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Supplementary Figure 1: MR estimation for PARs. Although derived for branching processes (BPs), we conjectured that MR estimation is
applicable to any process with a first order autoregressive representation (PAR). We here show exemplary results for three different classes of
PARs: In AR(1) processes, additive noise ℎ𝑡 is drawn independently at each time step. Here, we considered a uniform distribution ℎ𝑡 ∼ 𝒰(0, 2ℎ).
In a Kesten process, additive and multiplicative noise is drawn at each time step, both 𝑚𝑡 and ℎ𝑡 being i.i.d. for all 𝑡. Here, 𝑚𝑡 ∼ 𝒩 (𝑚, 𝜎2) with
𝜎 = 𝑚/10 and ℎ𝑡 ∼ 𝒩 (ℎ, 𝑏2)with 𝑏 = ℎ/10 are normally distributed. In a BP, each unit 𝑖 at time 𝑡 generates𝑌𝑡,𝑖 offspring, which are i.i.d. for all 𝑡 and
𝑖. In addition, a random number ℎ𝑡 of units are introduced at each time step. Here, 𝑌𝑡,𝑖 ∼ Poi(𝑚) and ℎ𝑡 ∼ Poi(ℎ) are Poisson distributed, 𝜎2 and 𝑏2
denote the variances of 𝑌𝑡,𝑖 and ℎ𝑡 respectively. All three processes satisfy the first-order statistical recursion relation ⟨𝐴𝑡+1 |𝐴𝑡⟩ = 𝑚𝐴(𝑡)+ℎ (Eq.
(5)). Parameters are chosen such that for all simulations the average activity is identical, ⟨𝐴𝑡⟩ = 100. a. Fully sampled and subsampled (binomial
subsampling 𝑎𝑡 ∼ Bin(𝐴𝑡, 𝛼)with 𝛼 = 1/10) time series are shown for𝑚 = 0.9 and ℎ = 10. b. The three classes show the same first-order statistics
according to Eq. (5). However, their second order statistics Var[𝐴𝑡+1 |𝐴𝑡] differ as indicated. c. Conventional linear regression underestimates
�̂� for all three processes under subsampling. d. MR estimation is applicable to all three processes under full sampling and subsampling, i.e.
𝑟𝑘 ∝ 𝑚𝑘 holds. e. While MR estimation returns consistent estimates of 𝑚 even under subsampling, the conventional estimator underestimates
�̂� for all three processes.
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Supplementary Figure 2: MR estimation with transients. A branching process (BP) with𝑚 = 0.9 and expected activity ⟨𝐴𝑡⟩ = 100 is started
far from the stationary distribution, namely with 𝐴0 = 10, 000 (top) or 𝐴0 = 0 (bottom). Using MR estimation, �̂� is inferred from: (i) only the
first 50 data points of 100 independent trials, i.e. only transient parts of the activity in each trial (gray); (ii) 50 data points of 100 independent
trials after the activity was allowed to relaxate to the stationary distribution in each trial (green); (iii) from one single trial comprising both
transient and stationary parts, using 103, 104, or 105 time steps (blue). a, c. Activity 𝐴𝑡 of one single trial of 103 time steps as a function of time 𝑡.
Insets show magnified transient period where 𝐴𝑡 converges to the stationary distribution. Shaded areas indicate transient (gray) and stationary
(green) parts taken into account for estimates (i) and (ii) respectively. b, d. Boxplots (derived from 1000 independent realizations) for the result
�̂� of MR estimation, based on the data specified above.
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Supplementary Figure 3: Excluding nonstationary data. Each left panels shows the time series 𝑎𝑡 of the activity from one single trial (light
blue) and averaged activity from 100 trials (dark blue), recorded from 𝑛 = 50 out of𝑁 = 104 neurons. Each right panels shows the corresponding
MR estimation from one single trial. We investigated the following, generic cases for the temporal evolution of the drive rate ⟨ℎ𝑡⟩: a, b. The
drive is stationary (⟨ℎ𝑡⟩ identical for all 𝑡, red), so are the mean rates ⟨𝑎𝑡⟩. c, d. The drive exhibits a transient increase centered around half
of the simulation time. The mean rate ⟨𝑎𝑡⟩ is therefore also time-dependent and follows the temporal evolution of ⟨ℎ𝑡⟩. e. The drive shows a
linear increase over the simulation. f. The drive exhibits a step function after half the simulation. Nonstationarities (c – f) typically lead to
an overestimation of �̂�, which is particularly severe if the underlying dynamics is Poissonian (𝑚 = 0). The tests defined in Supplementary
Note 5 (see Supplementary Table 1) were able to exclude time series where the investigated nonstationarities were present, while accepting the
stationary cases a, b.
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Supplementary Figure 4: Variance of the MR estimates. This figure shows numerical result for the distribution and variability of the
estimate �̂� as a function of multiple parameters. a. Distribution of the estimate �̂�, estimated from 5000 independent copies of a branching
process (BP) with 𝑚 = 0.99, ⟨𝐴𝑡⟩ = 100 and length 𝐿 = 105: normalized histograms of the probability of estimating �̂� for full sampling (blue)
and binomial subsampling with 𝛼 = 0.001 (red), together with normal distributions 𝒩(𝑚, �̂�2

�̂�). Inset: 𝑄-𝑄-plot for the quantiles of 𝒩(𝑚, �̂�2
�̂�)

and the quantiles of the estimated �̂� under both samplings. The estimated �̂� are found to be distributed normally in both cases (fully sampled:
𝑟2 = 0.9995, subsampled: 𝑟2 = 0.998). b. The variance 𝜎2

�̂� of the estimate �̂� is estimated from 100 independent copies of a BP. Results for different
𝑚, mean activities ⟨𝐴𝑡⟩ and time series lengths 𝐿 are plotted as a function of the effective time series length 𝑙 = |{𝐴𝑡 |𝐴𝑡 > 0}|, the number of
nonzero entries. For any given 𝑚, the variance of �̂� shows algebraic scaling 𝜎2

̂𝜖 ∝ 𝑙𝛾. The exponent of this scaling depends on 𝑚, with higher
𝛾 the closer 𝑚 is to unity. Hence, the benefit from longer time series is larger the closer a system is to criticality. Importantly, the variance
does not directly depend on the mean activity ⟨𝐴𝑡⟩, this number only influences the accuracy of MR estimation via the potential change in
𝑙. c. The variance of the estimate �̂� is estimated from 100 independent copies of a BP with 𝑚 = 0.99, ⟨𝐴𝑡⟩ = 100, and 𝐿 = 105 and plotted
as a function of the sampling probability 𝛼 under binomial subsampling. While the variance appears to increase dramatically under stronger
subsampling, this increase can be attributed to the according decrease of the effective time series length 𝑙. After rescaling by (𝑙/𝐿)3/2 (cf. panel
b), the rescaled variance remains within one order of magnitude over four orders of magnitude in 𝛼. Hence, the accuracy of the estimator is not
directly influenced by the degree of subsampling. d. The variance 𝜎2

�̂� is estimated from 100 independent copies of a BP with 𝑚 = 0.99, ℎ = 1,
and 𝐿 = 105 and plotted as function of the distance to criticality 𝜖 = 1 − 𝑚. The variance is found numerically to scale as 𝜎2

�̂� ∝ 𝜖, hence the
standard deviation scales as 𝜎�̂� ∝ √𝜖. Similar scaling results were found for other linear (like the interquartile range) and quadratic (like the
mean squared error) measures of variation.
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Supplementary Figure 5: MR estimation for individual animals. MR estimation is shown for every individual animal (see Supplementary
Note 10). The consistency checks are detailed in the Supplementary Note 5 (see Supplementary Table 1). a. Data frommonkey prefrontal cortex
during an working memory task. The third panel shows a oscillation of 𝑟𝑘 with a frequency of 50 Hz, corresponding to measurement corruption
due to power supply frequency. b. Data from anesthetized cat primary visual cortex. c. Data from rat hippocampus during a foreaging task. In
addition to a slow exponential decay, the slopes 𝑟𝑘 show the 𝜗-oscillations of 6 – 10 Hz present in hippocampus. Dashed lines indicate results
for an exponential model with offset, solid lines results for the model without offset (compare Supplementary Note 5).
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Supplementary Figure 6: MR estimation from single neuron activity (cat). MR estimation is used to estimate �̂� from the activity 𝑎𝑡 of a
single neurons in cat visual cortex. a. Each panel shows MR estimation for one of the 50 recorded neurons. Autocorrelations decay rapidly in
some neurons, but long-term correlations are present in the activity of most neurons. The consistency checks are detailed in Supplementary
Note 5 (see Supplementary Table 1). b. Histogram of the single neuron branching ratios �̂�, inferred with the conventional estimator and
using MR estimation. The difference between these estimates demonstrates the subsampling bias of the conventional estimator, and how it is
overcome by MR estimation.
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Supplementary Figure 7: Kalman EM estimation. Expectation maximization (EM) based on Kalman filtering and MR estimation are used
to infer �̂� from BPs with 𝑚 = 0.99 and different degrees of subsampling. Left column: inferred �̂� as a function of the EM runtime for 100
independent copies of the BP. The EM algorithm is terminated after 20 cycles (green dots) or after the inferred �̂� changed only marginally (blue
dots, see Supplementary Note 7). The median runtime of MR estimation for the same BPs is also indicated. Right column: estimated �̂� for all
three methods. a. Under 1% subsampling, the EM algorithm converged after runtimes of about 80 h, compared to 0.43 s for MR estimation. b.
Under 0.1% subsampling, �̂� inferred by the EM algorithm reaches a steady state after 10 h, but is severely biased. The slow rise of �̂� might lead
to a convergance to the proper𝑚 after several weeks of projected runtime (ignoring common termination criteria). c. Under 0.01% subsampling,
�̂� inferred by the EM algorithm converge to a biased value. In contrast, MR estimation returns a correct �̂� in all three cases, and outperforms
the EM algorithm by a factor of 105 to 106 in terms of the runtime.

8



𝐻offset 𝐻𝜏 𝐻lin 𝐻�̄�≤0 (𝐻𝑞1=0) interpretation
× × × × – BP with 𝑚 = �̂� explains data MR estimation valid
✓ – – – –

data not explained by BP MR estimation invalid– ✓ – – –
– – ✓ – –
– – – ✓ ×
– – – ✓ ✓ Poisson activity (𝑚 = 0) explains data MR estimation valid

Supplementary Table 1: Consistencychecks forMR estimation. In order to assess if the results obtained fromMR estimation are consistent
with a BP with stationary parameters, we perform five tests (Supplementary Note 5). We discriminate the following cases in this order: A BP
with 𝑚 = �̂� is only considered to explain the data, if the four tests 𝐻offset, 𝐻𝜏, 𝐻lin, and 𝐻�̄�≤0 are negative (×). If any of 𝐻offset, 𝐻𝜏, or 𝐻lin is
positive (✓), the data cannot be explained by a BP with any 𝑚, regardless of the other tests (–), and MR estimation is invalid. If 𝐻�̄�≤0 is positive,
the additional test 𝐻𝑞1=0 becomes relevant: if it is negative, the data cannot be explained by a BP with any 𝑚. If it is also positive, the data are
consistent with Poisson activity (BP with 𝑚 = 0).
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Supplementary Note 1 Applicability of MR estimation

We here analytically derive the novel MR estimator for branching processes (BP)1–3. We expect that analogous derivations apply
to any process with a first order autoregressive representation (PAR)4, because these processes fulfill Eq. (5). Beside BPs, PARs
include autoregressive AR(1) processes, integer-valued autoregressive INAR(1) processes5 rounded integer-valued autoregressive
RINAR(1) processes6, and Kesten processes7.

We emphasize that the MR estimator only requires the subsampled recording 𝑎𝑡 of a system with full activity 𝐴𝑡 conforming
with the definition below. It is not necessary to know either the full system size, the number of subsampled units, nor any of the
moments of the full process 𝐴𝑡.

Supplementary Note 2 Branching processes

In a branching process (BP) with immigration1–3 each unit 𝑖 produces a random number 𝑦𝑡,𝑖 of units in the subsequent time step.
Additionally, in each time step a random number ℎ𝑡 of units immigrates into the system (drive). Mathematically, BPs are defined
as follows1,2: Let 𝑦𝑡,𝑖 be independently and identically distributed non-negative integer-valued random variables following a law
𝒴 with mean 𝑚 = ⟨𝒴⟩ and variance 𝜎2 = Var[𝒴]. Further, 𝒴 shall be non-trivial, meaning it satisfies P[𝒴 = 0] > 0 and
P[𝒴 = 0] + P[𝒴 = 1] < 1. Likewise, let ℎ𝑡 be independently and identically distributed non-negative integer-valued random
variables following a law ℋ with mean rate ℎ = ⟨ℋ ⟩ and variance 𝜉2 = Var[ℋ ]. Then the evolution of the BP 𝐴𝑡 is given
recursively by

𝐴𝑡+1 =
𝐴𝑡

𝑖=1

𝑦𝑡,𝑖 + ℎ𝑡, (1)

i.e. the number of units in the next generation is given by the offspring of all present units and those that were introduced to the
system from outside.

The stability of BPs is solely governed by the mean offspring 𝑚. In the subcritical state, 𝑚 < 1, the population converges to
a stationary distribution 𝐴∞ with mean ⟨𝐴∞⟩ = ℎ/(1 − 𝑚). At criticality (𝑚 = 1), 𝐴𝑡 asymptotically exhibits linear growth, while
in the supercritical state (𝑚 > 1) it grows exponentially. We will first show results that further specify the mean and variance of
subcritical branching processes.

Theorem 1. The stationary distribution of a subcritical BP satisfies

⟨𝐴∞⟩ =
ℎ

1 − 𝑚, Var[𝐴∞] =
1

1 − 𝑚2 𝜉
2 + 𝜎2 ℎ

1 − 𝑚 ,

where 𝑚, 𝜎2, ℎ, and 𝜉2 are defined as above.

Proof. The first result was stated before2,8 and follows from taking expectation values of both sides of Eq. (1): ⟨𝐴𝑡+1⟩ = 𝑚⟨𝐴𝑡⟩ +ℎ.
Because of stationarity ⟨𝐴𝑡+1⟩ = ⟨𝐴𝑡⟩ = ⟨𝐴∞⟩ and the result follows easily. For the second result, observe that by the theorem of
total variance, Var[𝐴𝑡+1] = ⟨Var[𝐴𝑡+1 |𝐴𝑡]⟩ + Var[⟨𝐴𝑡+1 |𝐴𝑡⟩], where ⟨⋅⟩ denotes the expected value, and 𝐴𝑡+1 |𝐴𝑡 conditioning the
random variable 𝐴𝑡+1 on 𝐴𝑡. Because 𝐴𝑡+1 is the sum of independent random variables, the variances also sum: Var[𝐴𝑡+1 |𝐴𝑡] =
𝜎2𝐴𝑡 + 𝜉2. Using the result for ⟨𝐴∞⟩ one then obtains

Var[𝐴𝑡+1] = 𝜉2 + 𝜎2 ℎ
1 − 𝑚 + Var[𝑚𝐴𝑡 + ℎ] = 𝜉2 + 𝜎2 ℎ

1 − 𝑚 + 𝑚2Var[𝐴𝑡]. (2)

Again, in the stationary distribution Var[𝐴𝑡+1] = Var[𝐴𝑡] = Var[𝐴∞] and hence the stated result follows.

Supplementary Note 3 Subsampling

To derive the MR estimator for subsampled data, subsampling is implemented in a parsimonious way, according to the following
definition:

Definition 1 (Subsampling). Let {𝐴𝑡}𝑡∈ℕ be a BP and {𝑎𝑡}𝑡∈ℕ a sequence of random variables. Then {𝑎𝑡}𝑡∈ℕ is called a subsampling
of {𝐴𝑡}𝑡∈ℕ if it fulfills the following three conditions:

(i) Let 𝑡′, 𝑡 ∈ ℕ, 𝑡′ ≠ 𝑡. Then the conditional random variables† (𝑎𝑡|𝐴𝑡 = 𝑗) and (𝑎𝑡′ |𝐴𝑡′ = 𝑙) are independent for any outcome
𝑗, 𝑙 ∈ ℕ of 𝐴𝑡, 𝐴𝑡′ . If 𝐴𝑡 = 𝐴𝑡′ then (𝑎𝑡|𝐴𝑡 = 𝑗) and (𝑎𝑡′ |𝐴𝑡′ = 𝑗) are identically distributed.

(ii) Let 𝑡 ∈ ℕ. Conditioning on 𝑎𝑡 does not add further information to the process: The two random variables (𝐴𝑡+1 |𝐴𝑡 = 𝑗, 𝑎𝑡 = 𝑙)
and (𝐴𝑡+1 |𝐴𝑡 = 𝑗) are identically distributed for any 𝑗, 𝑙 ∈ ℕ.

(iii) There are constants 𝛼, 𝛽 ∈ ℝ, 𝛼 ≠ 0, such that ⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝛼𝑗 + 𝛽 for all 𝑡, 𝑗 ∈ ℕ.
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Thus the subsample 𝑎𝑡 is constructed from the full process 𝐴𝑡 based on the three assumptions: (i) The sampling process does not
interfere with itself, and does not change over time. Hence the realization of a subsample at one time does not influence the
realization of a subsample at another time, and the conditional distribution of (𝑎𝑡|𝐴𝑡) is the same as (𝑎𝑡′ |𝐴𝑡′ ) if 𝐴𝑡 = 𝐴𝑡′ . However,
even if 𝐴𝑡 = 𝐴𝑡′ , the subsampled 𝑎𝑡 and 𝑎𝑡′ do not necessarily take the same value. (ii) The subsampling does not interfere with
the evolution of 𝐴𝑡, i.e. the process evolves independent of the sampling. (iii) On average 𝑎𝑡 is proportional to 𝐴𝑡 up to a constant
term.

It will be shown later, that the novel estimator is applicable to any time series 𝑎𝑡 that was acquired from a BP conforming
with this definition of subsampling. We will demonstrate possible applications at the hand of two examples:

1. Diagnosing infectionswith probability 𝛼. For example, when a BP𝐴𝑡 represents the spread of infectionswithin a population,
each infectionmay be diagnosed with probability 𝛼 ≤ 1, depending on the sensitivity of the test and the likelihood that an infected
person consults a doctor. If each of the 𝐴𝑡 infections is diagnosed independently of the others, then the number of diagnosed
cases 𝑎𝑡 follows a binomial distribution 𝑎𝑡 ∼ Bin(𝐴𝑡, 𝛼). Then ⟨𝑎𝑡|𝐴𝑡 = 𝑗⟩ = 𝛼 𝑗 is given by the expected value of the binomial
distribution. This implementation of subsampling conforms with the definition above, with the sampling probability 𝛼 and the
constant in (iii) being identical here.

2. Sampling a subset of system components. In a different application, assume a high-dimensional system of interacting
units that forms the substrate on which activation propagates. Often, the states of a subset of units are observed continuously,
for example by placing electrodes that record the activity of the same set of neurons over the entire recording (Fig. 1b). This
implementation of subsampling in finite size systems is mathematically approximated as follows: If 𝑛 out of all 𝑁 model units
are sampled, the probability to sample 𝑎𝑡 active units out of the actual 𝐴𝑡 active units follows a hypergeometric distribution, 𝑎𝑡 ∼
Hyp(𝑁, 𝑛,𝐴𝑡). As ⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝑗 𝑛 /𝑁 , this representation satisfies Def. 1 with 𝛼 = 𝑛 /𝑁 . Choosing this special implementation
of subsampling allows to evaluate Var[𝑎𝑡] further in terms of 𝐴𝑡:

Var[𝑎𝑡] = ⟨Var[𝑎𝑡 |𝐴𝑡]⟩ + Var[⟨𝑎𝑡 |𝐴𝑡⟩]

= 𝑛⟨𝐴𝑡
𝑁

𝑁 − 𝐴𝑡
𝑁

𝑁 − 𝑛
𝑁 − 1 ⟩ + Var[ 𝑛𝑁 𝐴𝑡]

= 1
𝑁

𝑛
𝑁

𝑁 − 𝑛
𝑁 − 1

𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴2
𝑡 ⟩ +

𝑛2
𝑁2Var[𝐴𝑡]

= 𝑛
𝑁2

𝑁 − 𝑛
𝑁 − 1

𝑁 ⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2 + 
𝑛2
𝑁2 − 𝑛

𝑁2
𝑁 − 𝑛
𝑁 − 1 Var[𝐴𝑡]. (3)

This expression precisely determines the variance Var[𝑎𝑡] under subsampling from the properties ⟨𝐴𝑡⟩ and Var[𝐴𝑡] of the full
process (which for BPs are known from Lemma 1), and from the parameters of subsampling 𝑛 and 𝑁 . Using Eq. (3), we could
predict the linear regression slopes �̂�𝑘 under subsampling (Theorem 5, Eq. (17)) in more detail:

𝑟𝑘 = 𝛼2Var[𝐴𝑡]
Var[𝑎𝑡]

𝑚𝑘 = 𝑛(𝑁 − 1)Var[𝐴𝑡]
(𝑁 − 𝑛)(𝑁⟨𝐴𝑡⟩ − ⟨𝐴𝑡⟩2) + (𝑛𝑁 − 𝑁)Var[𝐴𝑡]

𝑚𝑘 =∶ 𝑏(𝑁, 𝑛, ⟨𝐴𝑡⟩,Var[𝐴𝑡])𝑚𝑘. (4)

The term 𝑏 = 𝑏(𝑁, 𝑛, ⟨𝐴𝑡⟩,Var[𝐴𝑡]) is constant when subsampling a given (stationary) system, and quantifies the factor by which
�̂�C is biased when using the conventional estimate for 𝑚. It depends on 𝑁 , 𝑛 and the first two moments of 𝐴𝑡 and is thus known
for a BP. This relation was used for Fig. 1c.

Supplementary Note 4 MR estimation

We here derive an estimator for the mean offspring 𝑚 based on the autoregressive representation of the BP,

⟨𝐴𝑡+1 |𝐴𝑡 = 𝑗⟩ = 𝑚 𝑗 + ℎ. (5)

This novel estimator is based on multistep regressions9 (MR estimator), which generalize (5) to arbitrary time steps 𝑘. From
iteration of Eq. (5), it is easy to see that

⟨𝐴𝑡+𝑘 |𝐴𝑡 = 𝑗⟩ = 𝑚𝑘 𝑗 + ℎ1 − 𝑚𝑘

1 − 𝑚 . (6)

Definition 2 (Multistep regression estimator). Consider a subsampled BP {𝑎𝑡} of length 𝑇 . Let 𝑘max ∈ ℕ, 𝑘max ≥ 2. Then
multistep regression (of 𝑘max-th order) estimates 𝑚 in the following way:

†Throughout this manuscript, the conditional random variable (𝑎𝑡 |𝐴𝑡 = 𝑗) is to be read as “𝑎𝑡 given the realization 𝐴𝑡 = 𝑗 of the random variable 𝐴𝑡”.
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1. For 𝑘 = 1,… , 𝑘max, estimate the slope �̂�𝑘 and offset �̂�𝑘 of linear regression between the pairs {(𝑎𝑡, 𝑎𝑡+𝑘)}𝑇−𝑘𝑡=0 , e.g. by least square
estimation (Fig. 1e), i.e. by minimizing the residuals

𝑅𝑘(�̂�𝑘, �̂�𝑘) = 
𝑡
(𝑎𝑡+𝑘 − (�̂�𝑘 ⋅ 𝑎𝑡 + �̂�𝑘))2 . (7)

2. Based on the relation9 𝑟𝑘 = 𝑏 ⋅ 𝑚𝑘, estimate �̂� and �̂� by minimizing the sum of residuals

𝑅(�̂�, �̂�) =
𝑘max

𝑘=1

�̂�𝑘 − �̂� ⋅ �̂�𝑘
2
, (8)

with the collection of slopes {�̂�𝑘}
𝑘max
𝑘=1 obtained from step 1 (Fig. 1f).

Then �̂� is the multistep regression (MR) estimate of the mean offspring 𝑚. For the application to experimental data, we further
applied tests to identify nonstationarities (Supplementary Note 5).

We first prove that the MR estimator is consistent in the fully sampled case, and will then show the consistency under
subsampling. First, we need the following result about the individual linear regression slopes �̂�𝑘 under full sampling:

Theorem 2. The slope �̂�𝑘, obtained from 𝐴𝑡 under full sampling, is a consistent estimator for 𝑚𝑘. If the process is subcritical, then
the offset �̂�𝑘 is also a consistent estimator for ℎ 1−𝑚𝑘

1−𝑚 .

Remark. For 𝑘 = 1, these results were already obtained by [8, 10, 11], and details can be found in these sources. Based on their
proofs, we here show the generalization to 𝑘 timesteps.

Proof. Let 𝑘 ∈ ℕ, 𝑖 ∈ {0, … , 𝑘 − 1}. Construct a new random process by starting at time 𝑖 and taking every 𝑘-th time step of the
original process 𝐴𝑡. This new process is given by 𝐴(𝑘,𝑖)

𝑡′ = 𝐴𝑖+𝑘⋅𝑡′ with the index 𝑡′ ∈ ℕ. Hence, the “time” 𝑡′ of this new process
relates to the time 𝑡 of the old process as 𝑡 = 𝑖 + 𝑘 ⋅ 𝑡′. For a time series of length 𝑇 , let 𝑟(𝑘,𝑖) be the least square estimator for
the slope and �̂�(𝑘,𝑖) the least square estimator for the intercept of linear regression on all pairs (𝐴(𝑘,𝑖)

𝑡′+1, 𝐴
(𝑘,𝑖)
𝑡′ ) from the time series

{𝐴(𝑘,𝑖)
𝑡′ }⌊(𝑇−1)/𝑘⌋𝑡′=0 . We will derive that 𝑟(𝑘,𝑖) is a consistent estimator for𝑚𝑘. According to [11], it is sufficient to show that the evolution

of 𝐴(𝑘,𝑖)
𝑡′ can be rewritten as

𝐴(𝑘,𝑖)
𝑡′ = 𝑚𝑘 ⋅ 𝐴(𝑘,𝑖)

𝑡′−1 + ℎ1 − 𝑚𝑘

1 − 𝑚 + 𝜖(𝑘,𝑖)𝑡′ (9)

with a martingale difference sequence 𝜖(𝑘,𝑖)𝑡′ , as this is a stochastic regression equation. Hence, consider

𝜖(𝑘,𝑖)𝑡′ = 𝐴(𝑘,𝑖)
𝑡′ − 𝑚𝑘 ⋅ 𝐴(𝑘,𝑖)

𝑡′−1 − ℎ1 − 𝑚𝑘

1 − 𝑚 = 𝐴𝑖+𝑘𝑡′ − 𝑚𝑘 ⋅ 𝐴𝑖+𝑘 (𝑡′−1) − ℎ1 − 𝑚𝑘

1 − 𝑚 . (10)

We now show that (𝜖(𝑘,𝑖)𝑡′ )𝑡′∈ℕ is a martingale difference sequence for all 𝑘. From iteration of Eq. (6), it is easy to see that

⟨𝐴(𝑘,𝑖)
𝑡′ |𝐴(𝑘,𝑖)

𝑡′−1 = 𝑗⟩ = ⟨𝐴𝑘𝑡′+𝑖|𝐴𝑘𝑡′−𝑘+𝑖 = 𝑗⟩ = 𝑚𝑘𝑗 + ℎ1 − 𝑚𝑘

1 − 𝑚 (11)

holds. Hence, ⟨𝜖(𝑘,𝑖)𝑡′ |𝐴(𝑘,𝑖)
𝑡′−1 = 𝑗⟩ = 0 for any 𝑗 and {𝜖(𝑘,𝑖)𝑡′ } is indeed a martingale difference sequence. Therefore, {𝐴(𝑘,𝑖)

𝑡′ }⌊𝑇/𝑘⌋𝑡′=0 satisfies
a linear stochastic regression equation with slope 𝑚𝑘 and intercept ℎ 1−𝑚𝑘

1−𝑚 . The least square estimators return unbiased and
consistent estimates for the slope and intercept in the subcritical case, i.e. the estimators converge in probability8,10,11:

�̂�(𝑘,𝑖)
p
−→ 𝑚𝑘 �̂�(𝑘,𝑖)

p
−→ ℎ1 − 𝑚𝑘

1 − 𝑚 .

In the critical and supercritical cases, only �̂�(𝑘,𝑖)
p
−→ 𝑚𝑘 holds following [11]. Hence, we obtain �̂�𝑘

p
−→ 𝑚𝑘 for all 𝑚 and �̂�𝑘

p
−→

ℎ(1 − 𝑚𝑘)/(1 − 𝑚) if 𝑚 < 1.

Corollary 3. As least square estimation of �̂� and �̂� fromminimizing the residual (8) is consistent, multistep regression is a consistent

estimator for 𝑚 under full sampling, �̂�
p
−→ 𝑚.

These results were obtained for BPs. However, the derivation is here only based on the autoregressive representation (5), moti-
vation the following proposition:

Conjecture 4. Multistep regression is a consistent estimator for 𝑚 for any PAR satisfying Eq. (5).
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Numerical results for AR(1) and Kesten processes support this conjecture9 (Supplementary Fig. 1).
Next, we show that MR estimation is consistent in the subcritical case even if only the subsampled 𝑎𝑡 is known:

Theorem 5. Let 𝐴𝑡 be a PAR with 𝑚 < 1 and a stationary limiting distribution 𝐴∞ and let the PAR be started in the stationary
distribution, i.e. 𝐴0 ∼ 𝐴∞. Let 𝑎𝑡 be a subsampling of 𝐴𝑡. Multistep regression (MR) on the subsampled 𝑎𝑡 is a consistent estimator of
the mean offspring 𝑚.

Proof. The existence of a stationary distribution𝐴∞ was shown by [2]. The least square estimator for the slope of linear regression
is also given by12

�̂�𝑘 = �̂�𝑎𝑡 𝑎𝑡+𝑘
�̂�𝑎𝑡
�̂�𝑎𝑡+𝑘

(12)

with the the estimated standard deviations �̂�𝑎𝑡 and �̂�𝑎𝑡+𝑘 of 𝑎𝑡 and 𝑎𝑡+𝑘 respectively. In the subcritical state, 𝜎𝑎𝑡 = 𝜎𝑎𝑡+𝑘 because of
stationarity. Thus estimating the linear regression slope is equivalent to estimating the Pearson correlation coefficient �̂�𝑎𝑡 𝑎𝑡+𝑘 =
�̂�𝑎𝑡 (𝑘) (which is identical to the autocorrelation function of 𝑎𝑡). In the following, we calculate the Pearson correlation coefficient
for the subsampled time series by evaluating ⟨𝑎𝑡 𝑎𝑡+𝑘⟩. We use the law of total expectation in order to express ⟨𝑎𝑡 𝑎𝑡+𝑘⟩ not in
dependence of 𝑎𝑡, but in terms of 𝐴𝑡:

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = ⟨⟨𝑎𝑡 𝑎𝑡+𝑘 |𝐴𝑡, 𝐴𝑡+𝑘⟩⟩𝐴𝑡+𝑘,𝐴𝑡 , (13)

where the inner expectation value is taken with respect to the joint distribution of 𝑎𝑡+𝑘 and 𝑎𝑡, and the outer with respect to the
joint distribution of 𝐴𝑡+𝑘 and 𝐴𝑡. Through conditioning on both 𝐴𝑡 and 𝐴𝑡+𝑘, (𝑎𝑡 |𝐴𝑡) and (𝑎𝑡+𝑘 |𝐴𝑡+𝑘) become independent due to
Def. 1. Hence, the joint distribution of (𝑎𝑡, 𝑎𝑡+𝑘 |𝐴𝑡, 𝐴𝑡+𝑘) factorizes, and the expectation value factorizes as well. By definition,
⟨𝑎𝑡 |𝐴𝑡 = 𝑗⟩ = 𝛼 𝑗 + 𝛽 and hence

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = ⟨(𝛼𝐴𝑡+𝑘 + 𝛽) (𝛼𝐴𝑡 + 𝛽)⟩𝐴𝑡+𝑘,𝐴𝑡 (14)

Without loss of generality, we here show the proof for 𝛽 = 0 which is easily extended to the general case. We express ⟨𝑎𝑡 𝑎𝑡+𝑘⟩
in terms of Eq. (6) using the law of total expectation again:

⟨𝑎𝑡 𝑎𝑡+𝑘⟩ = 𝛼2⟨𝐴𝑡𝐴𝑡+𝑘⟩
= 𝛼2⟨⟨𝐴𝑡𝐴𝑡+𝑘 |𝐴𝑡⟩⟩𝐴𝑡

= 𝛼2⟨𝐴𝑡 𝑚𝑘𝐴𝑡 + ℎ1 − 𝑚𝑘

1 − 𝑚 ⟩𝐴𝑡

= 𝛼2 𝑚𝑘 ⟨𝐴2
𝑡 ⟩ + (1 − 𝑚𝑘) ⟨𝐴𝑡⟩2 ,

where the first expectation was taken with respect to the joint distribution of 𝐴𝑡 and 𝐴𝑡+𝑘. We then used that ⟨𝐴2
𝑡 ⟩ and ⟨𝐴𝑡⟩ =

ℎ/(1 − 𝑚) exist, which follows from stationarity of the process. By a similar argument,

⟨𝑎𝑡+1⟩ = ⟨𝑎𝑡⟩ = ⟨⟨𝑎𝑡 |𝐴𝑡⟩⟩𝐴𝑡 = 𝛼⟨𝐴𝑡⟩ = 𝛼 ℎ
1 − 𝑚 (15)

and combining these results the covariance is

Cov[𝑎𝑡+𝑘, 𝑎𝑡] = ⟨𝑎𝑡+𝑘 𝑎𝑡⟩ − ⟨𝑎𝑡+𝑘⟩⟨𝑎𝑡⟩ = 𝛼2 𝑚𝑘 ⟨𝐴2
𝑡 ⟩ + (1 − 𝑚𝑘) ⟨𝐴𝑡⟩2 − 𝛼2⟨𝐴𝑡⟩2 = 𝛼2𝑚𝑘Var[𝐴𝑡]. (16)

Therefore, we find that the estimator �̂�𝑘 converges in probability:

�̂�𝑘
p
−→ 𝜌𝑎𝑡𝑎𝑡+𝑘 =

Cov[𝑎𝑡+𝑘, 𝑎𝑡]
Var[𝑎𝑡]

= 𝛼2 Var[𝐴𝑡]
Var[𝑎𝑡]

𝑚𝑘. (17)

Hence, the bias of of the conventional estimator �̂�C = �̂�1 is precisely given by the factor 𝑏 = 𝛼2Var[𝐴𝑡] /Var[𝑎𝑡]. However,
importantly the relation �̂�𝑘 = �̂� �̂�𝑘 still holds for the subsampled 𝑎𝑡. Given a collection of multiple linear regressions �̂�1, … , �̂�𝑘max ,
the least square estimation of �̂� and �̂� from minimizing the residual (8) yields a consistent estimator �̂� for the mean offspring 𝑚
even under subsampling and only requires the knowledge of 𝑎𝑡.

This proof also showed that the conventional estimator8 is biased under subsampling:

Corollary 6. Let {𝑎𝑡} be a subsampling of a subcritical PAR {𝐴𝑡}. Then the conventional linear regression estimator �̂�C = �̂�1 by [8]
is biased by 𝑚(𝛼2 Var[𝐴𝑡]

Var[𝑎𝑡]
− 1). Equivalently, it is biased by the factor 𝛼2 Var[𝐴𝑡]

Var[𝑎𝑡]
.
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Nonstationarity, criticality and supercriticality. The consistency of the estimator in the fully sampled case is included in our
proof of Lemma 2 and follows from the results by [8, 11]. Our proof for the subsampled case (Theorem 5), in contrast, strictly
requires stationarity (𝐴𝑡 ∼ 𝐴∞ for any 𝑡) and the existence of the first two moments of 𝐴𝑡. We expect that the MR estimator is
also consistent if the subcritical process is not started in the stationary distribution, 𝐴0 ≁ 𝐴∞, because the results by [2] show
that it will converge to this stationary distribution as 𝑡 → ∞ (Supplementary Fig. 2). Furthermore, numerical results suggest that
the MR estimator is also consistent for critical and supercritical cases, where no stationary distribution exists (Fig. 3d).

Supplementary Note 5 Identifying common non-stationarities and Poisson activity.

In many types of analyses, non-stationarities in the time series can lead to wrong results, typically an overestimation of �̂�. We
developed tests to exclude data sets with signatures of common non-stationarities. The different non-stationarities, their impact
on the 𝑟𝑘 and the rules for rejection of time series are outlined below.

First, transient increases of the drive ℎ𝑡, e.g. in response to a stimulus, lead to a transient increase in ⟨𝐴𝑡⟩. These transients
induce correlations or anti-correlations, which prevail on long time scales (Supplementary Fig. 3c,d). The autocorrelation function
is therefore better captured by an exponential with offset, 𝑟𝑘 = 𝑏offset ⋅ 𝑚𝑘

offset + 𝑐offset. If the residual of this exponential with offset
𝑅2
offset was smaller than the residual of the MR model 𝑅2

exp by a factor of two, 𝐻offset = (2 ⋅ 𝑅2
offset < 𝑅2

exp), then the data set was
rejected. The factor two punishes for the differences in degree of freedom: The residuals of a model with two free parameters
(exponential with offset) instead of one (exponential only) can only be smaller.

Second, ramping of the drive can lead to overestimation of𝑚 (Supplementary Fig. 3e). The comparison of the twomodels with
and without offset introduced above serves as a consistency check able to identify ramping: if the data are captured by a BP, both
models should infer identical �̂�. Thus, a difference between �̂�exp and �̂�offset hints at the invalidity of MR estimation. Instead of
�̂�, we compared the autocorrelation times �̂�offset = −𝛥𝑡/ log �̂�offset and �̂�exp obtained from both models, as the logarithmic scaling
increases the sensitivity. If their relative difference was too large, then the data are inconsistent with a BP and MR estimation is
invalid: 𝐻𝜏 = (|𝜏exp − 𝜏offset| / min{𝜏exp, 𝜏offset} > 2).

Third, when a system changes between different states of activity, e.g. up and down states, the drive rate ⟨ℎ𝑡⟩ may experience
sudden jumps. These can lead to spurious autocorrelation (Supplementary Fig. 3f ). To identify these trends resulting from
non-stationary input ℎ𝑡 or from choosing too short data sets, we tested whether the sequence of 𝑟𝑘 was fit better by a linear
regression 𝑟𝑘 = 𝑞1𝑘 + 𝑞2 on the pairs (𝑘, 𝑟𝑘), than by the exponential relation (8). If the residuals 𝑅2

lin were smaller than 𝑅2
exp:

𝐻lin = (𝑅2
lin < 𝑅2

exp), data were rejected.
Apart from non-stationarities, even Poisson activity (𝑚 = 0, 𝐴𝑡 = ℎ𝑡) with stationary rate may lead to a spurious overestima-

tion of �̂� as well: for subsampled branching processes of finite duration, the Poisson case and processes close to criticality (𝑚 = 1)
can show very similar autocorrelation results, because the sequence of 𝑟𝑘 is expected to be absolutely or almost flat, respectively.
Moreover, for 𝑚 = 0 any solution on the manifold with 𝑏 = 0 minimizes the residuals in Eq. (8). Hence, the estimator for �̂� may
yield any value depending on the initial conditions of the minimization scheme. To distinguish between 𝑚 = 0 and 𝑚 > 0, we
used the fact that for 𝑚 = 0, all slopes 𝑟𝑘 are expected to be distributed around zero, ⟨𝑟𝑘⟩ = 0. In contrast, for processes with
𝑚 > 0, all slopes are expected to be larger than zero ⟨𝑟𝑘⟩ = 𝑏 ⋅ 𝑚𝑘 > 0. Thus to identify stationary Poisson activity, we tested
(using a one-sided t-test) if the slopes obtained from the data were significantly larger than zero, yielding the 𝑝-value 𝑝�̄�≤0 and
the following test (Supplementary Fig. 3b): 𝐻�̄�≤0 = (𝑝�̄�≤0 ≥ 0.1). The choice of the significance level should be guided by the
severity of type I or II errors here: if it is set too liberal, Poisson activity may be mistaken for correlated activity, potentially even
close-to-critical. On the other hand, if the significance level is too conservative, activity with long autocorrelation times may be
spuriously considered Poissonian under strong subsampling (when 𝑏 is small and all slopes only slightly differ from zero). For
this study, we chose a significance level of 𝑝�̄�≤0 < 0.1 in order to not underestimate the risk of large activity cascades. To confirm
candidates for Poisson activity identified through positive 𝐻�̄�≤0, we assured that the 𝑟𝑘 did not show a systematic trend, i.e. that
linear regression of 𝑟𝑘 as a function of 𝑘 (see 𝐻lin above) yielded slope zero: 𝐻𝑞1=0 = (𝑝𝑞1=0 ≥ 0.05). The according significance
level for this two sided test is then given by 𝑝𝑞1≠0 < 0.05.

We discriminate the following cases in the order indicated in Supplementary Table 1: �̂� obtained from MR estimation is only
valid if none of the tests (except 𝐻𝑞1=0, which is ignored here) is positive. A positive result for any of 𝐻offset, 𝐻𝜏, or 𝐻lin indicates
non-stationarities, the data are not explained by a stationary BP, and MR estimation is invalid. If 𝐻�̄�≤0 is positive, the data are
potentially consistent with Poisson activity (𝑚 = 0). This is only the case if 𝐻𝑞1=0 is also positive. If otherwise 𝐻𝑞1=0 is negative,
the Poisson hypothesis is also rejected and MR estimation invalid. This strategy correctly identified the validity of MR estimation
for all investigated cases: stationary BPs with 𝑚 = 0.98 and 𝑚 = 0.0 were accepted, while nonstationary BPs with transient
changes, ramping, or sudden jumps of the drive were excluded (Supplementary Fig. 3).

Supplementary Note 6 Variance of the estimates.

The distribution of �̂� is consistent with a normal distribution 𝒩(𝑚, 𝜎2�̂�) centered around the true mean offspring 𝑚 (Supplemen-
tary Fig. 4a; numerical results). The variance 𝜎2�̂� depends on the branching ratio 𝑚, the mean activity ⟨𝐴𝑡⟩, the length 𝐿 of the
time series, and the sampling fraction 𝛼. Each of these factors affects 𝜎2�̂� mainly by changing the effective length of the time series,
i.e. the number of non-zero entries 𝑙 = |{𝐴𝑡 |𝐴𝑡 > 0}|. Thus, regardless of the actual time series length 𝐿 or the mean activity ⟨𝐴𝑡⟩,
the variance scales as a power-law in 𝑙, Var[�̂�] ∝ 𝑙−𝛾 (Supplementary Fig. 4b). The exponent of this power-law depends on 𝑚.
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The closer to criticality the process is, the larger the exponent 𝛾, i.e. the larger the benefit from longer time series length 𝑙. For
𝑚 = 0.99, we found 𝛾 ≈ 3/2. The performance of the estimator is in principle independent of the mean activity: Small ⟨𝐴𝑡⟩ only
affect the variance of the MR estimator through a potential decrease of 𝑙.

Similarly, the degree of subsampling only affects the variance of the estimator through a decrease of the effective length
of 𝑎𝑡. While there may be a significant rise in 𝜎2�̂� when reducing the sampling fraction 𝛼, this increase can be explained by the
coincidental decrease in 𝑙, as the rescaled variance 𝜎2�̂� ⋅𝑙𝛾 remains within one order of magnitude over four decades of the sampling
fraction 𝛼 (Supplementary Fig. 4c).

How does the variance change close to the critical transition? We found that the answer to this question highly depends on
the specific choice of the parameters: if𝑚 is varied, one can either keep ⟨𝐴𝑡⟩ or ℎ constant, not both at the same time. If the mean
activity ⟨𝐴𝑡⟩ is fixed by choosing ℎ = ⟨𝐴𝑡⟩ (1 − 𝑚), then the variance of the process scales as Var[𝐴𝑡] ∝ 1/(1 − 𝑚) (Theorem 1). As
𝑚 → 1, the activity will inevitably get into a regime, where bursts of activity (𝐴𝑡 > 0) are disrupted by intermittent quiescent
periods (𝐴𝑡), thereby reducing 𝑙. In turn, the variance of the estimator increases as detailed before.

If however, the drive ℎ is kept constant, we found that the variance scales linearly in the distance to criticality 𝜖 = 1−𝑚 over at
least 5 orders of magnitude of 𝜖: 𝜎2�̂� ∝ 𝜖 (Supplementary Fig. 4d). Thus, the variance decreases when approaching criticality, while
the relative variance 𝜎2�̂�/𝜖 is constant. Note, however, that even though the standard deviation also decreases when approaching
criticality (𝜎�̂� ∝ √𝜖), the relative standard deviation increases (𝜎�̂�/𝜖 ∝ 1/√𝜖).

For other measures of variation (e.g. quadratic (like the mean squared error MSE) and linear (like the inter-quartile range
IQR)), we obtained scaling laws with the same exponents.

Confidence interval estimation. We used a model based approach to estimate confidence intervals for both simulation and
experimental data (for Figs. 1c,d, 2c,d, and 3d), because classical bootstrapping methods underestimate the estimator variance by
treating all slopes 𝑟𝑘 independently, while they are in fact dependent. We found that our model based approach constructs more
conservative and representative confidence intervals.

For simulations, we simulated 𝐵 ∈ ℕ independent copies of the investigated model and applied MR estimation to each copy,
yielding a collection of 𝐵 independent estimates {�̂�(𝑏)}𝐵𝑏=1.

For experimental time series 𝑎𝑡 with length 𝐿, mean activity ⟨𝑎𝑡⟩, and number of sampled units 𝑛, MR estimation yields an
estimate �̂�. We then simulated 𝐵 copies of branching networks {𝐴(𝑏)

𝑡 }𝐵𝑏=1 (for simulation details see Supplementary Note 8) with
𝑁 = 10, 000 units, 𝑚 = �̂� as inferred by MR estimation, and length 𝐿 and rate ⟨𝑎𝑡⟩ to match the data. The rate was matched by
setting the drive to ℎ = ⟨𝑎𝑡⟩ (1 − �̂�)𝑁/𝑛. Thereby, after subsampling 𝑛 units, the mean activity of each resulting time series 𝑎(𝑏)𝑡
matched that of the original time series 𝑎𝑡, ⟨𝑎

(𝑏)
𝑡 ⟩ = ⟨𝑎𝑡⟩. This procedure gives 𝐵 copies of a BN that all match 𝑎𝑡 in terms of the

mean activity, the branching ratio, time series length, and number of sampled units. Applying MR estimation to these BNs yields
a collection of 𝐵 independent estimates {�̂�(𝑏)}𝐵𝑏=1. For both simulation and experimental data, the distribution of �̂� and confidence
intervals can be constructed from this collection.

Supplementary Note 7 Expectation maximization based on Kalman filtering

Kalman filtering is a method to predict the original time series 𝐴𝑡 given a measurement 𝑎𝑡, defined for AR(1) processes and affine
measurement transformation

𝐴𝑡+1 = 𝑚 ⋅ 𝐴𝑡 + ℎ𝑡
𝑎𝑡 = 𝛼 ⋅ 𝐴𝑡 + 𝛽𝑡 (18)

where ℎ𝑡 and 𝛽𝑡 are independent Gaussian random variables ℎ𝑡 ∼ 𝒩 (ℎ, 𝜉2) and 𝛽𝑡 ∼ 𝒩 (𝛽, 𝜁2) and 𝑚 and 𝛼 constant real numbers.
Assuming that 𝐴0 ∼ 𝒩 (𝐴,𝜓), Kalman filtering infers the original time series 𝐴𝑡 | 𝑎𝑡,ℳ given a measured time series 𝑎𝑡 and the
knownmodelℳ = (𝑚, ℎ, 𝜉2, 𝛼, 𝛽, 𝜁2, 𝐴, 𝜓). Based on an iterative expectation maximization algorithm which incorporates Kalman
filtering13–15, the model parameters ℳ can be estimated from a time series 𝑎𝑡. We used this algorithm to infer 𝑚. Because of the
mutual dependence of the model parameters, we also needed to infer ℎ, 𝜉2, 𝛼, 𝛽, and 𝜁2. In order to reduce the dimensionality
of the maximization step, we disregarded 𝐴 and 𝜓, as the influence of the initial value decreases if the time series gets long. For
initial values, we chose𝑚 = 0.5 in the center of the range of interest for𝑚, ℎ𝑡 = ⟨𝑎𝑡⟩ ⋅(1−𝑚) (see Supplementary Note 2), 𝜉 = 0.1⋅ℎ𝑡,
𝛼 = 1, 𝛽 = 0, and 𝜁 = 0.1. We further chose 𝐴 = ⟨𝑎𝑡⟩ and 𝜓2 = Var[𝑎𝑡] for the two model parameters that were not optimized.

We considered two termination criteria for the EM algorithm: First, it is recommended to restrict the EM algorithm to 10
– 20 cycles in order to avoid overfitting, a common problem with likelihood-based fitting methods for multidimensional model
parameters. Therefor we considered �̂� inferred after 20 EM cycles. Second, we considered �̂� after the results of two subsequent
EM cycles did not differ by more than 0.01%.

We used the publicly available Python implementation of the Kalman EM algorithm, pykalman. All parameters were chosen
as detailed above. The analysis was performed on a computer cluster, and reached runtimes of several days up to projected
runtimes of weeks. In fact, this computational demand was a limiting factor in terms of widespread application. In contrast, MR
estimation terminated within half a second on the same CPUs.
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Supplementary Note 8 Simulations

Branching process. We simulated BPs according to Eq. (1) in the following way: Realizations of the random numbers 𝑦𝑡,𝑖 and ℎ𝑡
describing the number of offsprings, and the drive, were each drawn from a Poisson distribution: 𝑦𝑡,𝑖 ∼ Poi(𝑚) with mean 𝑚, and
ℎ𝑡 ∼ Poi(ℎ) with mean ℎ, respectively. Here, we used Poisson distributions as they allow for non-trivial offspring distributions
with easy control of the branching ratio𝑚 by only one parameter. For the brain, one might assume that each neuron is connected
to 𝑘 postsynaptic neurons, each of which is excited with probability 𝑝, motivating a binomial offspring distribution with mean
𝑚 = 𝑘 𝑝. As in cortex 𝑘 is typically large and 𝑝 is typically small, the Poisson limit is a reasonable approximation. For the
performance of the MR estimator and the limit behavior of the BP, the particular form of the law 𝑌 is not important such that
the special choice we made here does not restrict the generality of our results.

The mean rate ⟨𝐴𝑡⟩ depends on 𝑚 and ℎ (Lemma 1). In the simulation we varied 𝑚 and fixed ⟨𝐴𝑡⟩ = 100 by adjusting ℎ
accordingly if not stated otherwise. For subsampling the BP, each unit is observed independently with probability 𝑝 ≤ 1 . Then
𝑎𝑡 is distributed following a binomial distribution Bin(𝐴𝑡, 𝑝), and subsampling is implemented by drawing 𝑎𝑡 from 𝐴𝑡 at each time
step. As ⟨𝑎𝑡⟩ = 𝑝𝐴𝑡, this implementation of subsampling satisfies the definition of stochastic subsampling with 𝛼 = 𝑝, 𝛽 = 0.

Branching network. In addition to the classical branching process, we also simulated a branching network model (BN) by
mapping a branching process1,16 onto a fully connected network of 𝑁 = 10, 000 neurons. An active neuron activated each of
its 𝑘 postsynaptic neurons with probability 𝑝 = 𝑚/𝑘. Here, the activated postsynaptic neurons were drawn randomly without
replacement at each step, thereby avoiding that two different active neurons would both activate the same target neuron. Similar
to the BP, the BN is critical for 𝑚 = 1 in the infinite size limit, and subcritical (supercritical) for 𝑚 < 1 (𝑚 > 1). As detailed for
the BP, ℎ was adjusted to the choice of 𝑚 to achieve ⟨𝐴𝑡⟩ = 100, which corresponds to a rate of 0.01 spikes per neuron and time
step. Subsampling17 was applied to the model by sampling the activity of 𝑛 neurons only, which were selected randomly before
the simulation, and neglecting the activity of all other neurons.

Self-organized critical model. TheSOCneural networkmodel we used here is the Bak-Tang-Wiesenfeld (BTW)model18. Trans-
lated to a neuroscience context, the model consisted of 𝑁 = 10, 000 (100 × 100) non-leaky integrate and fire neurons. A neuron 𝑖
spiked if its membrane voltage 𝑉𝑖(𝑡) reached a threshold 𝜃:

If 𝑉𝑖(𝑡) > 𝜃, 𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) − 4. (19)

Note that the choice of 𝜃 does not change the activity of the model at all, so we set 𝜃 = 0 for convenience. The model neurons
were arranged on a 2D lattice, and each neuron was connected locally to its four nearest neighbors with coupling strength 𝛼𝑖𝑗 = 𝛼:

𝑉𝑖(𝑡 + 1) = 𝑉𝑖(𝑡) +
𝑗
𝛼𝑖𝑗𝛿(𝑡 − 𝑇𝑗) + ℎ𝑖(𝑡), (20)

where 𝑇𝑗 denotes the spike times of neuron 𝑗, and ℎ𝑖(𝑡) is the Poisson drive to neuron 𝑖withmean rate ℎ as defined for the BP above.
Note that the neurons at the edges and corners of the grid had only 3 and 2 neighbors, respectively. This model is equivalent to
the well-known Bak-Tang-Wiesenfeld model18 if ℎ → 0 and 𝛼 = 1. Subsampling17 was implemented in the same manner as for
the BN.

Parameter choices. If not stated otherwise, simulations were run for 𝐿 = 107 time steps or until 𝐴𝑡 exceeded 109, i.e. approxi-
mately half of the 32 bit integer range. If not stated otherwise, confidence intervals (Supplementary Note 6) were estimated from
𝐵 = 100 samples, both for simulation and experiments.

In Figs. 1c,d, BNs and the BTW model were simulated with 𝑁 = 104 units and ⟨𝐴𝑡⟩ = 100. In Fig. 1e, BPs were simulated
with 𝑚 = 0.9 and ⟨𝐴𝑡⟩ = 100.

In Fig. 3c, subcritical and critical BNs with 𝑁 = 104 and ⟨𝐴𝑡⟩ = 100 were simulated, and 𝑛 = 100 units sampled. Because of
the non-stationary, exponential growth in the supercritical case, here BPs were simulated with ℎ = 0.1 and units observed with
probability 𝛼 = 0.01.

Supplementary Note 9 Epidemiological recordings

WHO data on measles worldwide. Time series with yearly case reports for measles in 194 different countries are available
online from the World Health Organization (WHO) for the years between 1980 and 2014. MR estimation was applied to these
time series. Because they contain very few data points and potential long-term drifts, we applied the consistency checks detailed
above for every country (Supplementary Table 1). After these checks, 124 out of the 194 surveyed countries were accepted for MR
analysis and included in our analysis. Yearly information on approximate vaccination percentages (measles containing vaccine
dose 1, MCV1) for the same countries and time span are also available online from the WHO.
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RKI data on norovirus, measles and MRSA in Germany. For Germany, the Robert-Koch-Institute (RKI) surveys a range of in-
fectious diseases on aweekly basis, includingmeasles, norovirus, and invasivemeticillin-resistant Staphylococcus aureus (MRSA).
Case reports are available through their SURVSTAT@RKI server19. Because of possible changes in report policies in the begin-
ning of surveillance, we omitted the data from the first 6 months of each recording. Moreover, we omitted the incomplete week
on the turn of the year, thus evaluating 52 full weeks in each year.

The MRSA recording showed a slow, small variation in the case reports that can be attributed to slow changes in the drive
rates. To compensate for these slow drifts, we corrected the time series by subtracting a moving average over 3 years (156 weeks).
We then applied MR estimation to the obtained time series. The recordings for measles and norovirus showed strong seasonal
fluctuations of the case reports, resulting in a baseline oscillation of the autocorrelation function. We therefore used a modified
model

𝑟𝑘 = 𝑏 ⋅ 𝑚𝑘 + 𝑐 ⋅ cos(2𝜋𝑘/𝑇) (21)

with a fixed period of 𝑇 = 52weeks, and estimated �̂�, �̂�, and �̂� from minimizing the residual of this modified equation.
In order to obtain the naive estimates using the conventional linear regression estimator �̂�C = �̂�1, we used the following

correction for seasonal fluctuations. Each incidence count 𝑎𝑡 was normalized by the incidence counts from the same week,
averaged over all years of recording (�̄�𝑤 = ⟨𝑎𝑤+52⋅𝑦⟩𝑦 with the average taken over the years 𝑦 for any week 𝑤 = 1,… , 52), yielding
the deseasonalized time series 𝑎′𝑡 = 𝑎𝑡/�̄�𝑡mod 52. Linear regression was performed on this time series 𝑎′𝑡 .

For Fig. 2d, subsampling was applied to the original time series assuming that every infection is diagnosed and reported
with a probability 𝛼, yielding the binomial subsampling described in Supplementary Note 3. MR estimates were obtained from
this subsampled time series according to Eq. (21), for the conventional estimator the subsampled time series was processed as
described above.

Supplementary Note 10 Animal experiments

We evaluated spike population dynamics from recordings in rats, cats and monkeys. The rat experimental protocols were ap-
proved by the Institutional Animal Care and Use Committee of Rutgers University20,21. The cat experiments were performed in
accordance with guidelines established by the Canadian Council for Animal Care22. The monkey experiments were performed
according to the German Law for the Protection of Experimental Animals, and were approved by the RegierungspräsidiumDarm-
stadt. The procedures also conformed to the regulations issued by the NIH and the Society for Neuroscience. The spike recordings
from the rats and the cats were obtained from the NSF-founded CRCNS data sharing website20–23.

In rats the spikes were recorded in CA1 of the right dorsal hippocampus during an open field task. We used the first two
data sets of each recording group (ec013.527, ec013.528, ec014.277, ec014.333, ec015.041, ec015.047, ec016.397, ec016.430). The
data-sets provided sorted spikes from 4 shanks (ec013) or 8 shanks (ec014, ec015, ec016), with 31 (ec013), 64 (ec014, ec015) or 55
(ec016) channels. We used both, spikes of single and multi units, because knowledge about the identity and the precise number
of neurons is not required for the MR estimator. More details on the experimental procedure and the data-sets proper can be
found in [20, 21].

For the spikes from the cat, neural data were recorded by Tim Blanche in the laboratory of Nicholas Swindale, University of
British Columbia22. We used the data set pvc3, i.e. recordings in area 18 which contain 50 sorted single units23. We used that
part of the experiment in which no stimuli were presented, i.e., the spikes reflected spontaneous activity in the visual cortex of
the anesthetized cat. Because of potential non-stationarities at the beginning and end of the recording, we omitted data before
25 s and after 320 s of recording. Details on the experimental procedures and the data proper can be found in [22, 23].

The monkey data are the same as in [24, 25]. In these experiments, spikes were recorded simultaneously from up to 16 single-
ended micro-electrodes (⌀ = 80𝜇m) or tetrodes (⌀ = 96 𝜇m) in lateral prefrontal cortex of three trained macaque monkeys (M1:
6 kg ♀; M2: 12 kg ♂; M3: 8 kg ♀). The electrodes had impedances between 0.2 and 1.2M𝛺 at 1 kHz, and were arranged in a square
grid with inter electrode distances of either 0.5 or 1.0 mm. The monkeys performed a visual short term memory task. The task
and the experimental procedure is detailed in [24]. We analyzed spike data from 12 experimental sessions comprising almost
12.000 trials (M1: 4 sessions; M2: 5 sessions; M3: 3 sessions). 6 out of 12 sessions were recorded with tetrodes. Spike sorting
on the tetrode data was performed using a Bayesian optimal template matching approach as described in [26] using the “Spyke
Viewer” software27. On the single electrode data, spikes were sorted with a multi-dimensional PCA method (Smart Spike Sorter
by Nan-Hui Chen).

Analysis. For each recording, we collapsed the spike times of all recorded neurons into one single train of population spike
counts 𝑎𝑡, where 𝑎𝑡 denotes how many neurons spiked in the 𝑡𝑡ℎ time bin 𝛥𝑡. We used 𝛥𝑡 = 4ms, reflecting the propagation
time of spikes from one neuron to the next. Note that 𝑚 scales with the bin size (bs) as 𝑚(bs = 𝑘𝛥𝑡) = 𝑚(bs = 𝛥𝑡)𝑘, while the
corresponding autocorrelation times are invariant under bin size changes. For Fig. 3b and Supplementary Fig. 6, we investigated
single neuron activity by applying similar binning to the spike times of each neuron individually.

From these time series, we estimated �̂� using theMR estimator with 𝑘max = 2500 (corresponding to 10 s) for the rat recordings,
𝑘max = 150 (600ms) for the cat recording, and 𝑘max = 500 (2000ms) for the monkey recordings, assuring that 𝑘max was always in

17



the order of multiple autocorrelation times. Experiments were excluded if the tests according to Supplementary Note 5 detected
potential nonstationarities.
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