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Supplementary Information 

 

Supplementary Figures 

 

Supplementary Figure 1. Forming procedure. (a) Flow diagram of the automatic current-controlled memristor 

forming procedure. (In the voltage-controlled forming algorithm, currents should be replaced with corresponding 

voltages.) The adjustment of Istop’ value was so far performed manually after the failure to form a device automatically 

(in ~10% of all cases). (b) All forming I-V curves for one of the crossbars used in the experimental demonstration 

(with Istart = 180 µA, Istop = 540 µA, Istep = 20 µA, Vreset = -1.3 V, Amin = 5). 
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Supplementary Figure 2. Experimental setup and board details. (a) Circuit diagram of the implemented neurons. 

Note that the output scaling stage is not implemented in the output neurons; (b) Photos of the two printed circuit boards 

with one hosting wire-bonded memristive crossbar chips and the switching matrix and the other one implementing 

discrete CMOS neurons; (c) Block diagram of the experimental setup controlled by a personal computer. 
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Supplementary Figure 3. Results for smiley face tuning experiment. (a) Absolute device resistances and (b) 

absolute tuning error. 
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Supplementary Figure 4. Pattern classification test set. (a-d) A complete set of 640 test patterns for four letters 

used in the pattern classification experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pattern “A”

Pattern “V”

Pattern “T”

Pattern “X”

(a) (b)

(c) (d)



F. Merrikh Bayat et al., “Implementation of Multilayer Perceptron Network with Highly Uniform Passive Memristive Crossbar 
Circuits” 

Page 5 of 15 
 

 

Supplementary Figure 5. Perceptron software simulation results. (a) Comparison of the best fidelity obtained for 

single layer perceptron and MLPs with different number of hidden layer neurons (shown in parenthesis in the legend). 

(b, c) The results for 10-hidden layer perceptron, similar to the one used in the experiment for classification of (b) 

training and (c) test patterns. The normalized weight import error (Error) was modeled by using a random variate 

generated from uniform distribution [Wideal - Wideal*Error/100, Wideal + Wideal* Error/100], where Wideal is the desired 

weight value. Such import error approach approximates well the resulting conductance distribution for relatively crude 

tuning accuracy, e.g. 30% that was used in our experiment.  The red, blue (rectangles), and black (segment) markers 

denote, respectively, the median, the 25%-75% percentile, and the minimum and maximum values for 100 simulation 

runs.  
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Supplementary Figure 6. Tuning results for classifier experiment. (a, b) Tuning accuracy and (c, d) weight errors 

for each of the two layers of the implemented MLP network.  The data for tuning accuracy are replotted from Fig. 

5a,b of the main text. The tuning accuracy is defined here again as the normalized difference between the desired and 

actual conductances. The shown weight error is calculated as a (not normalized) difference between the desired value 

and the actual one implemented with the pair of memristors. Note that the weights and conductances in the second 

layer are always close to their maximum or minimum values, because of the clipping enforced during software ex-situ 

training.  

 
Supplementary Figure 7. In-situ training for 3-pattern classification (‘A’, ‘V’, and ‘T’). (a) Experimentally 

measured and simulated error decay dynamics for the training set patterns. In experiment, conductances of all 

memristors were updated, one row of the crossbar at a time, at the end of each epoch. The weight update in each row 

was done in parallel in two steps by applying 500-µs fixed amplitude (± 1.3 V) voltage pulses using V/2 biasing 

technique.  (b) Example of devices’ switching kinetics and it’s variations obtained using simple device model from 

Ref. [1]. Such model was used for the in-situ training simulations shown in panel a – see supplementary matlab code 

for more details. 
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Supplementary Figure 8. Voltage drop in resistor ladder. (a) The considered circuit and (b) the relative worst-case 

voltage drop for several representative parameters specific to the implemented crossbar circuits. AR stands for the 

electrode height-to-width aspect ratio.   

 

 

Supplementary Figure 9. Temperature sensitivity. (a) The I-V curves of a single memristor for several temperatures 

and (b) the extracted temperature dependence of its conductance. 
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Supplementary Figure 10. Target conductances for additional tuning experiment. The sequence of target 

conductance values, exponentially spaced between 10.5 µS and 100 µS, that were used in the additional tuning 

experiment. 
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Supplementary Figure 11.  Experimental results for repeated tuning. The data are shown for 5 crossbar integrated 

memristors. (a) Each dot shows final measured value for the tuned conductance. One cycle corresponds to tuning of 

all 5 memristors to 13 specific conductance values, as shown in Supplementary Figure 10. (b) Corresponding tuning 

error histogram, shown separately for each device. The tuning error is defined as a normalized difference between the 

desired and actual conductance. Bins are 2.67 % wide. 
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Supplementary Figure 12.  Experimental results for high-precision tuning. (a-e) The data shows the results of 

tuning conductances of 5 crossbar integrated memristors to 32 exponentially spaced levels within 7.5-75 kΩ range (at 

0.2 V) with 2.5% tuning accuracy. Each panel shows histograms of tuning the same memristors 20 times to each level. 

The dashed lines are normal fits for the experimental data.   
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Supplementary Note 1: Crossbar Circuit Scaling  

An important future work, in addition to the monolithic integration with CMOS subsystem 

discussed in the main text, is increasing the dimensions of the crossbar circuits which would allow 

higher connectivity among neurons and improve integration density (i.e. by lowering relative 

peripheral overhead). Here let us first stress again that in our implementation, crossbar lines are 

never floated so that sneak path currents do not affect directly the measured currents at the outputs. 

Scaling up crossbar dimensions, however, increases currents flowing in the crossbar lines. Because 

of the potential voltage drops across the crossbar lines the voltages applied to the crosspoint 

memristors could be different from the ones applied at the periphery.  

For example, Supplementary Figure 8 shows the dependence of the worse-case voltage drop 

as a function of the length of the finite resistor ladder, which is useful for analyzing crossbar circuit 

operation. In this figure, one set of lines shows the voltage drop assuming electrode resistance per 

wire segment (Rw)  comparable to the one in our experiment, while the other one is for more 

aggressive (though quite realistic) parameters which are representative of high-aspect ratio copper 

wires.  For simplicity, the memristor  conductances  G(V) can be estimated using the corresponding 

average value measured at bias V, specific to the type of considered operation. It should be noted 

that in a properly trained network, the weights are typically normally distributed so that the 

representative average value is rather close to the minimum of the used conductance range.   

Let us now consider in detail three operations which might be impacted by voltage drop on the 

crossbar lines, namely classifier inference, and read and write phases of the tuning algorithm: 

Write operation 

Naturally, the voltage drops are the most significant for write operation because of the 

larger voltages applied and higher currents passed. For the conductance tuning, however, we do 

not rely on precise conductance update with write pulses but rather adjust applied write voltages 

gradually based on precise read measurements. Therefore, any potential voltage drop will be 

compensated dynamically during tuning by applying larger voltage pulses, with the largest applied 

voltage (and hence crossbar dimensions) limited by the condition of not disturbing half-selected 

devices.  

Specifically, let us assume the V/3 biasing scheme, i.e. with ±VW/2 applied to the selected 

lines and ±VW/6 to the remaining lines.  From Fig. 1c and 2, up to (VTH
SET)max ≈ +1.3 V set and 
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(VTH
RESET)max ≈ -1.9 V reset voltages must be applied to switch the devices with the largest 

switching thresholds.  (Here, we neglect the tails of the distributions on Fig. 2, which are typically 

contributed by the devices at the edges of the array. This is similar to the dummy line technique 

commonly used in conventional memories.)  The corresponding average memristor conductances 

at one third of such biases can be roughly estimated to be <G((VTH
SET)max/3)> ≈ 30 µS for set and 

<G((VTH
SET)max/3)> ≈ 50 µS for reset transitions.  On the other hand, the largest voltages, which 

can be safely applied to the half-selected devices without disturbing memristors with the smallest 

switching thresholds are (VTH
SET)min ≈ +0.7 V for set and (VTH

RESET)min ≈ -1 V for reset transitions. 

The maximum crossbar dimensions, specific to the wire resistance, memristor I-V and its variations 

(i.e. parameters Rw, G((VTH)max/3), (VTH)max/min ) can be crudely estimated assuming 100×(3(VTH)min 

- (VTH)max )/(VTH)max / 2 as the largest allowable relative voltage drop in Supplementary Figure 8b. 

(Additional factor of 2 in the denominator accounts for the drop on both selected lines.)  For the 

considered parameters, this drop is equal to 30% and 25% for set and reset switching, respectively, 

indicating to the possibility of implementing 70×70 crossbar arrays with demonstrated device 

technology and up to 400×400 crossbar array for the crossbar arrays with improved electrode 

resistance. (Note that in our work, we have used somewhat simpler, the V/2 biasing scheme, for 

which the largest allowable voltage drop is ~ 7% and the corresponding maximum crossbar 

dimensions are around 40×40 and 200×200 for two considered electrode resistances.)  

Read operation 

Let us assume that during read operation, one of the selected lines is biased at +VR, while 

the other selected line and all of the remaining ones are grounded. (This is exactly the scheme that 

we used for conductance tuning in this work.) In this case, the current running via grounded 

selected crossbar line is small (only contributed by one selected memristor) and does not dependent 

on the crossbar dimensions. Therefore, the substantial voltage drops may occur only on the biased 

selected crossbar line. Such voltage drop would be naturally much less than that of the write 

operation and, moreover, it can be easily taken into account when reading the state of the devices. 

For example, it is straightforward to compute the actual applied voltage across the specific 

memristor knowing the conductive states of all other half-selected devices of the biased selected 

crossbar electrode.  

Inference operation 
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As discussed in main text, during inference, one set of lines (vertical in Figure 3a) receive 

voltages V ≤ VR, while all orthogonal lines are virtually grounded. Because of the smaller applied 

voltages, the crossbar line currents, and hence the corresponding voltage drops, are the smallest 

for inference operations. However, the inference operation (just like read) is more sensitive as 

compared to write operation to the voltage variations and even small voltage drops may lead to the 

lower effective precision of the vector-by-matrix computation. For example, assuming 

representative 10 µS average device conductance, and 70×70 and 400×400 crossbar arrays 

discussed in write operation above, the worst-case voltage drop on one line is around 7% 

(Supplementary Figure 8b).  

Using our examples, inference operations would likely be a limiting factor for scaling 

though are several reserves for improvements. For example, the conductances of each memristor 

can be uniquely increased to compensate for the potential voltage drops during inference. (Unlike 

read operation, such adjustment cannot be exact because of the input-dependent voltage drop on 

the virtually-grounded lines.) The loss of precision for the worst case largest currents might be 

also acceptable, e.g. if it leads to the saturation of the neuron. It is also important to note that 

precision loss at inference due to voltage drops is common problem for the devices with or without 

selectors. If fact, the problem is likely more severe for 1T1R structures, because of their larger 

device area and potentially larger Rw.  

   The crude estimate above show that the developed device technology, with some further 

optimization of the electrodes, should be suitable for implementing much larger, up to 400×400 

crossbar circuit. The discussed analysis is also applicable to 10 nm memristors, if we assume that 

both the resistance of the crossbar line segment and memristor operating (average) currents would 

scale down at the same rate. (For that memristor currents should decrease at slightly faster rate 

than its linear device dimensions to compensate for the additional increase in metal resistivity due 

to scattering effects.) That is certainly plausible scenario for smaller currents at voltages below VR 

(e.g., relevant to the inference operation and read phase of the tuning algorithm) considering that 

the off-state conductance is typically limited by the device leakages which are proportional to the 

device electrode area. Ensuring the same scaling in the context of the write phase of the tuning 

algorithm would require enhancing I-V nonlinearity and/or decreasing write currents, which we 

believe is also plausible given the observed write current dependence on the electrode area in our 

devices and further optimization of the tunneling barrier layer. 
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Supplementary Note 2: Device Programmability and Uniformity 

We have performed a number of additional experiments to characterize device to device 

variations in tunability. In the first experiment, we have repeatedly tuned 5 crossbar integrated 

devices to the same set of conductance levels. Specifically, in one cycle each device was 

sequentially tuned to 13 exponentially-spaced values within 10.5-100 µS range of conductances 

(measured at 0.2 V), which is a typical operating range utilized during inference computation. The 

first target conductance value was 10.5 µS. It was then increased to 100 µS in 6 steps before 

decreasing it back to 10.5 µS, also in 6 steps (Supplementary Figure 10). Such tuning cycle was 

repeated about 550 times in the same order for every device. For the tuning algorithm, the write 

pulse polarity and magnitudes were selected according to the tuning algorithm described in Ref. 

2. We used 0.2 V 100 µs read pulses with 25 µs rise and fall times. Each measured current value 

during read operation was an average of 10,000 samples (taken every 5 ns) within 50 µs read pulse.   

The sequences of tuned conductances are presented in Supplementary Figure 11a, while 

the corresponding histograms for the aggregate tuning error for all devices are shown on 

Supplementary Figure 11b. To speed up measurements, the tuning precision was always set to 

7.5%, while the maximum number of write/read pulses was set to 300. As Supplementary Figure 

11 shows, in some cases the tuning accuracy was worse than the desired one due to reaching 

maximum number of tuning iterations. Tuning accuracy was also somewhat worse for lower values 

of the desired conductances, likely due to larger temporal fluctuations of read currents. The data 

do not show noticeable degradation in tuning accuracy over time.  Note that Supplementary Figure 

11a shows final values of the measured tuned conductances. Tuning to each state involved 45 

write/read pulses on average, so, altogether, each device was stressed with write pulse almost 

300,000 times in this experiment.    

 In the next experiment (Supplementary Figure 12), we tuned 5 devices with much higher, 

2.5% tuning accuracy to 32 conductance levels, which were exponentially spaced within similar 

7.5-75 kΩ range (at 0.2 V). Each device was tuning 20 times to each level. The data shows that 

most of the devices, most of the time, can be set closely to the desired states with significant 

margins between adjacent levels. Some of the devices at some states, however, cannot be tuned 

accurately. We expect that tuning accuracy would significantly improve with better control over 
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the shape and duration of the write pulses, which would be possible in tightly integrated 

CMOS/memristor circuits. Also, the infrequent nonideal behavior can be coped with various 

circuit and algorithmic techniques, e.g. by dynamically adjusting the conductances in differential 

pairs.  

 

Supplementary References 

1. Prezioso, M. et al. Modeling and implementation of firing-rate neuromorphic-network 

classifiers with bilayer Pt/Al2O3/TiO2− x/Pt memristors. In Proc. IEEE International Electron 

Devices Meeting 455-458 (2015). 

2. Alibart, F. et al., High-precision tuning of state for memristive devices by adaptable 

variation-tolerant algorithm. Nanotechnology 23, 075201 (2012). 

 


