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Supplemental Experimental Procedures

Yeast strains and Media. All S. cerevisiae deletion strains were obtained from the Euroscarf
deletion collection (see Table S3). The wild type parental strain for this collection is BY 4741
MATa his3A1 leu2 A0 met15A0 ura3A0. An isogenic pdriA pdr3A strain (MT2481) was created
using PDR1::nat and PDR::URA3 deletion cassettes. All strains were grown and screened in

synthetic complete (SC) medium with 2% glucose (Spitzer et al., 2011).

Chemical libraries. Compounds used in this study were from the MicroSource Spectrum library
(MicroSource Discovery), LOPAC library (Sigma), Maybridge Hitskit 1000 (Ryan Scientific)
and a custom Yeast Bioactive Collection derived from a 53,000 compound synthetic library
(Ryan Scientific) (Ishizaki et al., 2010; Zhou et al., 2012). 10 mM compound library stocks were
diluted to working stocks of 1 mM in DMSO in 96 well plates. The Microsource Spectrum
library was re-purchased twice over the course of this study; variances in the composition of
each version resulted in 2300 unique molecules instead of the standard 2000 compounds in each
set. The 128 compounds used for the cryptagen matrix were resupplied from MicroSource
Discovery. Individual compounds were purchased from the original supplier when available, or
from Sigma-Aldrich. All stock solutions were dissolved in DMSO and care was taken to ensure
that all compounds remained in solution after dilution in aqueous medium.

Abbreviations for compounds described in the figures and supplementary figures are as
follows: Ast - astemizole, Ber — berberine, But — butamben, Cam — camptothecin, Ced —

cedrelone, Chr — chrysin, Cic - cyclosporine, Cle - clemistine, Dac — dactinomycin, Dan —



danazol, Deh — dehydroabietamide, Dmf — 3,8-dimethoxyflavone , Ech — echinocystic acid, Eno
- enoxolone, Fbz - fenbendazole, Fen - fenamisal, Flu - flufenazine, Flx - fluxetine, Gar —
garcinolic acid, Hal - haloperidol, Leo - leoidin, Mec - meclofenamate, Nal — nalidixic acid, Nif -
nifedipine, Ost - osthol, Osa — osajin, Oxy - oxybenzone, Par - parthenolide, Peu - peucedanin,
Pip - piperine, Rha - rhamnetin, Sal - salinomycin, Sem - semustine, Tox - toxicarol, Xan —

xanthyletin.

Chemical-genetic matrix screens. Strains were seeded at 50,000 cells per well in a volume of
100 uL in 96 well plates followed by addition of 2 uLL of 1 mM compound stock for final
concentration of 20 uM. Screens were conducted in technical duplicate using a Biomek FX
liquid handling workstation with an integrated stacker carousel. DMSO solvent only controls and
10 uM cycloheximide positive controls were seeded in columns 1 and 12 of each assay plate.
Plates were incubated at 30 °C without shaking for approximately 18 h or until culture saturation
was achieved for the solvent controls. Cultures were resuspended by shaking on the robotic
platform prior to reading OD600 values on either Tecan M1000 or Tecan Sunrise plate readers
(Wong et al., 2013).

All data was subjected to the following analysis workflow: 1. Consistent spatial effects
on growth across plates were corrected by Lowess regression using an empirically estimated
sliding window of 1/3 and normalized based on plate median. 2. If more than 30% of compounds
were active within a plate, data was not Lowess corrected but was normalized to DMSO
controls. 3. Median normalization was applied to all plates and experiments. 4. Z-factors for
growth inhibition were calculated using the median and the interquartile range (IQR) by fitting a
normal distribution with N(1,IQR) to the experimental data. In addition, we calculated the Z-
factor, percent inhibition and normalized OD values for manual validation. 5. Data points with
high variation between replicates (> 3 MAD) were removed as inconsistent outliers. Each of the
4 source libraries yielded cryptagen compounds: Maybridge Hitskit (27%), the Yeast Bioactive
Library (10%), the LOPAC (5%) and the MicroSource Spectrum (18%). All raw and processed

data is available online at http://chemgrid.org/cgm.

Cryptagen matrix screen. The 128 cryptagen compounds were selected from chemical structural

clusters derived from the Microsource Spectrum library molecules based on hits against 186 of
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the 195 sentinel strains and resupplied from MicroSource (Groton, CT). A 128x128 chemical-
chemical interaction matrix was generated using a pdriA pdr3A strain (MT2481). Strains were
seeded at 50,000 cells per well in a volume of 100 uL in 96 well plates followed by addition of 2
uL of 0.5 mM compound stock for final concentration of 10 uM. Plates were incubated and read
as above. All experiments were conducted with either a technical or biological replicate. Several
biological repeats were taken over the course of the study for both pdriApdr3A strain and a wild-
type strain (BY4743) to ensure data reproducibility. Measurements were normalized to DMSO
controls and data averaged between replicates.

The single concentration Bliss independence model (Bliss, 1939) does not account for
possible non-linear concentration effects of either drug, which must be measured over a two
dimensional dose-response surface in order to determine Loewe additivity (Loewe, 1928),
sometimes calculated as the fractional inhibitory concentration index or FICI (Greco et al.,
1995). As the Loewe additivity model requires extensive single and combination drug inhibition
measurements, it is not practical for large surveys. Our initial estimates for synergy therefore
relied on the Bliss independence model, as calculated from single concentrations for each drug
and the combination, as determined using the standard equation E,, = E, + E,, — (ExE,) (Greco
et al., 1995). Bliss independence values within 90% density kernel fit represented at best additive
effects; based on the density kernel density estimation, values above 0.25 represented synergism

and values below -0.18, antagonism.

Derivation of structural correlates of chemical-genetic interactions. The Naive Bayes classifier
was chosen to build a predictor for the primary CGM data in part due to size of the dataset. With
approximately 713,000 chemical-genetic relationships, 4900 different compounds, and up to
16,384 bit-segmented chemical structural features per molecule, the CGM dataset is
computationally challenging. In general terms, the NBL algorithm performs a special case of a
regression analysis given the observation of active compound features f for each sentinel strain s.
Assuming that compound features are independent p(f]s), we compute the conditional probability
for each strain p(s|f). The Naive Bayes approach is well suited for multi-class learning for
complex data and has been proven to be efficient with respect to complexity and predictive
performance (Keiser et al., 2009; Besnard et al., 2012; Fernandez-Delgado et al., 2014). For each

deletion strain, compounds were classified as active (Z-score < - 4) or non-active. For each
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compound, ECFP4 (long) fingerprints based on a circular topological connectivity traverse
algorithm were used as implemented in Pipeline Pilot 6.0 (Accelrys). All molecules were
stripped of any embedded solvents. Structural features were learned for each deletion strain using
the Pipeline Pilot implementation of a multinomial Laplacian-Modified Naive Bayes learner. For
each sentinel As a subset of @ compounds will show activity out of a total of £, this defines the
baseline probability of compounds being active per sentinel:
p(As) =alk (1)

Each compound contains a number of structural features that are either active or non-active in a
particular sentinel. The conditional probability for each feature f; that is present in compounds to
be active in As, would then be:

p(filAs) = anlky (2)
The ‘naivety’ of this approach treats all features as independent probabilities, so Bayes’ rule can

be written as:
p(s1f) = =P [T p(fils) 3)

where p(s) = a/k and m is the total number of features in the training data. A correction

1p(FD)

parameter is introduced to avoid over confidence of p(s|f) = 1 (if a subset of features that are
unique and all found active in the dataset) and to avoid p(s|f) = 0 (a single feature f; may not
be present). The probability estimate can be approximated and the formula becomes:

p (slfi) = (Fs + L*p(s))/(F + L) (4)
where L = p(s)~? is the Laplace correction and F; is the active feature count in As and F is the
total feature count for f;. The likelihood score E; for each sentinel strain given a compound is

therefore:

E, = Xilog (2) (5)

F+L
Where i is the sum of all feature log probabilities / to m. The validation for each class As given a
compound c* was performed using leave-one-out cross-validation as illustrated in Fig. SS5A. All

As models and AUC performance values can be found in Table S6.
Prediction of chemical synergies from genetic interaction network data (SONAR® and

SONAR®™). The SONARE algorithm utilizes bipartite graphs and a second-degree measure to

describe the underlying network between two compounds based on genetic interactions. The
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algorithm first builds a bipartite graph to narrow in on the most likely targets of two compounds
c; and c;, and then ranks the genetic interaction edges presumed to mediate a synergistic
interaction between c; and c;. The target space and target genes for single compounds were
identified through the following steps: (1) Sensitive deletion strains Vg for each cryptagen were
identified based on CGM data (Z-score < -4 for SONAR®) or the Naive Bayes likelihoods (using
the third quartile, Q3, for SONARM). (2) Genetic interactions for the set of sensitive deletion
strains Vg were used to identify all neighbors V7 that formed the target space. Vs and V7 are sets
of nodes of a bipartite graph that are connected by an edge if a genetic interaction between two
genes has been reported (based on BioGRID release number 3.076) (Chatr-Aryamontri et al.,
2015). No edge in E connects vertices within the same set of nodes. The graph is defined as
G=(Vs UV, E), where Vg = {s;|]1 < i< k}and V; = {tj|1 < j < n}. To represent edges
within Vg, we introduce the connected nodes into V7 represented as V. = {S{ AGll<si<

m, 1 < j < n}. Each s; is either sensitive s;7 = 1 or non-active s;y = 0 (s = land s = —1
were also tested but the algorithm did not perform as well). The weight of edge E;; for a pair of
nodes s;, t; is defined as s;*m where m is the number of inferred interactions between these nodes
based on genetic interaction data. To rank the nodes in Vr, each node t; is assigned a score that is
the sum of the weights of all edges that link to t;. (3) The sum of the n=35 highest t; (hsy, =

X1 t;) is used to characterize the target space of each cryptagen. P-values are calculated from
1,000 permutations to estimate a background distribution using as many s; as there are s;°
(Spitzer et al., 2011; Dittmar et al., 2013). The value of n was chosen empirically to balance
target space size with computational costs. (4) If there is no significant enrichment in hsy, over
the background permutations (p-value >= 0.05), return to step 2, remove the weakest bioactive
hit and re-run analysis. Continue to loop through steps 2-4 until SONAR hsy, is significant or
terminate calculation if total number of s;" is reduced to 4. If a significant gene set s; is found,
this defines target space set t7. (5) The highest ranked genes in t; are most likely to represent
actual targets of molecule c; (see Table S6). (6) For each compound pair, a score indicative of an

interaction between compounds c; and c; is calculated using the target space sets t; and t;. Edges
are added between nodes in ¢; and ¢; if a genetic interaction has been documented between
genes in the two sets. For example, the weight on edge t; + t; is t; + t;. The score for the target

space sets t; and t; is the sum of all edge weights between the two target space sets (hSgyy, =
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X1 E;j, with n=35). A p-value estimate was derived as in step 3 above.

Prediction of chemical synergies using a random forest ensemble learner (SONAR™® and
SONAR™). Random forest learners are ensembles of decision trees that enable robust predictive
performance in machine learning applications and, importantly, require little parameter tuning
(Breiman, 2001; Calle and Urrea, 2011; Fernandez-Delgado et al., 2014). The chemical-genetic
relationships of the 195 deletion strains in conjunction with the 8128 pairwise compound
interactions are computationally less complex than the entire CGM, which invokes a large
number of genetic relationships that may or may not be informative. The chemical-genetic
response is thus complex and it is not straightforward to link putative targets to the compound
action. The non-parametric nature of the random forest approach is preferable given the derived
dataset. The data was analysed using R and the packages FactoMineR and corrplot. Parameter
tuning on the training and test data were carried out with the R packages caret, randomForest
and ROCR. The SONAR™® descriptor space used for machine learning contained the Pearson
correlation p;; of strain sensitivity between all pairs of compounds, the shared genetic
interactions (sgi) between target spaces (Spitzer et al., 2011), the sum values hsyy, hSy, hSgy,
and the p-values for Vx and Vy. All antagonistic compound pairs were removed and pairs with
Bliss independence > 0.25 were considered synergistic. To obtain a balanced data set, 700
molecule pairs each for synergistic and non-synergistic class were selected at random from the
CM. The dataset was randomly split into 1/3 training and 2/3 test data. In order to build a
predictor and visualize the data, 5-fold cross validation, using 512 trees with 3 variables at each
split were used (see Fig. S3E). The synergy prediction dataset for SONAR® was built as
illustrated in Fig. S7TA. The RF algorithm uses 512 trees, randomly tests 17 sentinels at each split
and the node size limit is set to a minimum of 14 outcomes per leaf node (Fig. S7B,C). Forest
assemblies with different numbers of sentinel strains were used to check how many sentinel

model parameters are needed to stabilize and minimize the out of bag error rate (Fig. S7D).

Dose-response surface assays. Dose-response surfaces for growth inhibition by compound pairs
were assessed in wild type (BY4743) and pdriApdr3A (MT2481) S. cerevisiae strains in 96-well
flat bottom plates. Strains were seeded at 50,000 cells per well and treated with 2-fold serial

dilutions for each compound (1 uM to 128 uM) for all possible combinations in an 8x8 matrix.
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Plates were incubated at 30 °C and ODgyy measurements taken when DMSO controls reached
saturation, between 16 h and 24 h after inoculation.

For the pathogenic fungi Cryptococcus neoformans (H99), Cryptococcus gattii (R265),
Candida albicans (ATCC#90028), Candida parapsilosis (ATCC#90018) and Aspergillus
fumigatus (Af293) 4x4 mini-checkerboards were performed with compound concentrations
adjusted around minimal inhibitory concentrations (MICs) for each species. Strains were grown
in 100 uL SC medium in round bottom (Candida and Cryptococcus) or flat bottom (4.
fumigatus) 96-well plates. For Candida and Cryptococcus species, overnight cultures were
adjusted to ODgpo = 0.14, then diluted 1:500 and grown in the presence of compounds or controls
for 48 h (Candida) and 72 h (Cryptococcus) at 30 °C without shaking, followed by ODggo
determinations of re-suspended cultures. A. fumigatus was plated at a density of 1x10* conidia
per well and growth was assessed visually after 24 h incubation at 37 °C in the presence of 5%
COs.

Compound dilution series (1 uM to 128 uM) were prepared in Dulbecco's phosphate-
buffered saline (PBS) at pH 7.4 for assay of HeLa cells. Final DMSO concentrations in cell
cultures were kept at or below 0.03% for all dilutions. HeLa cells were grown in Phenol Red-free
medium using dialyzed fetal bovine serum to avoid potential interactions with estrogen and other
hormones. Cells were initially plated at 7000 cells per well in 100 uLL. MEM (Gibco) in flat
bottom 96-well plates and incubated at 37 °C with 5% CO; for 72 h prior to addition of diluted
compounds. To avoid confounding effects of evaporation, medium containing compounds or
solvent control was replaced every 24 h. For HEK293 cells, compounds were diluted in 100 pL
MEM for a final DMSO concentration of less than 1%. Cells were initially plated at 5000 cells
per well in 100 uL MEM (Gibco), and incubated at 37 °C with 5% CO, for 48 h before addition
of diluted compounds. After 48 h incubation at 37°C, cell viability was assessed with PrestoBlue

(Invitrogen) after 2 h incubation at 37 °C with 5% CO, as per instructions of the manufacturer.

General statistical methods. Heatmap representations of CGM, CM and NBL data shown in
Figures 1, 2 and 3 were clustered using average linkage hierarchical clustering. Heatmaps
generated for Figures S6 and S9 used single linkage hierarchical clustering. Networks in Figures

4D, S6A and S9A were generated using Cytoscape (Su et al., 2014), as well as the Cytoscape
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plug-ins BINGO (Maere et al., 2005) and Golorize (Garcia et al., 2007). Graphs were built by
obtaining all sentinel strains that were among top 3 predicted compound targets for synergistic
compound pairs (SONAR™® network) or top 3 sensitive sentinel strains (SONAR™® network).
Edge weights were based on SONAR™*-derived parameter hsgy, or NBL likelihood of
sensitivity to compounds. Only the top 100 edges are shown. Graphs were corrected by
subtraction of average weights for the same graph sampled from 730 non-synergistic pairs. All
genetic interactions were drawn from BioGRID release 3.076 (Chatr-Aryamontri et al., 2015)
and annotated protein complexes in Figure S1D were derived from a previous study (Pu et al.,

2009).

Supplemental Tables

All supplemental tables are available at http://chemgrid.org/cgm/index.php.

Table S1. CGM Library Composition, Related to Figure 1

Table S2. Unique Compounds in CGM, Related to Figure 1

Table S3. S. cerevisiae Sentinel Strains Used in this Study, Related to Figure 1

Table S4. Information on the 128 Cryptagens in the CM, Related to Figure 2

Table S5. Literature Curation of Yeast Targets for 27 Characterized Compounds and SONAR®
Target Predictions, Related to Figure 3

Table S6. Area Under the Curve (AUC) for Each Deletion Strain Class (Sentinel) using a Naive
Bayes Multinomial Classifier, Related to Figure 3

Table S7. Bliss Independence and SONAR™® Synergy Scores for Pairwise Combinations in the
CM, Related to Figure 4

Table S8. Confusion Matrices and Prediction Statistics for SONAR™X, Related to Figure 4
Table S9. Dose-Response Surface Verification Data for S. cerevisiae, Related to Figures 5, 6,
S10. Drug pump deficient strain, 163 pairs; wild type strain, 83 pairs.

Table S10. Bliss Independence Scores from Dose-Response Surfaces in S. cerevisiae, Related to

Figures 5, 6 and S10
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Figure S1. Sentinel Strains and Compound Libraries Screened in this Study, Related to Figure 1.
(A) Overlap of compounds used in this study and previously published large-scale studies that have
explored chemical-genetic interactions in S. cerevisiae (Ericson et al., 2008; Hillenmeyer et al., 2008;
Lee et al., 2014). (B) Distribution of compound classes in libraries used in this study and number of
sentinel strains screened against the four different chemical libraries. (C) Distribution of sentinel
strains in genetic synthetic lethal interaction space based on a single systematic survey (Costanzo et
al., 2010). Edges indicate genetic interactions and yellow squares sentinel strains used in this study.
(D) Protein complexes targeted with sentinel deletion strains. Red lines indicate physical interactions,
blue lines synthetic lethal genetic interactions. Red nodes represent deletion strains used in this study.
Protein complexes were taken from (Pu et al., 2009).
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Figure S2. Comparison of Genetic and Chemical-Genetic Interactions of Sentinel Strains, Related to
Figure 1. (A) Plots of chemical-genetic interactions versus genetic or protein interactions for each
sentinel strain. (B) Scatterplot and Histograms showing gene-gene interactions (Costanzo et al.,
2010) compared to chemical-genetic interactions reported in this study and previously published
large-scale studies (Ericson et al., 2008; Hillenmeyer et al., 2008; Lee et al.,, 2014). Histograms

indicate the gene-gene connectedness.
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Figure S3. Physico-Chemical Properties of Synergistic Compound Pairs, Related to Figures 2, 3. (A)
Structural similarity (Tanimoto) of compound pairs versus compound pair synergism assessed by
Bliss independence. (B) Loading vectors for lipophilicity (XLogP), molecular weight (MW) and shared
genetic interactions (sgi) compared to Bliss independence. (C) Small molecule target prediction based
on chemical-genetic and genetic interactions shown in Fig. 3A and B. (D) AUC values for hseyy, Sgi
and Pearson correlation parameters for SONAR® (dashed grey line) and SONARCNR (solid black line).
The average molecular weight MW,, and partition coefficient XLogPx, for all compound pairs in the
CM are provided as reference. (E) Training data tested for different random splits and forest sizes.
512 trees with 3 random splits were chosen as parameters for the final algorithm. (F) Scatterplot of

experimental Bliss independence values and SONAR®NR synergy scores.
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To obtain the combined conditional probability for p(AB| c*), in this hypothetical example use the Laplacian corrected (Ic = p(active)” )

forms of p(AB| /1), p(AB| f2) and p(AB| f3),
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<< p(AA| ¢¥)=0.33

Following equation 5, we assign: Estimated likelihoods: (o}
o (see also Figure 3A) AA -1.11
Likelihood (AA| ¢*) = 10g(0.65) + 1og(0.72) + log(0.71) =-1.11 :
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Figure S5. A Structure-Based Naive Bayes Multi-Nomial Learner (NBL) to Predict Chemical-Genetic
Interactions, Related to Figure 3. (A) Design scheme for Naive Bayes multi-class learner used in this
study. Further details are provided in the Supplemental Methods. (B) (i) Distribution of median
experimental Z-scores for growth inhibition by cryptagens over all sentinel strains. (ii) Distribution of
median likelihoods for each cryptagen; activity was defined as median Z-score < -4. (iii) Distribution
of Pearson correlation coefficients between the likelihood scores and Z-scores across all sentinel
strains for each compound. (C) Examples of sentinel strain sensitivity likelihood scores versus
experimental Z-scores for cyclosporine, mebendazole and chrysarobin. Cyclosporine inhibits
calcineurin, which is required for survival of cell wall and cationic stress, and as expected conferred
sensitivity to strains deleted for genes implicated in cell wall biosynthesis (FKS1, GAS1), vacuolar
function (PEP5, VMAT), and vesicle trafficking (VPS1, YPT6, RGP1). Mebendazole targets
microtubules and sensitized strains defective in different aspects of microtubule and spindle function
(BIK1, CIN2, TUB3, GIM3, GIM4, PAC10) as well as strains deleted for SWR71 or SWC5, which
encode components of the SWR chromatin remodeling complex. Chrysarobin generates reactive
oxygen species and elicited a complex chemical-genetic profile that included strains disrupted for
DNA damage and repair (TOP1, RNR3, RAD50, RAD52), vesicle trafficking (YPT6, RIC1, VPS1), cell
wall integrity (BCK1, SMI1) and spindle assembly (CIN8). (D) Plots of sentinel strain sensitivity Naive

Bayes likelihood scores versus experimental Z-scores from the CGM for 56 compounds (next two

pages). Figure S5A-C
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Figure S6. SONARCNR-Derived Networks Underpinning Small Molecule Synergies, Related to Figure
3. (A) Top left: Connectivity between SONARCNR-predicted compound target genes (top 3 genes per
compound) is shown for synergistic compound pairs. Edge weights are based on the SONARCGNR-
derived parameter hsgy,. Only the top 100 edges are shown. The data was normalised against target
spaces from non-synergistic compound pairs in the CM. Top right: Corresponding genetic interaction
network for the genes in left panel based on data from BioGRID (Chatr-Aryamontri et al., 2015).
Bottom left: Same as top left, but genes and edges were grouped by biological processes. Bottom
right: Same as top right, but genes and edges were grouped by biological processes. (B) Heatmap of

hsexy values between the top 15 target space genes present in all synergistic combinations.

Figure S6
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Figure S7. Construction of Random Forest Classifiers, Related to Methods. (A) Overview of random
forest classifier procedures used in this study. Further details are provided in the Supplemental
Methods. (B) Assessment of random forest performance (AUC) with restricted minimum data points
in each terminal node. To balance tree depth and accuracy, a node size of 14 was chosen for
further processing. (C) Evaluation of different split parameters for forest sizes between 64 and 1024
on training data. 512 trees with 17 random splits were chosen as parameters for further processing.
(D) Performance of bootstrapped random forest classifiers with different numbers of input

parameters (sentinel genes). Black line indicates the average out of bag error.
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Figure S9. Top 200 SONARNR-Predicted and Experimental Synergistic Compound Pairs, Related to
Figure 4. (A) Top 200 ranked SONARNR predicted synergy scores overlaid with true positives (TP)
and false positives (FP) based on the CM. (B) Top 200 ranked synergistic Bliss independence pairs

overlaid with the predicted true positives (TP) and false negatives (FN) based on SONARMR synergy
score > 1.
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Figure S10. Synergistic Combinations in S. cerevisiae and Pathogenic Fungi, Related to Figure 6.
(A) Additional synergistic combinations that were verified in a wild type S. cerevisiae strain. Growth
ODeoo measurements are shown as surface graphs at control saturation time points together with Bliss
independence heatmaps. Concentrations were 0, 1, 2, 4, 8, 16, 32 and 64 uM for each compound.
(B) Additional synergistic dose-response matrices from Fig. 6A that were not shown in Fig. 6B. Plots

are as described in Fig. 6B.
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