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For all algorithms, we denote the spike train s, the fluorescence trace f and the underlying
calcium signal c, where applicable. We observe a total of T time bins, and the measurement in
time bin t is written st, ft and ct, respectively.

Team 1 — T. Deneux The MLspike algorithm [1] is a model-based Bayesian inference al-
gorithm. Similarly to the method by Vogelstein et al. [2], the conversion of neuronal spiking
activity to calcium fluorescence is modeled by a biophysical dynamical system, and a two-ways
filtering scheme is applied to estimate the hidden dynamics of the intracellular calcium concen-
tration given the noisy fluorescence recording. MLspike implements two major improvements over
previous models: The first one is an extension of the biophysical model including a slowly drifting
baseline, which allows disentangling a wide range of noises often observed in the real data from
the spike-related signals. The second one is to represent probabilities as dense arrays rather than
using Monte-Carlo approximations, namely making MLspike a histogram filter instead of a particle
filter, which improves both speed (at least for a model’s hidden state dimension not greater than
2) and accuracy.

For the spikefinder competition, MLspike was set to estimate a-posteriori probabilities E(s|c)
rather than maximum-a-posteriori spike trains argmaxs p(s|c). The biophysical model entailed a
drifting baseline and nonlinear calcium to fluorescence conversion (i.e. saturation for OGB dataset;
polynomial supralinearity for GCaMP6 dataset), and therefore had 6 or 7 parameters. One of these
parameters (the a-priori spiking rate) was fixed while the 5 or 6 remaining ones were estimated
independently for each training dataset so as to maximize the match between the estimated and
observed spikes. This was preferred to using MLspike’s autocalibration method on each individual
neuron, because the data appeared too noisy for this autocalibration to perform accurately. The
match between the true and inferred spike rate was defined as the correlation after resampling
to 25 Hz between the true spike train, and the best post-processed version of the estimated spike
train, were postprocessing consisted in applying an additional temporal smoothing and a time shift
to account for apparent differences between data sets. Once these optimizations were performed,
the same model and postprocessing parameters were applied to the test data sets. Interestingly,
the hyperparameter optimization strategy pursued here was very similar to that chosen by Team
6.

Code is available at https://github.com/MLspike.

Team 2 — N. Chenkov, T. McColgan This algorithm is based on a convolutional neural
network, which receives the calcium signal and an index vector as input, denoting the data set
the inputs come from. The network consists of eight convolutional layers and one recurrent layer
(LSTM) (see Fig. S1A). We optimized the parameters by maximizing the Pearson correlation
coefficient with the ground-truth spiking data at 25 Hz using the ’Adam’ optimizer with 50 epochs.

The first layer consists of 10 units. Each unit uses a kernel with a width of 3 seconds (300 time
steps) that is correlated with the input calcium signal. The learned kernels catch a basic repertoire
of spike-related calcium dynamics (see Fig. S1A). The output of this layer is passed through a
hyperbolic tangent activation function (‘tanh’). This layer is followed by multiple convolutional
layers with smaller kernel widths (100 and 50 ms, or 10 and 5 time steps, respectively) and with
rectified linear activation functions (‘ReLU’). The data set indicator is concatenated with the
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Figure 1: A. Network Architecture. In the convolutional layers the notation mxn denotes n units with
kernel width of m time steps. B. Example of convolutional kernels learned by the model. The ten kernels
of the first convolutional layer can describe a wide range of transient calcium dynamics.

output of the second layer and feed into the input of the third layer. We observed that the data set
indicator improved the performance of the model, possibly setting different states of the recurrent
layer dynamics. Moreover, a bidirectional LSTM layer is fed by the input of the third layer, and
its output is added to the input to the fourth layer. The following four layers have decreasing size,
with the last layer consisting of a single unit.

To distribute the amount of information that different units are carrying, dropout is applied at
the output of the first five convolutional layers.

Code is available at https://github.com/kleskjr/spikefinder-solution.

Team 3 — A. Speiser, S. Turaga, J. H. Macke We trained neural networks consisting
both of convolutional and recurrent layers to learn a mapping from fluorescence trace to neural
spiking. In contrast to other methods, we trained the network to approximate a correlated posterior
conditional probability distribution q(s|f) of a spike-train st=0...T given a fluorescence trace ft=0...T .
We use a recurrent layer to model an autoregressive conditional probability distribution to account
for correlations in this posterior between spike probabilities and previously sampled spikes, similar
to ref [3]. The temporal ordering over spikes is used to factorize the joint distribution as qφ(s|f) =∏
t qφ(st|f, s0, ..., st−1), by conditioning spike probabilities at t on all previously sampled spikes.

The resulting stochastic RNN models a correlated posterior conditional distribution over spike
trains (see Fig. S2). The stochastic RNN samples correlated spike trains (similar to MLSpike)
which might be useful for certain applications. However, none of the performance measures used in
this challenge are sensitive to this property, as they are based on marginal firing rate predictions.

As our objective function we used the binary cross entropy between our predictions and the
true spike train to train the model in a supervised fashion

min
φ
st log (qφ(st|f, s0, ..., st−1)) + (1− st) log (1− qφ(st|f, , s0, ..., st−1)) . (1)

In separate work[4], we developed an approach for training this network in an unsupervised fashion
using variational auto-encoders [5] that can perform inference on a wide range of biophysical
generative models (e.g. using the ones used by team 1). For the challenge, all available training
data was labeled (i.e. ground truth spikes were provided), and we therefore trained the network
using supervised learning.

Our architecture contains one forward running RNN that uses a multi-layer CNN with leaky
ReLUs units to extract features from the input trace. The outputs of the forward RNN and CNN
are transformed into Bernoulli spike probabilities through a dense sigmoid layer. Additional input
is provided by a second RNN that runs backwards and also receives input from the CNN. Forward
and backward RNN have a single layer with 128 gated recurrent units each[6]. In order to generate
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a single marginal probability distribution qφ(st|f) for evaluation, samples drawn by running the
stochastic RNN 50 times were averaged. We trained one separate network for each dataset.

Sampled spikes

Predicted probability

Forward 
RNN

1D CNN

Backward
RNN

Figure 2: Network Architecture We use a multi-layer network architecture: Fluorescence-data is
first filtered by a deep 1D convolutional network (CNN), providing input to a stochastic forward running
recurrent neural network (RNN) which predicts spike-probabilities and takes previously sampled spikes as
additional input. An additional deterministic RNN runs backward in time and provides further context.

To minimize the artifacts introduced by upsampling the data to a common imaging rate, we
performed our own pre-processing (including percentile-detrending, normalizing and resampling)
where we kept the fluorescence traces closer to the original recording frequency (i.e. 50, 50, 75, 12.5,
75 Hz for data sets 1-5 respectively). For the rare cases where the true spike train contains bins
with multiple spikes at this rate, we clip the values to be binary. For training we split the traces into
short snippets and arranged them into batches of size 10. For the rare cases where the true spike
train contains bins with multiple spikes at this rate, we clip the values to be binary. Furthermore
we used stochastic gradient descent with the Adam optimzer (using default parameters).

To find good hyperparameters we performed a small grid search on the following parameters and
chose the best model using cross validation: learning rate {4e−4, 1e−3}, number of convolutional
filters per layer {20/15/15/10, 35/30/20/10}, length of trace snippets {100, 200, 300}. Performance
proved to be rather robust to the exact choice of hyperparameters.

The RNN produced suboptimal results on the fourth dataset (OGB, 7.8 Hz), and we therefore
used a simple factorizing CNN on this data-set, at an upsampled rate of 4x the imaging rate. The
RNN architecture achieved a correlation coefficient of 0.417 on the validation set against 0.455
when using the CNN.

Code is available at https://github.com/mackelab/DeepSpike.

Team 4 — P. Mineault This submission casts the problem as a supervised learning problem,
where the goal is to estimate the parameters of a basis transformation g and an output non-
linearity h such that a loss L(µt, st) between spike train st and prediction µt is minimized. g
is given by a deep convolutional artificial neural network. The first layer of this network is a
standard convolutional layer followed by a rectified linear (ReLU) nonlinearity[7], mapping each
calcium time series ft to 32 parallel time series indexed by k.

z0tk = (ft ∗ w0
jk + β0

k)
+

Here (x)+ ≡ max(0, x) is the ReLU nonlinearity. We use a large window (33 time points, or 330
ms), batch normalization, as well as a dropout fraction of .3. This initial layer is followed by seven
adjustment layers in the style of a residual network[8]:

zl+1
tk = zltk +

∑
m

(zltm ∗ wl+1
tk + βl+1

k )+
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Figure 3: The basic convolutional neural network. A,B. The spiking ground truth was smoothed to
facilitate gradient descent. C. A 1.28 sec time window of the calcium trace was used to infer the spiking
probability for each time point. D. The N inputs were transformed using a neural network with three
convolutional layers. The numbers in the boxes indicate the output size of the respective layers.

These adjustment layers use smaller windows (9 time points, or 90 ms). The nonlinear component
of each layer is batch normalized. Finally, the output is composed linearly via:

ηt =
∑
k

z7tkw
7
k + β7

The output nonlinearity h was given by a ReLU nonlinearity, such that st = η+t . We minimized a
scaled sum of squared error criterion:

L =
∑
i

min
αi

∑
j(s

i
t − αiµit)2∑
j(s

i
t)

2

Here, i indexes different neurons and αi is a set of scalars which are learned alongside the other
parameters of the model (w and β). One can show that the loss is equivalent to 1− ρ2, where ρ2
is the square of the cosine similarity between prediction and spike train. The model was specified
and fit using the tf.contrib.learn library in TensorFlow [9]. Model parameters were initialized
with the Xavier method and fit using the Adam optimizer. One large model for all 10 recordings
from the training set was fit (173 neurons) in this phase and goodness-of-fit was monitored on
a leave-aside validation set to control overfitting by early stopping. Convergence took close to
200,000 iterations.

The model described so far uses fixed filters for each recording, and uses local information (≈ 1
second of data) to estimate spikes from calcium traces. To adapt filters, we learned long-range
features with an unsupervised mixture density network [10, 11]. The model, a 3-layer recurrent
neural network with 512 long-short-term memory (LSTM) nodes, was fit to the calcium data to
obtain one 1536-dimensional latent vector per mini-batch, which was reduced to 32 dimensions
by PCA after z-scoring. These features were processed by two fully connected layers to produce
4 hidden features γtp. These 4 hidden features were used to additively adapt the filters w0

tjk =∑
p softmax(γtp)Wjkp, in a manner similar to attention models.
Originally, one large model was fit for all recordings. We then created refined versions of this

model for each of the 10 data sets by a transfer learning process. We took the large model with
its learned parameters and ran up to 50,000 extra iterations of gradient descent on just the data
from the kth dataset.

Code is available at
https://github.com/patrickmineault/spikefinder_submission

Team 5 — P. Rupprecht, S. Gerhard, R. W. Friedrich In order to infer a spike probability
for time bin t (Fig. S3A), the calcium trace located around t was used, including 25% before and
75% after t, totaling to 128 samples, i.e., 1.28 sec (Fig. S3C). A convolutional neural network
was trained to use these 128-wide windows to predict the corresponding spiking probability. To
facilitate gradient ascent, we smoothed the discrete spiking ground truth with a Gaussian filter
(σ =

√
2 samples, Fig. S3B).

We implemented the convolutional neural network in Python using Keras [12] with the Tensor-
flow [9] backend (see Fig. 3 for the network architecture). The convolutional filter size, particularly
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Figure 4: Using embedding spaces to choose datasets for focused retraining. A. Matrix of mutual pre-
dictive power, measured using the Pearson correlation coefficient between prediction and ground truth. B.
Same as (A), but normalized for columns and binned to datasets. C. Principal component analysis applied
to (B), keeping the first two PCs. D. Statistical parameters quantified for single neurons, standardized.
E. Same as (D), but binned for datasets. F. 2D principal component space generated using (E). Symbols
with numbers to the right are from training datasets, used to span the PCA space; symbols with numbers
to the left are from the test dataset and were projected into the PCA space.

for the first layer, was chosen rather large, since simple CNNs with 3 or 4 convolutional layers with
small input filter sizes (3, 5 or 7) performed poorly. No zero-padding was used. The numbers
of filters were chosen to increase with depth in order to allow for a larger capacity to represent
higher-order features. Standard ReLU activation units were used after each convolutional and
dense layer, except for the last dense layer, where a linear activation was used to allow the output
of continuous spiking probabilities.

All parameters were chosen based on intuition gained through a small exploratory hyperpa-
rameter study using diverse 3- and 4-layer CNNs with varying filter sizes, filter numbers and input
window sizes. Overfitting was controlled by randomly omitting single neurons from the training
data and checking predictive performance of the CNN model for the respective omitted neuron.

Although the above-described CNN performed well when it came to fitting single datasets of
the ground truth, one single model trained on all datasets usually performed not as well for any
of the datasets as the same CNN trained on the respective dataset alone. To better understand
this, it was quantified how well a model that had been fitted to predict spikes for neuron i can
make the same kind of predictions for neuron j. To this end, a low-capacity CNN (with two
locally connected convolutional layers and one dense layer) was fitted for each neuron i. The small
size of the network together with a high dropout rate during training (50% after each layer) was
used to prevent overfitting. This model was then applied to predict spiking probabilities both for
neuron i and all neurons j 6= i, resulting in a matrix of ’predictive power’ (measured with the
Pearson correlation coefficient between prediction and ground truth, identical to the evaluation of
the spikefinder competition computed (Fig. S4A). For instance, row 55 shows how well spikes of
neuron 55 can be predicted by the networks generated by all other neurons. Column 55, on the
other hand, shows how well the model generated by neuron 55 can predict spikes of other neurons.
The 5% neurons that were worst at predicting their own spiking were discarded from the following
modeling, assuming bad recording quality that is not suited for inclusion into a training dataset.

Normalization over columns, symmetrization of the matrix and averaging over datasets yields
a matrix of predictive power, i.e., a matrix of proximity in prediction-space between datasets (Fig.
S4B). A PCA of this matrix results in an embedding space that was limited to two dimensions due
to the low number of datasets. Datasets close to each other in the embedding space (e.g. 2 and 4)
can predict each other’s spikes very well, whereas datasets distant from each other in space (e.g.
datasets 4 and 5) fail to do so. The idea behind this approach is very similar to the embedding
spaces used by Team 8.

Using this approach, it is however not yet possible to map a neuron of a new dataset of

5



unknown properties onto the right location of the embedding space above. To solve this problem,
the following statistical properties of the raw calcium time traces were calculated (Fig. S4D), in
an approach that is similar to the long-range features of calcium traces used by Team 4:

• coefficient of variation, kurtosis, skewness

• autocorrelation of the calcium time trace with its future value in 0.5, 1 and 2 seconds

• generalized Hurst exponents of order 1-5

• the power spectral density at different frequencies between 0.1 and 3.6 Hz

We did not attempt to find a minimal set of predictive properties to reduce computation time
here, but used dimensional reduction techniques to automatically extract the relevant independent
components. After averaging the standardized values over datasets (Fig. S4E), we used the two first
principal components to generate a map of proximity in statistical property space (Fig. S4F). This
map was generated using the training datasets (numbers located on the right side of the symbols).
Test datasets were mapped into this PCA space (numbers on the left side of the symbols).

To generate a mapping between the locations of the datasets in the two embedding spaces, a
simple regressor (DecisionTreeRegressor from the scikit-learn package [13]) was fit to the training
datasets (schematic arrows in Fig. S4C,F). We then used this mapping to determine the position
of the test datasets in the embedding space of mutual predictive power.

Once the position in the embedding space is known for a dataset, the model that had been
trained before on all datasets is retrained, but preferentially with neurons from datasets that lie
close to the position in the embedding space. This preference was weighted with a function that
decays exponentially over distance in the embedding space, as indicated by the red shading (Fig.
S4C). Again, the functional form of the decay and the decay constant have been chosen heuristically
without systematic optimization, since our goal was to showcase the power of our embedding space
approach rather than finding a global optimum.

Embedding spaces as a visual and explicit intermediate step for model refinement are more
easily accessible for users, allow the use of relatively small convolutional neuronal networks and
can highlight similarities and differences between datasets. For example, it is interesting to see
that in both embedding spaces, datasets 3 and 5 cluster together, whereas dataset 8, which uses
the same calcium indicator (GCaMP6s) in the same brain region (V1), is in proximity of dataset
6 (GCaMP5k in V1). It was also observed that the datasets that use OGB-1 as indicator (1,2 and
4) tend to occupy similar regions of the embedding spaces.

This indicates that model selection is not only based on the calcium indicator and the brain
region, but on hidden parameters, e.g., signal-to-noise of the calcium recording, sampling rate, spike
rate, temperature, indicator concentration, or others. To reliably comprise these possible hidden
parameters with embedding spaces, it will be necessary to increase the number of datasets in order
to support as many possible types of datasets as possible. However, the unknown dimensionality
of this hidden parameter space makes it difficult to predict how many datasets would be required.

Code is available at
https://github.com/PTRRupprecht/Spikefinder-Elephant.

Team 6 — J. Friedrich, L. Paninski This algorithm approximates the calcium concentration
dynamics c using a stable autoregressive process of order p (AR(p)).

ct =

p∑
i=1

γict−i + st. (2)

The observed fluorescence f ∈ RT is related to the calcium concentration as [14]:

ft = a ct + b+ εt, εt ∼ N (0, σ2) (3)

where a is a non-negative scalar, b is a scalar offset parameter, and the noise is assumed to be i.i.d.
zero mean Gaussian with variance σ2. We assume units such that a = 1 without loss of generality.

The goal of calcium deconvolution is to extract an estimate ŝ of the neural activity s from the
vector of observations f . This leads to the following non-negative LASSO problem for estimating
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the calcium concentration[15, 14]:

minimize
ĉ,ŝ

1
2‖b1+ ĉ− f‖2 + λ‖ŝ‖1 subject to ŝt = ĉt −

p∑
i=1

γiĉt−i ≥ 0 (4)

where the `1 penalty on ŝ enforces sparsity of the neural activity. Note that the spike signal ŝ is
relaxed from non-negative integers to arbitrary non-negative values[14].

Problem (4) could be solved using generic convex program solvers, however, it is much faster to
use OASIS [16], a dual active set method that generalizes the pool adjacent violators algorithm, a
classic algorithm for isotonic regression [17]. The dual active set method yields an exact solution
of Eq. (4) for p = 1 and merely a greedy one for p ≥ 2. Although an exact solution for the latter
can be obtained by the primal active set method[15], here p = 2 is used and the greedy but faster
dual method which yielded similar scores (i.e. correlation values with ground truth).

The noise level σ is typically well estimated from the power spectral density (PSD) of f [18].
The parameters γi are either known a priori for a given calcium indicator or estimated from
the autocovariance function of f , and possibly improved by fitting them directly. The sparsity
parameter λ can be chosen implicitly by inclusion of the residual sum of squares (RSS) as a hard
constraint and not as a penalty term in the objective function [16, 18]. The dual problem

minimize
b̂,ĉ,ŝ

‖ŝ‖1 subject to ŝt = ĉt −
p∑
i=1

γiĉt−i ≥ 0 and ‖b̂1+ ĉ− f‖2 ≤ σ̂2T. (5)

is solved by iterative warm-started runs of OASIS to solve Eq. (4) while adjusting λ, b̂ (and
optionally also γi) between runs until Eq. (5) holds. We refer the reader to [15] for the full
algorithmic details.

The above parameter choices rely on a robust noise estimate σ̂. The resampling of each
spikefinder dataset to a fixed frame rate introduced artifacts into the data that corrupted the
autocovariance and PSD such that it was not possible to obtain reliable noise and AR estimates
based on the preprocessed data. Therefore, these parameters for baseline, sparsity and AR dy-
namics were determined based on the training data sets and kept fix for each test trace, thus not
accounting for differences between neurons within one data set. Six parameters were fit: the per-
centile value and window length to estimate the baseline using a running percentile, the two AR
coefficients, and the slope and offset of a linear function that determines the sparsity parameter λ
as function of the noise. The latter was estimated on traces that were decimated by a factor of 10
to counteract the artifacts that had been introduced by upsampling the raw data.

Running OASIS with the known parameters directly yields an estimate ŝ of the neural activity.
This estimate was already good for datasets 6-10, but noticeably improved for the first 5 datasets
by convolving it with some kernel k, to obtain the final estimate ŝ′ = ŝ ∗ k. The kernel adjusts
for mismatches between the actual calcium response kernel and the AR(2) model, smoothes the
estimate, and accounts for the uncertainty of the exact spike timings by distributing spikes as spike
rates over a few time bins. We used a kernel width of 30 bins and obtained it by averaging the
closed form solutions of the least squares linear regression problem k = argmink ‖ŝ ∗ k − s‖2 for
each true spike train s in the training set. Interestingly, the strategy used for hyperparameter
optimization used here was very similar to that used by Team 1.

Because the evaluation criterion was correlation not the residual sum of squares, we considered
to further optimize the kernel for this specific criterion using gradient decent initialized at the least
squares solution; however, we did not obtain significant improvements.

Code is available at
https://github.com/j-friedrich/spikefinder_submission

Team 7 — M. Pachitariu, K. D. Harris This algorithm has been developed as part of
Suite2p, a complete calcium processing pipeline [19]. This algorithm is called L0 deconvolution
and consists of solving the following problem

minimize ‖f − s ∗ k‖2 + λ‖s‖0, such that st ≥ 0,∀t, (6)

where k is the calcium kernel (assumed, or estimated), s ∗ k is the convolution of s and k, and
‖s‖0 is the L0 norm of s, in other words the number of non-zero entries in s. We do not describe
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here the inference method for this model, but point the reader to our original derivation in [20].
This solution is approximate, due to its greedy nature. Exact solutions have been obtained by [21],
in the case where the positivity constraint on s was removed, and the calcium kernel was restricted
to be exponential.

The L0 deconvolution model was developed as an alternative to the L1-deconvolution model
[14, 18, 15]. We originally believed that an L0 penalty would better account for the binary nature of
spike trains, and allow the algorithm to return sparse “spike trains”. The algorithm indeed returns
very sparse descriptions of the calcium data, which can deceptively look like electrophysiologically
recorded spike trains. However, neither the L0 nor the L1 penalties are necessary or desirable for
achieving best performance, the positivity constraint is sufficient [20].

Here, the training data was not used to set the parameters for the deconvolution (with the
exception of time lags, see below). Instead, calcium kernels were chosen to be exponentials with
timescales obtained from the literature for each specific sensor [22]. Following deconvolution,
dataset-specific timelags were introduced for some of the spikefinder datasets. Also, the output
was smoothed with a Gaussian kernel of a preset standard deviation (80ms for spikefinder data
sets, 20 ms for GENIE datasets).

Code is available at https://github.com/cortex-lab/Suite2P.

Team 8 — B. Bolte The algorithm used for this submission consisted of a series of stacked
convolutional neural networks with filter lengths of 10 to 100 milliseconds. The model was trained
to maximize the Pearson correlation between the spike probabilities predicted by the model and
the ground truth spike data. To capture the non-linear dynamic characteristic of this problem,
additional features were added besides the raw calcium trace, including the first and second order
derivatives, as well as quadratic features. Additionally, average pooling over convolutional filters
was used to capture dynamics at multiple time scales.

During experimentation, it was observed that the spike behavior varied quite a bit in different
data sets. From this observation, it was inferred that different convolutional filters would perform
well for different data sets. To implement this idea, "data set embeddings" were used to weight
the output of each convolutional filter during learning. A unique vector was learned for each data
set, where the number of dimensions in the vector corresponded to the number of convolutional
filters in the first layer of the model. The output of the first convolutional filter was weighted by
it’s corresponding vector.

Intuitively, these vectors represent embeddings for each data set, and the similarity between
two embeddings represents the similarity of the spike behavior in each data set, since a model
trained to infer spikes in the two data set would employ similar convolutional filters.

Code is available at https://github.com/codekansas/spikefinder.

Team 9 — T. Machado, L. Paninski The inference framework developed by Team 9 consists
of two parts: a linear encoding model that takes in spikes and outputs simulated fluorescence traces
(trained on paired spike train and fluorescence data), and a simple convolutional neural network
to serve as a decoding model that outputs estimates of spikes given fluorescence observations and
encoding model parameter estimates. This network is trained on large data sets simulated from
the encoder model. The advantage of this approach is that we can train the decoder model to
“saturation" by providing it as much training data as necessary to achieve good performance. On
linear-Gaussian simulated data, the neural network decoder performed comparably to OASIS [15],
a state-of-the-art inference method for efficiently efficiently solving the spike inference problem
under linear-Gaussian assumptions (though both are fast enough to support online data analysis,
OASIS runs significantly faster than the neural network decoder at test time).

Instead of directly using the spikefinder data sets to train a decoding algorithm, we generated
simulated training data sets consisting of 5,000 traces, each of length 3,000 time steps. Each
fluorescence trace was generated with the following second-order autoregressive model (p = 2):

ct =

p∑
k=1

γct−k + ast (7)

ft = ct + b + εt (8)

The parameterization of each trace generated using Equation 8 was random. The noise was modeled
as εt ∼ N(0, σ2

t ). The jump size a of each spike was randomly sampled from a uniform distribution
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between 0.5 and 1.5. Each simulated spike train, s, was sampled from a homogeneous Poisson
process with a mean firing rate between 0 and 2 Hz. The baseline drift component, b, was modeled
by low-pass filtering white noise. The baseline drift component significantly improved inference
quality, in agreement with the observation of Team 1. In contrast, the statistics of the simulated
spike trains, as well as the randomized jump sizes following each spike, had a much smaller impact
on decoder performance.

The time constants of the autoregressive model, γ, and the scale of the noise, σ, were also
sampled from random uniform distributions (such that a single decoder trained on these data
could work well across multiple indicators and frame rates), but the precise parameterization was
varied between model training sessions. However, in all cases, we found that a wide range of γ
values could be learned by a single decoder model. For instance, we successfully trained decoder
models across data with γ values spanning approximate decay times for fast OGB data recorded
at 25 Hz, to slow GCaMP6S data recorded at 100 Hz. This shows that a single decoding model
trained on simulated data can be used to analyze data produced by many different indicators and
many different acquisition rates in agreement with Theis et al. [23]. Similarly, wide ranges of σ
values could be learned by single decoders. However, there was a slight performance enhancement
seen by training single encoders on mostly low SNR or high SNR data to improve performance on
low SNR and high SNR real data, respectively.

Finally, in almost all cases, the second-order models (i.e. p = 2 in Equation 7) outperformed
first-order models (p = 1). An exception were the OGB-1 data sets, as the sensor displays very
rapid rise time kinetics following action potentials and has been previously shown to be especially
well-described by first-order models[14].

To estimate the most likely spike train underlying a given fluorescence trace, we built a convo-
lutional neural network. During training, the network was presented with f as well as parameter
estimates for σ and γ given by methods published in earlier work [18]. Because the spikefinder
data was upsampled from its native resolution and this introduced artifacts in the power spectrum
of each fluorescence trace, we decimated each trace by a factor of 7-10 (depending on the approx-
imate native time resolution of each dataset) before performing subsequent parameter fitting and
analysis. The target of the network during training was the set of simulated spike trains, s, used
to generate f using Equation 7.

A fairly simple architecture inspired by research into the construction of generative models
for audio data was found to be effective [24]. In brief, the network consists of four 1D dilated
convolutional layers containing 100 units, a filter size of 32, and rectified-linear (relu) nonlinearities.
The first layer was dilated by a factor of 1, the second layer by 2, the third by 4 and the fourth by
a factor of 8. Dropout (rate = 0.5) was also used at each layer. Finally, a fifth 1D convolutional
layer with one unit, a filter size of one, and a relu nonlinearity was used to read-out a non-negative
estimate of s from each f vector provided.

This architecture contained about 950,000 parameters and could be trained on a simulated data
set of 5,000 traces in about 20 minutes (over 20 epochs) using the Google ML Engine. A single
model trained on simulated data that spanned a wide range of σ and γ values performed well,
but an ensemble of four models, each trained on a slightly different simulated data set, worked
even better–as some decoders tended to work better or worse on each spikefinder data set. For
our submission, we chose the decoding model that worked best for each dataset to use as our
submission. For data set 5, which had high firing rates, we found that convolving the results with
a small Gaussian kernel resulted in a modest improvement to our inference quality.

Code is available at
https://bitbucket.org/tamachado/encoder-decoder

Team 10 — D. Ringach This algorithm consists of a simple linear filter followed by a static-
nonlinearity f(t) = φ(h(t)∗s(t)). The filter h(t) is a linear combination of an even filter, estimating
the mean of the signal at time t, and an odd filter, estimating the derivative of the signal at time
t.

The even filter is a Gaussian,heven(τ) = A exp(−τ2/2σ2), and the odd filter is the derivative
of a Gaussian hodd(τ) = Bt exp(−τ2/2σ2). The constants A and B are such that the norm of
the filters is normalized to one, ‖A‖ = ‖B‖ = 1. These two filters are linearly combined while
keeping the norm of resulting filter equal to one, h(τ) = cosαheven(τ) + sinαhodd(τ). The output
nonlinearity is a rectifier to a power, φ(x) = (x− θ)β if x > θ, and zero otherwise.

The model has only 4 parameters, σ, α, θ, β. The amount of smoothing of the signal is controlled
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by σ, the shape of the filter is controlled by α, and the threshold θ and power β determine the shape
of the nonlinearity. The model is fit by finding the optimal values of σ, α, θ, β that maximize the
correlation between its output ŝ(t) and the recorded spiking of the neuron. Matlab’s fminsearch
was used to perform this optimization, which was typically finished in about 60 sec or less for most
data sets. The only pre-processing done was a z-scoring of the raw signals. In one dataset (dataset
5, GCaMP6s in V1), an extra-delay parameter between the signal and the prediction was allowed.

Code is available at https://github.com/darioringach/Vanilla.
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