4 times the 
number of one parental chromosome over its homolog. Each chromosome was scored as: 1) entire 
chromosome that had a split peak across all positions for a chromosome was scored as “Whole Chromosome 
LOH”, if we could find splitting of some regions of chromosome but others with allele frequencies between 0.25 
and 0.75 it was scored as “Partial Chromosome LOH”, if we could not find any splitting of peaks along a 
contiguous region of a chromosome the tumor was scored as “No Chromosome LOH”. The number of 
chromosomes with an LOH events comprising a whole chromosome (B) in breast tumors correlates with the 
FA score (similar to Fig 1D). R2 value was generated by fitting the points to a linear regression in Excel. C) 
Plot to show that partial chromosome events correlated with tumor ranking although this correlation was lower 
than either the total number of LOH events or the whole chromosome events. R2 value was generated by 
fitting the points to a second order polynomial curve in Excel. D) TCGA RNA-seq gene expression data from 
primary solid tumor sample of breast cancer patients for MYBL2, E2F1, and FOXM1 was compared for the 200 
highest and 200 lowest FA scoring tumors. We stratified the data by different subtypes of breast cancer 
patients, including Basal, HER2+, Luminal A, and Luminal B and performed a T-test between high FA and low 
FA TCGA breast cancer patients, and report the p-value. 
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Figure S6. BrFA100 is significantly from proliferation signatures (Related to Figure 4) and xtp53 knockdown 
alone is not responsible for Xenopus phenotypes (Related to Figure 5). The overlap of the BrFA100, CIN70 
and each of 6 different proliferation signatures are shown through Venn Diagrams (A). Gene lists are available 
in Table S3. (B) A different visual representation of the overlap of the BrFA100 and the ChIP-Seq data sets for 
E2F1, FoxM1, and MybL2. (C) Western Blot analysis of p53 Morpholino injected Xenopus embryos at Stage 9 
and Stage 22 shows that a significant decrease in tp53 protein level is not seen until much later than when 
most of our in vivo experiments take place. This is why we do not see an increase in the number of micronuclei 
or lagging chromosomes in p53MO injected embryos (D) (n=30 for controls, n=15 for p53MO experiments).  
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