Supplementary Information

Hydrophobic pore gates regulate ion permeation in polycystic kidney disease 2 and 2L1 channels

Zheng et al.

Supplementary Figure 1. Representative I-V curves for PKD2L1 A558G, A558T and A558S mutants. Currents were recorded in expressing oocytes in the presence of the Mg²⁺-free Na-containing solution (in mM): 100 NaCl, 2 KCl, 10 HEPES at pH 7.5.

Supplementary Figure 2. Surface expression of WT or mutant PKD2 in oocytes. Left panel, whole-mount immunofluorescence using the antibody for the HA-tag showing the oocyte surface expression of the PKD2 WT or indicated mutants; Ctrl, water injected oocytes. Scale bar, 50 μ m. Right panel, averaged surface membrane expression of the PKD2 mutants normalized to that of PKD2 WT (n = 4 - 7). Data are presented as mean \pm SEM.

Supplementary Figure 3. Characterization of human PKD2 truncated mutant E53-D792. a Representative I-V curves of full-length (FL) wild-type (WT) PKD2 and truncated mutant E53-D792 without or with F604P point mutation obtained under the same experimental condition as in Fig. 3a. **b** Averaged currents at +80 mV in expressing or water-injected (Ctrl) oocytes, as indicated. Data are presented as mean \pm SEM. ***P < 0.001 by Student's t-test.

Supplementary Figure 4. Structure determination of the PKD2 F604P channel. a A representative micrograph of PKD2 F604P particles recorded on a TF30 Polara microscope. **b** 2D classes of PKD2 F604P calculated with RELION. **c** FSC curves for resolution estimation and model validation. (top) FSC curves reported by RELION before (unmasked, black) and after (masked, blue) postprocessing, where an automask was generated by RELION to flattening regions outside protein density prior to FSC calculation. FSC curves (model vs summed half map, purple) show overall agreement between model and map. (bottom) FSC curves are calculated for model vs half map 1 (work, black) and model versus half map 2 (free, blue). Overall agreement between these curves indicates little over-fitting of the model. **d** Local resolution determined by RELION.

Supplementary Figure 5. Reconstruction of the PKD2 F604P channel with C4 symmetry. a Flow chart of image processing for the PKD2 F604P channel with C4 symmetry imposed. b Angular distribution plot of all particles projections. Cylinder heights are proportional to number of particles assigned to each set of Euler angles.

Supplementary Figure 6. EM density maps of various regions of the PKD2 F604P channel. The maps are sharpened with a b factor of -150 Å^2 . In panel G, the pi-helix is highlighted.

Supplementary Figure 7. Reconstruction of the PKD2 F604P channel without C4 symmetry. a Flow chart of image processing for the PKD2 F604P channel without C4 symmetry imposed. b Angular distribution plot of all particles projections. Cylinder heights are proportional to number of particles assigned to each set of Euler angles. c Comparison of the maps reconstructed with (gray) or without (blue) C4 symmetry, showing their overall agreement. Only subtle differences within the peripheral S1 helix, flexible loops, and amphipols are observed. Overall, map determined without C4 symmetry is of lower resolution as compared with the map determined with C4 symmetry. In particular, the S4-S5 linker is not welled resolved in the map without imposing C4 symmetry.

Supplementary Figure 8. Superposition of PKD2 WT and F604P mutant structures. Superposition of TOP domains (**a**), selectivity filters (**b**) and S1-S4 helices (**c**). PKD2 WT, blue; F604P, orange.

Supplementary Figure 9. Comparison between the TRPML1 S4-S5 linker in the closed (blue, PDB: 5WPQ) and proposed pre-open (cyan, PDB: 5WPT) states. The K410 in the linker's N-terminus, corresponding to the R581 in PKD2, is indicated.

Supplementary Figure 10. π -helix and α -helix in S6 of TRP channels. Upper and lower left panel, pore-lining S6 helices in hPKD2_{apo} (apo state, PDB: 5T4D), hPKD2_{MI} (bound with multiple Ca²⁺ ions, PDB: 5MKF), hPKD2_{SI} (bound with single Ca²⁺ ion, PDB: 5MKE), hTRPML1_{apo} (PDB: 5WJ5), hTRPML1_{ML-SA1} (bound with agonist ML-SA1, PDB: 5WJ9), hTRPML3_{apo} (PDB: 6AYE), hTRPML3_{ML-SA1} (bound with ML-SA1, PDB: 6AYF), rTRPV1_{apo} (PDB: 3J5P), rTRPV1_{Cap} (bound with capsaicin, PDB: 3J5R), rTRPV1_{RTX/DkTx} (bound with RTX/DkTx, PDB: 3J5Q), hTRPA1 (PDB: 3J9P), dNOMPC (PDB: 5VKQ), mTRPM4 (PDB: 6BCJ), hTRPV6_{R470E} (full-length human TRPV6 with the R470E mutation, PDB: 6BOA), hTRPV6_{onen} (full-length human TRPV6, PDB: 6BO9), RTRPV2 (PDB: 5AN8), cfTRPM8 (PDB: 6BPQ). The gate residues revealed by the structures are shown and the pore diameters determined by the gate residues indicated. The π -helix in the middle of S6 is indicated by a red arrow. h, human; r, rat; d, drosophila (fruit fly); m, mouse; R, rabbit; cf, collared flycatcher. Lower right panel, amino acid sequence alignment of S6 helices from hPKD2 (Universal Protein Resource accession #: Q13563), hTRPML1 (Q9GZU1), hTRPML3 (Q8TDD5), rTRPV1 (O35433), hTRPA1 (075762), dNOMPC (Q7KIQ2), mTRPM4 (Q7TN37), hTRPV6 (Q9H1D0), RTRPV2 (G1SNM3), cfTRPM8 (U3JD03). The last amino acid numbers are indicated and the π -helix sequences are highlighted bold and magenta.

Supplementary Figure 11. Conformational changes in pore-lining S6 helix of PKD2 induced by Ca²⁺. a Side view of superposition of S6 in the PKD2_{MI} (bound with multiple Ca²⁺ ions, PDB: 5MKF, blue) and PKD2_{SI} (bound with single Ca²⁺ ion, PDB: 5MKE, orange). The π -helix in the PKD2_{MI} structure is indicated by an arrow. The gate residue L677 is shown. **b** Top view of the pore lined by S6 in the PKD2_{MI} and PKD2_{SI} structures showing local conformational changes in the middle of S6.

Supplementary Figure 12. Uncropped images of the original scans of immuoblots. Uncropped, full-size scans of immunoblots shown in Fig. 1e and Fig. 2e.

Supplementary Figure 13. Uncropped images of the original scans of immuoblots. Uncropped, full-size scans of immunoblots shown in Fig. 3c and d.

	PKD2 F604P		
	(EMDB-7786)		
	(PDB-6D1W)		
Data collection/Processing	Data collection/Processing		
Voltage (kV)	300		
Magnification	41,132		
Defocus range (µm)	-0.62.4		
Pixel size (Å)	1.2156		
Total electron dose (e ⁻ /Å ²)	80		
Exposure time (s)	16		
Number of images	1,992		
Number of frames per image	80		
Initial particle number	661,905		
Final particle number	387,454		
Resolution (unmasked, Å)	3.8		
Resolution (masked, Å)	3.5		
Refinement and Validation			
Number of atoms	14,452		
R.M.S deviation			
Bond length (Å)	0.008		
Bond angles ($^{\circ}$)	0.794		
Ramachandran			
Favored (%)	93.3%		
Allowed (%)	6.5%		
Outlier (%)	0.2%		
Molprobity score	2.20		

Supplementary Table 1. Cryo-EM data collection, refinement and validation statistics

Mutation	Direction	Primer (5'-3')
PKD2L1		
L552N	Forward (F)	CGTCTTCTTCGTGAACCTGAACATGTTCC
	Reverse (R)	GGAACATGTTCAGGTTCACGAAGAAGACG
1.552N	F	GTCTTCTTCGTGCTCAATAACATGTTCCTGGC
LOOSIN	R	GCCAGGAACATGTTATTGAGCACGAAGAAGAC
MEEN	F	CGTGCTCCTGAACAATTTCCTGGCCATCATC
10122214	R	GATGATGGCCAGGAAATTGTTCAGGAGCACG
ESSEN	F	GCTCCTGAACATGAACCTGGCCATCATCAA
RIOCCA	R	TTGATGATGGCCAGGTTCATGTTCAGGAGC
1.557N	F	GCTCCTGAACATGTTCAATGCCATCATCAATGACAC
L557N	R	GTGTCATTGATGATGGCATTGAACATGTTCAGGAGC
1559N	F	GAACATGTTCCTGAACATCATCAATGACAC
ASSON	R	GTGTCATTGATGATGTTCAGGAACATGTTC
ISSON	F	GTTCCTGGCCAACATCAATGACACATATTC
19991	R	GAATATGTGTCATTGATGTTGGCCAGGAAC
	F	CCTGGCCATCAACAATGACACATATTC
NUDGI	R	GAATATGTGTCATTGTTGATGGCCAGG
	F	GCTCCTGAACATGTTCGAGGCCATCATCAATGACAC
L00/E	R	GTGTCATTGATGATGGCCTCGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCGATGCCATCATCAATGACAC
L557D	R	GTGTCATTGATGATGGCATCGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCCAGGCCATCATCAATGACAC
L557Q	R	GTGTCATTGATGATGGCCTGGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCAGTGCCATCATCAATGACAC
L00/5	R	GTGTCATTGATGATGGCACTGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCTGTGCCATCATCAATGACAC
L007C	R	GTGTCATTGATGATGGCACAGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCACGGCCATCATCAATGACAC
L5571	R	GTGTCATTGATGATGGCCGTGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCGGGGCCATCATCAATGACAC
L557G	R	GTGTCATTGATGATGGCCCCGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCGCGGCCATCATCAATGACAC
L557A	R	GTGTCATTGATGATGGCCGCGAACATGTTCAGGAGC
· · ·	F	GCTCCTGAACATGTTCGTGGCCATCATCAATGACAC
L557V	R	GTGTCATTGATGATGGCCACGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCATTGCCATCATCAATGACAC
L5571	R	GTGTCATTGATGATGGCAATGAACATGTTCAGGAGC
	F	GCTCCTGAACATGTTCTTTGCCATCATCAATGACAC
L557F	R	GTGTCATTGATGATGGCAAAGAACATGTTCAGGAGC
L557W	F	GCTCCTGAACATGTTCTGGGCCATCATCAATGACAC
	R	GTGTCATTGATGATGGCCCAGAACATGTTCAGGAGC
A558Q	F	GAACATGTTCCTGCAAATCATCAATGACAC
	R	GTGTCATTGATGATTTGCAGGAACATGTTC
A558S	F	GAACATGTTCCTGTCCATCATCAATGACAC
	R	GTGTCATTGATGATGGACAGGAACATGTTC

Supplementary Table 2. Primers used in this study

A558C	F	GAACATGTTCCTGTGCATCATCAATGACAC
	R	GTGTCATTGATGATGCACAGGAACATGTTC
A558T	F	GAACATGTTCCTGACCATCATCAATGACAC
	R	GTGTCATTGATGATGGTCAGGAACATGTTC
A 5 5 9 C	F	GAACATGTTCCTGGGCATCATCAATGACAC
A0000	R	GTGTCATTGATGATGCCCAGGAACATGTTC
	F	GAACATGTTCCTGGTCATCATCAATGACAC
A330 V	R	GTGTCATTGATGATGACCAGGAACATGTTC
A5591	F	GAACATGTTCCTGATCATCATCAATGACAC
ASSO	R	GTGTCATTGATGATGATCAGGAACATGTTC
A558L	F	GAACATGTTCCTGCTCATCATCAATGACAC
	R	GTGTCATTGATGATGAGCAGGAACATGTTC
	F	GAACATGTTCCTGTTCATCATCAATGACAC
ASSOF	R	GTGTCATTGATGATGAACAGGAACATGTTC
A 5 5 9\A/	F	GAACATGTTCCTGTGGATCATCAATGACAC
ASSOV	R	GTGTCATTGATGATCCACAGGAACATGTTC
L557W/A55	F	CCTGAACATGTTCTGGAACATCATCAATGACAC
8N	R	GTGTCATTGATGATGTTCCAGAACATGTTCAGG
A558W/L55	F	CCTGAACATGTTCAACTGGATCATCAATGACAC
7N	R	GTGTCATTGATGATCCAGTTGAACATGTTCAGG
KACAA	F	CATCAGCTTCAACGCAACCATGACCCAG
K401A	R	CTGGGTCATGGTTGCGTTGAAGCTGATG
PKD2	·	
FOZONI	F	CTTCATTCTTTTGAATATGAATTTGGCTATCATCAATG
F070N	R	CATTGATGATAGCCAAATTCATATTCAAAAGAATGAAG
	F	CATTCTTTTGAATATGTTTAATGCTATCATCAATGATAC
LOTIN	R	GTATCATTGATGATAGCATTAAACATATTCAAAAGAATG
A 070N	F	CTTTTGAATATGTTTTTGAATATCATCAATGATACTTAC
A678N	R	GTAAGTATCATTGATGATATTCAAAAACATATTCAAAAG
	F	GAATATGTTTTTGGCTAACATCAATGATACTTAC
1679N	R	GTAAGTATCATTGATGTTAGCCAAAAACATATTC
4.0700	F	CTTTTGAATATGTTTTTGCAAATCATCAATGATACTTAC
A678Q	R	GTAAGTATCATTGATGATTTGCAAAAACATATTCAAAAG
10700	F	CTTTTGAATATGTTTTTGTCTATCATCAATGATACTTAC
A678S	R	GTAAGTATCATTGATGATAGACAAAAACATATTCAAAAG
A 0-0-	F	CTTTTGAATATGTTTTTGACTATCATCAATGATACTTAC
A6781	R	GTAAGTATCATTGATGATAGTCAAAAACATATTCAAAAG
10770	F	CATTCTTTTGAATATGTTTGGGGGCTATCATCAATGATAC
L6//G	R	GTATCATTGATGATAGCCCCAAACATATTCAAAAGAATG
	F	CATTCTTTTGAATATGTTTGCGGCTATCATCAATGATAC
LOTTA	R	GTATCATTGATGATAGCCGCAAACATATTCAAAAGAATG
10775	F	CATTCTTTTGAATATGTTTTTTGCTATCATCAATGATAC
L677F	R	GTATCATTGATGATAGCAAAAAACATATTCAAAAGAATG
L677Y	F	CATTCTTTTGAATATGTTTTACGCTATCATCAATGATAC
	R	GTATCATTGATGATAGCGTAAAACATATTCAAAAGAATG
L677W	F	CATTCTTTTGAATATGTTTTGGGCTATCATCAATGATAC
	R	GTATCATTGATGATAGCCCAAAACATATTCAAAAGAATG
W201A	F	GGCTGCGAGGTCTCGCGGGAACAAGACTCATG
	R	CATGAGTCTTGTTCCCGCGAGACCTCGCAGCC

K688A	F	CTTACTCTGAAGTGGCATCTGACTTGGC
	R	GCCAAGTCAGATGCCACTTCAGAGTAAG
D511V	F	GTTTCTGGAATTGTCTGGTTGTTGTGATCGTTGTGC
	R	GCACAACGATCACAACAACCAGACAATTCCAGAAAC
ΔΥ684	F	CTATCATCAATGATACTTCTGAAGTGAAATCTGACT
	R	AGTCAGATTTCACTTCAGAAGTATCATTGATGATAG
Y684A	F	CTATCATCAATGATACTGCCTCTGAAGTGAAATCTGACT
	R	AGTCAGATTTCACTTCAGAGGCAGTATCATTGATGATAG
L677N/N68 1L	F	GTTTATTGCTATCATCCTTGATACTTACTCTG
	R	CAGAGTAAGTATCAAGGATGATAGCAATAAAC
	F	CAAATTCATCAATTTTAACGCGACCATGAGCCAG
RJOTA	R	CTGGCTCATGGTCGCGTTAAAATTGATGAATTTG
EGZEC	F	CTTCATTCTTTTGAATATGGGTTTGGCTATCATCAATG
F0/0G	R	CATTGATGATAGCCAAACCCATATTCAAAAGAATGAAG
F676A	F	CTTCATTCTTTTGAATATGGCTTTGGCTATCATCAATG
	R	CATTGATGATAGCCAAAGCCATATTCAAAAGAATGAAG
F676Y	F	CTTCATTCTTTTGAATATGTATTTGGCTATCATCAATG
	R	CATTGATGATAGCCAAATACATATTCAAAAGAATGAAG
F676W	F	CTTCATTCTTTTGAATATGTGGTTGGCTATCATCAATGATAC
	R	GTATCATTGATGATAGCCAACCACATATTCAAAAGAATGAAG
L677N/F67	F	CTTCATTCTTTTGAATATGGGTAACGCTATCATCAATG
6G	R	CATTGATGATAGCGTTACCCATATTCAAAAGAATGAAG
L677N/F67	F	CTTCATTCTTTTGAATATGGCTAACGCTATCATCAATG
6A	R	CATTGATGATAGCGTTAGCCATATTCAAAAGAATGAAG
L677N/F67	F	CTTCATTCTTTTGAATATGTATAACGCTATCATCAATG
6Y	R	CATTGATGATAGCGTTATACATATTCAAAAGAATGAAG
L677N/F67	F	CTTCATTCTTTGAATATGTGGAACGCTATCATCAATG
6W	R	CATTGATGATAGCGTTCCACATATTCAAAAGAATGAAG