Table S1. Various ways that individualized risk-based information may be used by different stakeholders involved in CKD care

Stakeholder group	Potential value, need, or use of risk information
	Knowledge of risks for the outcomes deemed important
	Information explained in language that is understandable
Patients, family, and caregivers	Care providers offer the insights with patient preferences and values considered in the development of the management plan
	Education, social class, literacy and beliefs all contribute to self- management
	Knowledge of risk provides confidence in referral, management, and communication with patients – especially patients at low risk, not requiring referral to specialist care
Primary care providers	Consistent, agreed upon messages from different specialists involved in a patient's care are desired
	Recognize that patients often underestimate risks, and specialist healthcare providers may overestimate benefits and under estimate harms of interventions ^{S1}
	Risk prediction tools combined with clinical judgment help identify patients requiring transition to different modalities of care and help guide necessary interventions (including educational initiatives)
Specialists, CKD care providers	Differing risk guides intensity of follow-up and appropriate timing of: education and discussion of conservative treatment versus KRT; type of KRT modality; planning for dialysis access; end-of- life decision making
	Differing risks may also guide decisions concerning investigations and therapies
	Appropriateness, efficiency and affordability of care
Health system payers, policy makers	Risk prediction tools for the key outcomes of advanced CKD, including mortality and cardiovascular complications (heart failure, myocardial ischemia and stroke) combined with good epidemiological data enables prioritization and planning of use of healthcare resource
	Getting services to remote areas and reaching high risk vulnerable populations, national priorities versus local

CKD, chronic kidney disease; KRT, kidney replacement therapy

Table S10. Challenges, potential solutions and suggested actions related to increasing the number and quality of clinical trials in CKD G4+ populations

Challenge	Potential solution	Suggested action	Actor
The clinical needs of CKD G4+	Build the "business case"	Work with large health care providers that have	KDIGO, ISN, ASN Kidney
patients are apparent, but other	for industry and other	used such business cases to justify their own	Health Initiative, French
elements of a business case for	payers to support trials in	CKD G4+ programs (e.g., Mayo, Kaiser	CKD trial network and
conducting trials in this population	this population	Permanente). Use this information to create a	others
have not been well described		briefing document for payers	
Recruitment and retention to trials is	Engage patients to lead	Commission and support a group to conduct	KDIGO, ISN, ASN Kidney
an ongoing challenge in CKD G4+	and support clinical trials	scoping review and propose	Heatlh Initiative, French
populations	in this population	structures/processes to enable sustained patient	CKD clinical trials network
		engagement	
Available trials often do not address	Ensure that the findings of	Review existing lists of patient-centered	KDIGO
the needs of CKD G4+ patients and	trials in CKD G4+ are	research priorities and commission a new list for	
families	maximally relevant for	CKD G4+ if required	
	patients and families		
Available trials are often small or	Leverage collaborations	Partner with ISN-ACT to conduct a multinational	ISN-Advancing Clinical
underpowered, and recruitment is	between existing national	investigator-initiated clinical trial on common	Trials (ISN- ACT), ASN
challenging	CKD trial networks to	interventions such as bicarbonate, uric acid	Kidney Health Initiative,
	facilitate multinational	reduction, ACEi/ARB or phosphate binder	French CKD clinical trials
	trials	therapies	network and others
Little is known about how to manage	Do more studies of	Create a toolbox of validated instruments for	KDIGO*
symptoms of CKD G4+, which is a	symptom management	common CKD G4+ symptoms that can be used	
key treatment objective for patients		in trials or in supporting studies	
	•		•

* Although KDIGO could act as a catalyst to establish these initiatives, they will likely require the creation of a dedicated organization or structure to ensure sustainability. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; CKD, chronic kidney disease; KDIGO, Kidney Disease: Improving Global Outcomes; ISN, International Society of Nephrology, ASN, American Society of Nephrology.

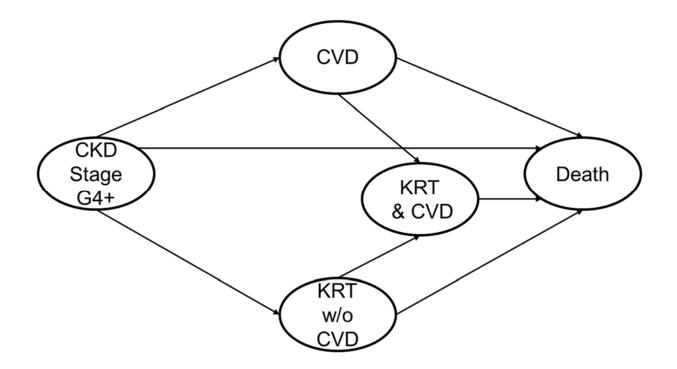


Figure S1. Markov Model – modified graph illustrating the different possible pathways Reproduced from Grams *et al.* ^{s25}

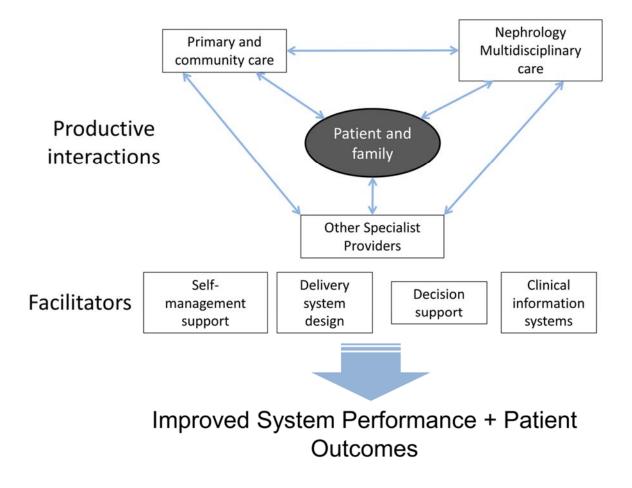
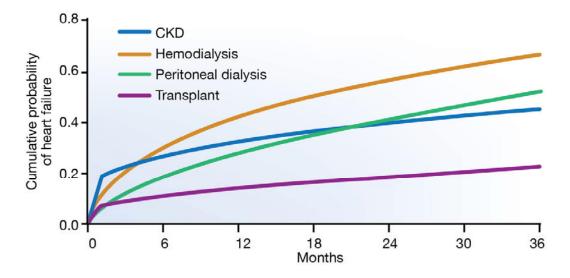



Figure S2. CKD Chronic Care Model

CKD: incident general Medicare CKD patients, age 66 & older, 2001–2003 combined. ESRD: Incident ESRD patients, age 20 & older Patients with CHF at baseline excluded. Probabilities unadjusted.

Figure S3. Cumulative probability of heart failure in incident patients Reproduced from the USRDS ADR 2007^{S26}

REFERENCES

- S1. Hoffmann TC, Del Mar C. Clinicians' Expectations of the Benefits and Harms of Treatments, Screening, and Tests: A Systematic Review. JAMA Intern Med 2017; 177: 407-419.
- S2. Berger JS, Brown DL, Becker RC. Low-dose aspirin in patients with stable cardiovascular disease: a meta-analysis. *Am J Med* 2008; **121:** 43-49.
- S3. Major RW, Oozeerally I, Dawson S, *et al.* Aspirin and cardiovascular primary prevention in non-endstage chronic kidney disease: A meta-analysis. *Atherosclerosis* 2016; **251**: 177-182.
- S4. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. *Kidney inter., Suppl.* 2013; **3**: 1–150.
- S5. National Institute for Health and Care Excellence. Chronic kidney disease in adults: assessment and management. Clinical guideline. <u>http://nice.org.uk/guidance/cg182</u>. Accessed April 7, 2017.
- S6. Susantitaphong P, Sewaralthahab K, Balk EM, *et al.* Short- and long-term effects of alkali therapy in chronic kidney disease: a systematic review. *Am J Nephrol* 2012; **35**: 540-547.
- S7. Xia X, Luo Q, Li B, *et al.* Serum uric acid and mortality in chronic kidney disease: A systematic review and meta-analysis. *Metabolism* 2016; **65**: 1326-1341.
- S8. Li L, Yang C, Zhao Y, *et al.* Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies. *BMC Nephrol* 2014; **15:** 122.
- S9. Bose B, Badve SV, Hiremath SS, *et al.* Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. *Nephrol Dial Transplant* 2014; **29:** 406-413.
- S10. Fleeman N, Pilkington G, Dundar Y, *et al.* Allopurinol for the treatment of chronic kidney disease: a systematic review. *Health Technol Assess* 2014; **18**: 1-77.
- S11. Kanji T, Gandhi M, Clase CM, *et al.* Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. *BMC Nephrol* 2015; **16:** 58.

- S12. Goicoechea M, Garcia de Vinuesa S, Verdalles U, *et al.* Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. *Am J Kidney Dis* 2015; **65:** 543-549.
- S13. Zhang YF, He F, Ding HH, et al. Effect of uric-acid-lowering therapy on progression of chronic kidney disease: a meta-analysis. J Huazhong Univ Sci Technolog Med Sci 2014; 34: 476-481.
- S14. Anabtawi A, Miles JM. Metformin: Nonglycemic Effects and Potential Novel Indications. *Endocr Pract* 2016; **22**: 999-1007.
- S15. Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. *Cochrane Database Syst Rev* 2010: CD002967.
- S16. Ekstrom N, Schioler L, Svensson AM, *et al.* Effectiveness and safety of metformin in 51 675 patients with type 2 diabetes and different levels of renal function: a cohort study from the Swedish National Diabetes Register. *BMJ Open* 2012; **2:** e001076.
- S17. Duong JK, Kumar SS, Kirkpatrick CM, *et al.* Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. *Clin Pharmacokinet* 2013; **52:** 373-384.
- S18. Garber AJ, Abrahamson MJ, Barzilay JI, *et al.* Consensus Statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the Comprehensive Type 2 Diabetes Management Algorithm--2016 Executive Summary. *Endocr Pract* 2016; **22**: 84-113.
- S19. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62: e147-239.
- S20. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 37: 2129-2200.
- S21. USRDS. Cardiovascular disease in patients with chronic kidney disease. In: 2013 Annual Data Report. https://www.usrds.org/2013/pdf/v1_ch4_13.pdf. Accessed Feb 28, 2017.

- S22. Rao NN, Dundon BK, Worthley MI, et al. The Impact of Arteriovenous Fistulae for Hemodialysis on the Cardiovascular System. Semin Dial 2016; **29:** 214-221.
- S23. Renal Physicians Association. Shared Decision-Making in the Appropriate Initiation of and Withdrawal from Dialysis. Clinical Practice Guideline, 2nd Edition, 190pp. 2010.
- S24. Levin A, Tonelli M, Bonventre J, *et al.* Global kidney health 2017 and beyond: a roadmap for closing gaps in care, research, and policy. *Lancet* 2017; **390**: 1888-1917.
- S25. Grams ME, Sang Y, Ballew SH, et al. Predicting timing of clinical outcomes in patients with chronic kidney disease and severely decreased glomerular filtration rate. *Kidney Int in press*. https://doi.org/10.1016/j.kint.2018.01.009.
- S26. USRDS. 2007 Annual Data Report. https://<u>www.usrds.org/atlas07.aspx</u>. Accessed Feb 28, 2017.

Table S2. Key competencies required for delivery of CKD G4+ care

1. Diagnosis and categorizing CKD

Assessment of prognosis; identification of kidney-related and non-kidney related complications; initiation of required interventions and determination of a care plan; identification of people with care needs despite prediction of low risk of progression of CKD

2. Education

Education of patient/family/carer concerning CKD; explanation of competing risks of CKD progression and mortality; kidney failure treatment options; coordination of care between patient/family/carer(s) and other members of CKD multidisciplinary team and primary care physician

3. Planning for kidney failure

Evaluation for kidney transplant including living transplantation options and transplant education; assessment of dialysis options (hemodialysis and peritoneal dialysis); creation of dialysis access; provision of end-of-life care, symptom control and palliation; setting goals of care with aligned treatment plans

4. Nutrition Dietary advice as required, including salt and fluid management

5. Medications

Medicines reconciliation and education of potential harm of over-the-counter medicines; advice with respect to "tablet holidays" during severe intercurrent illness and strategies to avoid/ameliorate acute kidney injury; review of immunizations and implementation of vaccination programs

 Psychosocial support Access to counselling; access to housing and transport support; insurance advice

CKD, chronic kidney disease.

Therapy	Evidence	Current Guidance
Aspirin for	In secondary prevention low-dose	Both KDIGO ^{S4} and NICE ^{S5} recommend
prevention of	aspirin therapy reduces the	that aspirin is indicated for secondary but
cardiovascular	incidence of adverse	not primary prevention. NICE have
disease	cardiovascular events and all-	recommended future research to address
uiscusc	cause mortality. ^{S2} In primary	this question for those at highest risk of
	prevention the evidence does not	cardiovascular disease (What is the
	support the universal use or	clinical effectiveness of low-dose aspirin
	avoidance of aspirin. A systematic	compared with placebo for primary
	review (3 studies, n=4468) found	prevention of cardiovascular disease?)
	no clear benefit of aspirin for the	prevention of cardiovascular disease:
	primary prevention of	
	cardiovascular events in CKD and	
	no statistically significant reduction	
	in mortality. Major bleeding events	
	were significantly increased with	
	aspirin. ^{S3}	
Bicarbonate therapy	A meta-analysis of 6 studies	KDIGO suggest treatment with oral
in CKD G4+	-	
	(n=312) concluded that bicarbonate therapy was associated with	bicarbonate supplementation in people with CKD and serum bicarbonate
	improvement in kidney function and	concentrations < 22 mmol/l; NICE suggest
	possibly a reduction in progression	
	of CKD. ^{S6} However, differences in	considering oral sodium bicarbonate supplementation in people with CKD G4+
	study protocols and small sample	and a serum bicarbonate concentration of
	sizes precluded definitive	< 20 mmol/l.
	conclusions.	
Treatment of	A systematic review (24 studies	KDIGO suggested there is insufficient
	n=25,453) found that elevated	evidence to support or refute the use of
asymptomatic hyperuricemia	serum uric acid levels were	agents to lower serum uric acid
nyperuncenna	significantly associated with risk of	concentrations in people with CKD and
	mortality in patients with CKD. ^{S7}	either symptomatic or asymptomatic
	Another systematic review (13	hyperuricemia in order to delay
	studies, n=190,718) found a	progression of CKD. NICE make no
	significant positive association with	recommendation but suggested that in
	new-onset CKD at follow-up. ^{S8}	people with CKD who are at high risk of
	However there is little evidence to	
	justify uric acid-lowering in CKD	progression, the clinical and cost effectiveness of uric acid-lowering agents
		0 0
	G4+. Recent systematic review and	on the progression of CKD and on
	RCT evidence on allopurinol use are inconsistent in terms of the	mortality should be the subject of further
		research.
	potential benefits of lowering uric	
	acid. ^{S9-S13}	

Table S3. Selected therapies for future research in CKD G4+

Metformin therapy in	Metformin is widely prescribed	Recent diabetes management guidelines
people with diabetes	given evidence suggesting it	from the American Association of Clinical
and CKD G4+	reduces the risk of myocardial	Endocrinologists/American College of
	infarction, stroke, atrial fibrillation	Endocrinology recommended
	and all-cause mortality. ^{S14}	discontinuing metformin at eGFR < 45
	However its use in CKD has been	mL/min/1.73 m ^{2 S18}
	limited because of the perceived	
	increased risk of lactic acidosis. A	KDIGO recommended that metformin be
	Cochrane analysis of 347	discontinued in people with eGFR < 30
	controlled studies covering 70,490	ml/min/1.73 m ² .
	patient-years of metformin use	
	revealed no cases of lactic acidosis	
	and no significant change in	
	plasma lactate. ^{S15} A Swedish	
	Diabetes Registry study suggested	
	that metformin was well tolerated in	
	people with CKD G3, and its use	
	was associated with 13% lower all-	
	cause mortality in this	
	population. ^{S16} Blood levels of	
	metformin are influenced by kidney	
	function and the main problem for	
	metformin treatment in CKD G4+ is	
	the prevention of intoxication.	
	Recently published dosage	
	guidelines suggest a maximum of 1	
	g daily in CKD G4+. ^{S17}	

CKD, chronic kidney disease; KDIGO, Kidney Disease: Improving Global Outcomes; NICE, National Institute for Health and Nutrition Examination

Table S4. Definition of heart failure (HF) according to ACCF/AHA and ESC

Heart failure (HF) Classification	Left ventricular ejection fraction (LVEF)	Description from ACCF/AHA	Description from ESC
HF with reduced ejection fraction (HFrEF)	LVEF ≤ 40%†	Also referred to as systolic HF. Randomized controlled trials have mainly enrolled patients with HFrEF, and it is only in these patients that efficacious therapies have been demonstrated to date.	Symptoms ± signs ^a
HF with preserved ejection fraction (HFpEF)	LVEF ≥ 50%	Also referred to as diastolic HF. Several different criteria have been used to further define HFpEF. The diagnosis of HFpEF is challenging because it is largely one of excluding other potential non-cardiac causes of symptoms suggestive of HF. To date, efficacious therapies have not been identified.	Symptoms ± signs ^a Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction
HFpEF, borderline‡	LVEF 41-49%	These patients fall into a borderline or intermediate group. Their characteristics, treatment patterns, and outcomes appear similar to those of patients with HFpEF.	Symptoms ± signs ^a Elevated levels of natriuretic peptides ^b ; At least one additional criterion: a. relevant structural heart disease (LVH and/or LAE), b. diastolic dysfunction
HFpEF, improved	LVEF > 40%	It has been recognized that a subset of patients with HFpEF previously had HFrEF. These patients with improvement or recovery in EF may be clinically distinct from those with persistently preserved or reduced EF. Further research is needed to better characterize these patients.	

^aSigns may not be present in the early stages of HF (especially in HFpEF) and in patients treated with diuretics.

^bBNP >35 pg/ml and/or NT-proBNP >125 pg/ml. †ESC defines HFrEF as LVEF < 40%

Also known as heart failure mid-range ejection fraction (HFmrEF) as coined by ESC whose LVEF is defined as 40-49%

ACCF, American College of Cardiology Foundation; AHA, American Heart Association; BNP, B-type natriuretic peptide; ESC, European Society of Cardiology; LAE, left atrial enlargement; LVH, left ventricular hypertrophy; NT-proBNP, N-terminal pro-B type natriuretic peptide. Adapted from ACCF/AHA^{S19} and ESC^{S20}

Traditional risk factors	Non-traditional risk factors
Age	Volume overload
Male sex	Anemia
Hypertension	Mineral metabolism abnormalities
Diabetes mellitus	Cause of CKD
Smoking	Aldosterone
Obesity	Inflammation
Coronary artery disease	Residual renal function
Left ventricular hypertrophy	Sympathetic overactivity
	Endogenous cardiac glycosides
	Uremic toxins
	Hyperkalemia
	Oxidative stress
	Malnutrition
	Myocardial stunning

Table S5. Risk factors for HF in patients with CKD G4+

	No CKD Hazard ratio	a	n value	CKD Hazard ratio	a	n value
A		CI	p-value	Hazaru racio	C	p-value
Age: 66–69	reference					
70-74	1.36	1.33-1.40	<.0001	1.13	1.06-1.20	<.0001
75-84	2.62	2.55-2.68	<.0001	1.61	1.53-1.70	<.0001
85+	7.10	6.93-7.27	<.0001	3.14	2.98-3.31	<.0001
Male	reference					
Female	0.83	0.82-0.84	<.0001	0.89	0.87-0.92	<.0001
White	reference					
Black/Af Am	1.02	1.00-1.05	0.106	0.95	0.91-0.99	0.0152
Other	0.80	0.78-0.83	<.0001	0.85	0.80-0.90	<.0001
Diabetes	1.14	1.13-1.16	<.0001	1.09	1.06-1.12	<.0001
Hypertension	0.85	0.84-0.86	<.0001	0.73	0.70-0.77	<.0001
Other cause	reference					
Heart failure: none	reference					
Systolic	2.10	2.02-2.18	<.0001	2.34	2.24-2.44	<.0001
Diastolic	1.79	1.71-1.86	<.0001	1.93	1.83-2.02	<.0001
Both	2.02	1.88-2.17	<.0001	2.21	2.05-2.39	<.0001
Unspecifed	1.90	1.87-1.94	<.0001	1.80	1.73-1.86	<.0001

Table S6. Adjusted hazard ratios of all-cause death in patients with heart failure, by CKD status, 2010-2011

Reproduced from the USRDS ADR 2013, volume 1^{S21}

Table S7. Consequences of arteriovenous fistula on the cardiovascular system
--

Immediate	Days-weeks	Weeks-months
Decrease in blood pressure	Increase in blood volume	Further increase in cardiac output
Reduced arterial stiffness	Increase in LV end diastolic volume	Increase in LV mass and LV size
Decrease in total peripheral resistance		Increase in atrial chamber size
Increase in heart rate and stroke volume		Diastolic and systolic dysfunction
Increase in cardiac output		Increase in pulmonary flows and later pulmonary hypertension

LV, left ventricular. Reproduced from Rao *et al.*^{S22}

 Table S8. Recommendations from the Renal Physicians Association regarding forgoing dialysis^{S23}

If appropriate, forgo dialysis for patients with CKD or ESRD in certain, well-defined situations:

• Patients with decision-making capacity, who being fully informed and making voluntary choices, refuse dialysis

• Patients who no longer possess decision-making capacity who have previously indicated refusal of dialysis in an oral or written advance directive

• Patients who no longer possess decision-making capacity and whose properly appointed legal surrogates refuse dialysis

• Patients with irreversible, profound neurological impairment such that they lack signs of thought, sensation, purposeful behavior, and awareness of self and environment.

Consider forgoing dialysis for CKD or ESRD patients who have a very poor prognosis or for whom dialysis cannot be provided safely. Included in these categories of patients are the following:

• Those whose medical condition precludes the technical process of dialysis because the patient is unable to cooperate (e.g., advanced dementia patient who pulls out dialysis needles or profound hypotension)

• Those who have a terminal illness from non-renal causes (acknowledging that some in this condition may perceive benefit from and choose to undergo dialysis)

• Those with CKD G5 older than age 75 years who met two or more of the following statistically significant very poor prognosis criteria: 1) clinician response of "No" to the 'surprise' question, 2) high comorbidity score, 3) significantly impaired functional status (e.g., Karnofsky score less than 40), 4) severe chronic malnutrition (e.g., serum albumin < 2.5 g/dl).

Forgo dialysis if initiating or continuing dialysis is deemed to be harmful, of no benefit, or merely prolongs a child's dying process. The decision to forgo dialysis must be made in consultation with the child's parents. Give children and adolescents the opportunity to participate in the decision to forgo dialysis to the extent that their developmental abilities and health status allow.

Consider forgoing dialysis in a patient with a terminal illness whose long term prognosis is poor if the patient and the family are in agreement with the physician that dialysis would not be of benefit or the burdens would outweigh the benefit.

Develop a palliative care plan for all pediatric patients with ESRD from the time of diagnosis and for children with AKI who forgo dialysis. The development of a palliative care plan is a continuation of the process of advance care planning and should be family-centered.

AKI, acute kidney injury; CKD, chronic kidney disease; ESRD, end-stage renal disease.

Table S9. Key goals and activities identified by the Clinical Trials Group at the Vancouver Kidney Health Summit

Goals	Activities	
	Develop value proposition for trials in kidney disease	
	Promote trials in areas of unmet need and orphan diseases	
	Engage activated patient groups, payers and other stakeholders,	
	aiming to substantially increase the number of clinical trials in CKD	
Encourage and promote the	Promote models for early conditional approval of new therapies to	
conduct of clinical trials in	encourage investment	
people with CKD	Work to increase the number of people with CKD who are included	
	in CV, diabetes, and oncology trials, aiming to reflect the	
	prevalence of CKD in such patient populations	
	Develop a regular stand-alone meeting to review ongoing and	
	planned clinical trials with CKD patients	
	Develop and refine appropriate endpoints for CKD trials and	
	promote their uptake and dissemination	
	Assess factors that lead to "success" or "failure" of clinical trials in	
	CKD trials	
	Facilitate strategies to pre-select patients for clinical trials	
	according to their risk for progression or likelihood to respond to an	
Optimize the design of clinical	intervention	
trials in people with CKD	Develop innovative trial designs to enhance feasibility and success of CKD trials	
	Implement priority setting exercises for interventions to be tested in	
	clinical trials globally and by region	
	Establish recommendations for clinical trials in people with CKD for	
	use by ethical and regulatory boards, including opportunities for	
	sample collection for future analyses	
	Develop networks of kidney clinical trialists including community	
Grow capacity in conducting	physicians, and other specialties, etc.	
clinical trials in people with CKD	Catalogue sites/centers capable of participating in kidney trials	
	Develop and implement professional training in trial design and	
	conduct, involving nephrology and related specialties	

CKD, chronic kidney disease; CV, cardiovascular Reproduced with permission from Levin A et al. (2017)^{S24}