NCAM2 Fibronectin type-III domains form a rigid structure that binds and activates the Fibroblast Growth Factor Receptor

Kim Krighaar Rasmussen^{1,2,3,#,*}, Maria Hansen Falkesgaard^{2,#}, Malene Winther², Nikolaj Kulahin Roed², Christine Louise Quistgaard², Marie Nygaard Teisen², Sofie Marie Edslev², David Leander Petersen², Ali Aljubouri², Claus Christensen², Peter Waaben Thulstrup¹, Leila Lo Leggio¹, Kaare Teilum³, and Peter Schledermann Walmod²

- 1: Biological Chemistry, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- 2: Laboratory of Neural Plasticity, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- 3: Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- # These authors contributed equally

* Corresponding Author:

Biological Chemistry, Department of Chemistry, Faculty of Science,

Universitetsparken 5, DK-2100 Copenhagen, Denmark.

E-mail: <u>kkr@chem.ku.dk</u>

Parameter	Value	Standard deviation
Structural precision ^a		
RMSD for backbone atoms (Å)	0.35	± 0.06
RMSD for heavy atoms (Å)	0.88	± 0.05
Number of non-redundant structural	restrains	
Number of constrains	1934	
Long-range NOE [$ i - j > 4$]	951	
Medium-range NOE [$ i - j \le 4$]	146	
Sequential NOE $[i - j = 1]$	491	
Intra NOE $[i - j = 0]$	346	
Hydrogen bonds	21	
Dihedral angle restrain	118	
Restrains violations		
> 0.4 Å	None	
Dihedral angle violations >5°	None	
RMS violation of restrains		
NOE (Å)	0.0295	± 0.0016
Dihedral angles (°)	0.37	± 0.09
Energies (kcal/mol) from Xplor-NIH		
Bonds	33.32	± 2.36
Bonds angles	201.82	± 13.17
NOE	84.16	± 8.97
Dihedral angles	-686.96	± 28.61
Hydrogen bonds	3.53	± 0.65
van der Waals	154.20	± 8.13
Dihedreal bond angles	1.02	± 0.52
Improper bond angles	30.53	± 3.22
Overall	-178.38	± 35.65
RMSDs from idealized geometry		
Bonds lengths (Å)	0.0046	± 0.0005
Bond angles (°)	0.66	± 0.02
Improper bond angles (°)	0.48	± 0.03
Ramachandran plot statistics		
Most favored regions (%)	79.7	
Additionally allowed regions (%)	17.5	
Generously allowed regions (%)	2.1	
Disallowed regions (%)	0.7	

Table S1. Structural statistics of the FnIII2 domain of NCAM2

^aRMSDs from the average for residues 3-93 in 20 structure models.

2 µM	6.90	1.66	2 μM	6.95	2.47		
1 µM	5.87	2.49	1 µM	5.59	1.74		
0.5 μΜ	5.23	1.71	0.5 µM	5.85	2.68		
0.25 μM	4.80	2.04	0.25 µM	4.71	1.75		
0.13 μM	4.10	1.33	0.13 µM	2.95	1.28		
0 μΜ	3.31	1.12	0 μΜ	2.92	0.83		
FnIII1- 2	MEAN	SEM					
<u> </u>	(µm)	2.14					
4 μM	7.07	2.14					
$2 \mu M$	4.40	1.29					
$0.5 \mu M$	3.08	1.13					
0.25 µM	4 21	1.08					
0.13 µM	3.07	0.10					
0 µM	3.04	1.10					
FnIII1-2	SU5402	MEAN (µm)	SEM	FnIII	1-2 U0126	MEAN (µm)	SEM
Co	pat	10.29	2.68		Coat	8.28	1.00
Coat + 100	uM SU5402	5.29	2.24	Coat + 2	0 μM U0126	4.52	0.42
$Coat + 33 \mu$	M SU5402	7.40	2.28	Coat + 6	.6 µM U0126	7.76	1.31
Coat + 11 µ	M SU5402	7.11	1.75	Coat + 2	.2 μM U0126	8.18	0.59
No	coat	3.63	1.02	N	lo coat	2.81	0.68
No coat $+$ 100) μM SU5402	2.62	1.39	No coat +	20 µM U0126	3.55	0.97
No coat + 33	μM SU5402	3.39	1.13	No coat +	6.6 μM U0126	2.40	0.22
No coat ± 11	uM SU5402	3 53	1.65	No coat +	2.2 µM U0126	2.24	1.28
	µWI 505402	5.55	1.00		 µ		

MEAN (µm)

9.11

SEM

2.49

Table S2. The average total neurite length per cell for NCAM2 FnIII domains.

FnIII2

4 μΜ

FnIII1

4 µM

MEAN (µm)

7.95

SEM

2.12

 Table S2. The average total neurite length per cell. The first three tables corresponds to
 concentration dependent neurite outgrowth with recombinant domains from NCAM2 (FnIII1, FnIII2 and FnIII1-2). The last to corresponds to inhibition experiments using either SU5402 or U0126 to inhibit 4 µM NCAM2 FnIII1-2 neuritogen effect. The average total lengths were calculated using $L(\mu m) = (\pi^* d)/2^* I$ where the equation reflects the number of intersections (I) of neurites with test lines in a counting frame with the vertical distances between the lines of d, for further details see Ronn et al. 2000¹. Coat (4 µM FnIII1-2 recombinant protein).

N2-FnIII1-AB	MEAN (µm)	SEM			N2-FnIII1-CD	MEAN (µm)	SEM	-
35 µM	4.47	1.78			38 µM	2.62	0.97	
12 µM	12.35	1.99			13 µM	3.33	1.11	
4 μΜ	13.01	1.55			4.2 μM	4.44	3.37	
1.3 μM	13.53	1.66			1.4 µM	2.07	1.85	_
0.4 µM	10.76	5.17			0.4 µM	1.88	2.31	
0.1 µM	4.08	1.45			0.1 µM	2.98	1.33	_
0 μΜ	2.36	0.56			0 µM	2.87	1.21	
								_
N2-FnIII1-EF	MEAN (µm)	SEM			N2-FnIII2-AB	MEAN (µm)	SEM	•
35 µM	3.01	0.16			72 uM	4.85	3.38	1
12 µM	1.87	1.61			24 µM	5.89	4.23	
4 μΜ	2.51	0.47			8 µM	4.31	2.33	
1.3 μM	2.35	0.98			2.7 μM	5.55	6.29	
0.4 µM	1.98	0.26			0.9 µM	4.19	1.90	
0.1 µM	3.26	1.77			0.3 µM	6.26	5.48	-
0 µM	3.57	1.06			0 µM	6.65	3.77	
					·			-
N2-FnIII2-BC	MEAN (µm)	SEM			N2-FnIII2-FG	MEAN (µm)	SEM	-
36 µM	7.43	4.77			33 μM	5.49	2.68	
12 µM	10.84	2.75			11 µM	1.97	0.24	-
4 µM	9.88	2.57			3.7 µM	1.45	0.15	
1.3 µM	11.48	5.64			1.2 µM	2.05	1.18	-
0.4 µM	8.25	5.74			0.4 µM	2.88	1.12	
0.15 µM	7.20	3.46			0.14 µM	2.70	2.24	-
0 µM	5.89	2.83			0 µM	2.70	2.00	
					·			
N2-FnIII1-AF	3 SU5402 M	IEAN (μm)	SEM		N2-FnIII1-AB U	0126 MEAN	[(μm)	SEM
Coat		18.07	14.17		Coat	6.9	91	0.58
Coat + 100 µN	1 SU5402	12.19	9.38	1	$Coat + 20 \ \mu M \ UC$	5.0)4	1.55
Coat + 33 µM	SU5402	12.79	10.62		Coat + 6.6 µM U	0126 4.6	54	2.43
Coat + 11 μM	SU5402	11.94	11.60	I	Coat + 2.2 µM U	0126 3.0)5	2.94
No coa	at	8.27	6.63		No coat	2.6	55	0.04
No coat + 100 μ	M SU5402	8.43	6.29		No coat + 20 μ M U	J0126 4.4	15	1.21
No coat + 33 μ l	M SU5402	8.76	5.39		No coat + 6.6 μ M U	J0126 3.1	.8	1.70
No coat + 11 μ l	M SU5402	6.22	5.74		No coat + 2.2 μ M U	U0126 1.8	35	0.42

 Table S3. Average total neurite length per cell for peptides.

Table S3. The average total neurite length per cell. Average total neurite lengths were calculated as in Table S2. The first six tables correspond to concentration dependent neurite outgrowth with peptides (FnIII1 AB, - CD, - EF and FnIII2 AB, - BC, - FG). The last two corresponds to inhibition experiments performed with FnIII1-AB.

Table S	54. Se	quences	used	for	alignment

NCAM2	Human	496-PSSPY	GVKIIELSQT	TAKVSFNKPD	SHGGVPIHHY
	(015394)	QVDVKEVASE	IWKIVRSHGV	QTMVVLNNLE	PNTTYEIRVA
	(010051)	AVNGKGQGDY	SKIEIFQTLP	VREPSPPSIH	GQPSSGKSFK
		LSITKQDDGG	APILEYIVKY	RSKDKEDQWL	EKKVQGNKDH
		IILEHLQWTM	GYEVQITAAN	RLGYSEPTVY	EFSMPPKPNI
		IKD-693			
	Rattus	495-PSSPR	GVKIIELSQT	TAKISFNKPE	SHGGVPIHHY
	Norvegicus	QVDVKEVTSE	TWKIVRSHGV	QTTVVLSSLE	PNTTYEVRVA
	$(\lambda 0 \lambda 0 C 2 K 7 D 0)$	AVNGKGQGDY	SKIEIFQTLP	VREPSPPSIH	GQPSSGKSFK
	(AUAUGZK/P9)	ISITKQDDGG	APILEYIVKY	RSKDKEDQWL	EKKVQGNKDH
		IILEHLQWTM	GYEVQITAAN	RLGYSEPTVY	EFSMPPKPNI
		IKD-692			
	Mus musculus	496-PSSPH	GVKIIELSQT	TAKISFNKPE	SHGGVPIHHY
	(035136)	QVDVKEVASE	TWKIVRSHGV	QTMVVLSSLE	PNTTYEIRVA
	(000100)	AVNGKGQGDY	SKIEIFQTLP	VREPSPPSIH	GQPSSGKSFK
		ISITKQDDGG	APILEYIVKY	RSKDKEDQWL	EKKVQGNKDH
		IILEHLQWTM	GYEVQITAAN	RLGYSEPTVY	EFSMPPKPNI
		IKD-693			
220124	The second second	510 DCCDC	TDOVEDVCCT	AOVOEDEDEA	MCCUDTT VVV
NCAMI	Human	J10-F99F9	IDQVEFISSI	AQVQFDEPEA	TGGVPILKIK
NCAMI	(P13591)	AEWRAVGEEV	WHSKWYDAKE	AGVOFDEPEA	GLKPETTYAV
NCAMI	(P13591)	AEWRAVGEEV RLAALNGKGL	WHSKWYDAKE GEISAASEFK	ASMEGIVTIV TQPVQGEPSA	GLKPETTYAV PKLEGQMGED
NCAMI	(P13591)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK	WHSKWYDAKE GEISAASEFK QDDGGSPIRH	AGVOFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS	GLKPETTYAV PKLEGQMGED EWKPEIRLPS
NCAMI	(P13591)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL	WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV	ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA
NCAMI	(P13591)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706	WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV	ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA
NCAMI	(P13591) Rattus	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS	IDOVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST	ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK
NCAMI	Rattus	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA	HSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV
NCAMI	Rattus (P13591)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL	HSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG
NCAMI	Rattus (P13591) Rattus Norvegicus (P13596)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ	HDGVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY	AGVOFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG
NCAMI	Rattus (P13591) Rattus Norvegicus (P13596)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD	HDGVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA	GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ
NCAMI	Rattus (P13591) Rattus Norvegicus (P13596)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706	HDGVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ
NCAMI	(P13591) Rattus Norvegicus (P13596) Mus musculus	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706 501-PSSPS	IDQVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV IDRVEPYSST	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA AQVQFDEPEA	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ TGGVPILKYK
NCAMI	(P13591) Rattus Norvegicus (P13596) Mus musculus (P13595)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706 501-PSSPS AEWKSLGEES	IDQVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV IDRVEPYSST WHFKWYDAKE	AQVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA AQVQFDEPEA ANMEGIVTIM	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ TGGVPILKYK GLKPETRYSV
NCAMI	Rattus Norvegicus (P13591) Mus musculus (P13595)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706 501-PSSPS AEWKSLGEES RLAALNGKGL	IDQVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV IDRVEPYSST WHFKWYDAKE GEISAATEFK	AGVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA AQVQFDEPEA ANMEGIVTIM TQPVRPSAPK	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ TGGVPILKYK GLKPETRYSV LEGQMGEDGN
NCAMI	Rattus Norvegicus (P13596) Mus musculus (P13595)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706 501-PSSPS AEWKSLGEES RLAALNGKGL SIKVNLIKQD	HDGVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV IDRVEPYSST WHFKWYDAKE GEISAATEFK DGGSPIRHYL	AQVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA AQVQFDEPEA ANMEGIVTIM TQPVRPSAPK VKYRALASEW	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ TGGVPILKYK GLKPETRYSV LEGQMGEDGN KPEIRLPSGS
NCAMI	Rattus Norvegicus (P13596) Mus musculus (P13595)	AEWRAVGEEV RLAALNGKGL GNSIKVNLIK GSDHVMLKSL QP-706 511-PSSPS AEWKSLGEEA RLAALNGKGL NSIKVNLIKQ SDHVMLKSLD P-706 501-PSSPS AEWKSLGEES RLAALNGKGL SIKVNLIKQD DHVMLKSLDW	HDGVEFISSI WHSKWYDAKE GEISAASEFK QDDGGSPIRH DWNAEYEVYV IDRVEPYSST WHSKWYDAKE GEISAATEFK DDGGSPIRHY WNAEYEVYVV IDRVEPYSST WHFKWYDAKE GEISAATEFK DGGSPIRHYL NAEYEVYVVA	AQVQFDEPEA ASMEGIVTIV TQPVQGEPSA YLVRYRALSS VAENQQGKSK AQVQFDEPEA ANMEGIVTIM TQPVREPSAP LVKYRALASE AENQQGKSKA ANMEGIVTIM TQPVRPSAPK VKYRALASEW ENQQGKSKAA	TGGVPILKYK GLKPETTYAV PKLEGQMGED EWKPEIRLPS AAHFVFRTSA TGGVPILKYK GLKPETRYAV KLEGQMGEDG WKPEIRLPSG AHFVFRTSAQ TGGVPILKYK GLKPETRYSV LEGQMGEDGN KPEIRLPSGS HFVFRTSAQP

Table S4. UniProtKB identifier are given in parentheses

Figure S1. Purity of ¹³C¹⁵N labelled NCAM2 FnIII2 domain expressed in yeast. The quality of the NCAM2 FnIII2 domain, expressed in yeast and used for structural studies using NMR, was verified from SEC (Fig S1. a) and SDS-PAGE (Fig S1. b). ¹³C¹⁵N-FnIII2 (red, curve) purified on a Superdex75 PrepGrad (GE Healthcare) calibrated with GE healthcare low molecular weight standards (blue curve) (Blue Dextran 2000, Conalbumin 75 -, Ovalalumin 43 -, Carbonic Anhydrase 29 -, Ribonuclease A 13.7 – and Aprotinin 6.5 kDa. The first peak in the ¹³C¹⁵N-FnIII2 chromatogram eluted at ~41 mL presumably corresponds to aggregated protein, and thus was discarded. The second asymmetric and most prominent peak corresponds to monomeric ¹³C¹⁵N-FnIII2. To confirm purity the asymmetric peak of ¹³C¹⁵N-FnIII2 was analyzed by 8-25 % gradient SDS-PAGE using the PhastSystemTM using sample applicator 6/4 (6 samples / 4 uL) (b). Fraction 47, 53, 58, 66 and 70 corresponds to 79, 85, 91, 98 and 102 ml elution volume, respectively.

Figure S2. MALDI-TOF spectrum of NCAM2 FnIII2 produced in P. pastoris. The spectrum shows that FnIII2 exists in 3 variants. The variation originates from insufficient cleavage of N-terminal signal peptide (EAEA), due to inefficient Ste13 enzyme activity. The peaks correspond to completely, partially, and uncleaved signal peptide.

.

Figure S3. CD spectra of NCAM2 FnIII domains. The FnIII domains were expressed in *E. coli* (BL21) and refolded from inclusion bodies. CD spectra of all NCAM2 FnIII proteins (FnIII1 [green], FnIII2 [blue], and FnIII1-2 [red]) had the characteristic positive signal for folded FnIII domain at ~227 nm².

Figure S4. **Slow exchanges residues involved in hydrogen binding.** Representation of a ¹⁵N-HSQC recorded 60 min. after ${}^{1}\text{H}/{}^{2}\text{H}$ exchanges (a). Residues involved in hydrogen bonds are colored brown and mapped on the NCAM2 FnIII2 structure (b).

Figure S5. Structure models of the NCAM2 FnIII2 domain. Stereo view of an overlay of the backbone of 20 superimposed structural models of the FnIII2 domain. Numbers indicate randomly selected amino acids to facilitate orientation through the backbone. From 100 structural models the 20 structural models with the lowest energies were selected to represent the structural model of NCAM2 FnIII2 (PDB code: 2kbg). The obtained model contains no individual structures with NOE constrain violations above 0.4 Å or bond angle violations above 5°. A summary of the structural statistics is given in Table S1.

Figure S6. AMP-PCP titration data. The figure shows end point HSQC experiments of NCAM2 FnIII2 with (red) or without (blue) AMP-PCP. AMP-PCP was used to investigate if NCAM2 FnIII2 could bind AMP-PCP via the Walker A motif (yellow on structure). Only small chemical shift changes were observed (colored red on structure), and none of those were located in the Walker A motif.

Figure S7. Top: SAXS data for NCAM2 FnIII1-2. Experimental SAXS data (A, B red) with linear fit to Guinier region (A, black line) and fit to the theoretical scattering curve (B, black line) calculated from the structure of the NCAM2 FnIII1-2 His-tag. Bottom: Reconstructed *ab initio* models (blue surface), calculated from distance distribution curve (C), and overlaid with crystal structure of NCAM2 FnIII1-2 including a His-tag (surface and lines) manually added.

Figure S8. Estimation of K_d **for NCAM2-FnIII1-2 and FGFRβ.** The K_d between NCAM2-FnIII1-2 expressed in *P.pastoris* and FGFR was estimated using surface plasmon resonance. Except for the flow time (200 second) the protocol was identical to the description in material and methods. Increasing concentration of analyte (NCAM2) were flowed over the immobilized binding partner FGFR β (a). Steady state fitting gave a K_d = 0.4 µM with a χ^2 value of of the fit = 0.061 (b). Comparing the K_d 's obtained from recombinant bacterial expressed and yeast expressed protein shows that the Kd are reproducibly in the µM range.

Figure S9. Alignment of the primary structures of the NCAM1 and NCAM2 FnIII domains. Protein sequences from selected species (human, rat, and mouse) were aligned to investigate conservation across species. Sequences of biologically active peptides derived from NCAM1 (EncaminA, -C, -E, BCL, and FGL) are framed.

References:

- 1. Rønn, L. C. *et al.* A simple procedure for quantification of neurite outgrowth based on stereological principles. *J. Neurosci. Methods* **100**, 25–32 (2000).
- Yang, L. *et al.* Expression, refolding and spectroscopic characterization of fibronectin type III (FnIII)-homology domains derived from human fibronectin leucine rich transmembrane protein (FLRT)-1, -2, and -3. *PeerJ* 5, e3550 (2017).