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Supplemental Experimental Procedures 

Yeast strains and Media. All S. cerevisiae deletion strains were obtained from the Euroscarf 

deletion collection (see Table S3). The wild type parental strain for this collection is BY 4741 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0. An isogenic pdr1Δ pdr3Δ strain (MT2481) was created 

using PDR1::nat and PDR::URA3 deletion cassettes. All strains were grown and screened in 

synthetic complete (SC) medium with 2% glucose (Spitzer et al., 2011).  

 

Chemical libraries. Compounds used in this study were from the MicroSource Spectrum library 

(MicroSource Discovery), LOPAC library (Sigma), Maybridge Hitskit 1000 (Ryan Scientific) 

and a custom Yeast Bioactive Collection derived from a 53,000 compound synthetic library 

(Ryan Scientific) (Ishizaki et al., 2010; Zhou et al., 2012). 10 mM compound library stocks were 

diluted to working stocks of 1 mM in DMSO in 96 well plates. The Microsource Spectrum 

library was re-purchased twice over the course of this study; variances in the composition of 

each version resulted in 2300 unique molecules instead of the standard 2000 compounds in each 

set. The 128 compounds used for the cryptagen matrix were resupplied from MicroSource 

Discovery. Individual compounds were purchased from the original supplier when available, or 

from Sigma-Aldrich. All stock solutions were dissolved in DMSO and care was taken to ensure 

that all compounds remained in solution after dilution in aqueous medium. 

 Abbreviations for compounds described in the figures and supplementary figures are as 

follows: Ast - astemizole, Ber – berberine, But – butamben, Cam – camptothecin, Ced – 

cedrelone, Chr – chrysin, Cic - cyclosporine, Cle - clemistine, Dac – dactinomycin, Dan – 
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danazol, Deh – dehydroabietamide, Dmf – 3,8-dimethoxyflavone , Ech – echinocystic acid, Eno 

- enoxolone, Fbz - fenbendazole, Fen - fenamisal, Flu - flufenazine, Flx - fluxetine, Gar – 

garcinolic acid, Hal - haloperidol, Leo - leoidin, Mec - meclofenamate, Nal – nalidixic acid, Nif - 

nifedipine, Ost - osthol, Osa – osajin, Oxy - oxybenzone, Par - parthenolide, Peu - peucedanin, 

Pip - piperine, Rha - rhamnetin, Sal - salinomycin, Sem - semustine, Tox - toxicarol, Xan – 

xanthyletin. 

 

Chemical-genetic matrix screens. Strains were seeded at 50,000 cells per well in a volume of 

100 µL in 96 well plates followed by addition of 2 µL of 1 mM compound stock for final 

concentration of 20 µM. Screens were conducted in technical duplicate using a Biomek FX 

liquid handling workstation with an integrated stacker carousel. DMSO solvent only controls and 

10 µM cycloheximide positive controls were seeded in columns 1 and 12 of each assay plate. 

Plates were incubated at 30 °C without shaking for approximately 18 h or until culture saturation 

was achieved for the solvent controls. Cultures were resuspended by shaking on the robotic 

platform prior to reading OD600 values on either Tecan M1000 or Tecan Sunrise plate readers 

(Wong et al., 2013). 

 All data was subjected to the following analysis workflow: 1. Consistent spatial effects 

on growth across plates were corrected by Lowess regression using an empirically estimated 

sliding window of 1/3 and normalized based on plate median. 2. If more than 30% of compounds 

were active within a plate, data was not Lowess corrected but was normalized to DMSO 

controls. 3. Median normalization was applied to all plates and experiments. 4. Z-factors for 

growth inhibition were calculated using the median and the interquartile range (IQR) by fitting a 

normal distribution with N(1,IQR) to the experimental data. In addition, we calculated the Z-

factor, percent inhibition and normalized OD values for manual validation. 5. Data points with 

high variation between replicates (> 3 MAD) were removed as inconsistent outliers. Each of the 

4 source libraries yielded cryptagen compounds: Maybridge Hitskit (27%), the Yeast Bioactive 

Library (10%), the LOPAC (5%) and the MicroSource Spectrum (18%). All raw and processed 

data is available online at http://chemgrid.org/cgm. 

 

Cryptagen matrix screen. The 128 cryptagen compounds were selected from chemical structural 

clusters derived from the Microsource Spectrum library molecules based on hits against 186 of 
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the 195 sentinel strains and resupplied from MicroSource (Groton, CT). A 128x128 chemical-

chemical interaction matrix was generated using a pdr1Δ pdr3Δ strain (MT2481). Strains were 

seeded at 50,000 cells per well in a volume of 100 µL in 96 well plates followed by addition of 2 

µL of 0.5 mM compound stock for final concentration of 10 µM. Plates were incubated and read 

as above. All experiments were conducted with either a technical or biological replicate. Several 

biological repeats were taken over the course of the study for both pdr1Δpdr3Δ strain and a wild-

type strain (BY4743) to ensure data reproducibility. Measurements were normalized to DMSO 

controls and data averaged between replicates. 

 The single concentration Bliss independence model (Bliss, 1939) does not account for 

possible non-linear concentration effects of either drug, which must be measured over a two 

dimensional dose-response surface in order to determine Loewe additivity (Loewe, 1928), 

sometimes calculated as the fractional inhibitory concentration index or FICI (Greco et al., 

1995). As the Loewe additivity model requires extensive single and combination drug inhibition 

measurements, it is not practical for large surveys. Our initial estimates for synergy therefore 

relied on the Bliss independence model, as calculated from single concentrations for each drug 

and the combination, as determined using the standard equation  𝐸!" = 𝐸! + 𝐸! − (𝐸!𝐸!) (Greco 

et al., 1995). Bliss independence values within 90% density kernel fit represented at best additive 

effects; based on the density kernel density estimation, values above 0.25 represented synergism 

and values below -0.18, antagonism. 

 

Derivation of structural correlates of chemical-genetic interactions. The Naïve Bayes classifier 

was chosen to build a predictor for the primary CGM data in part due to size of the dataset. With 

approximately 713,000 chemical-genetic relationships, 4900 different compounds, and up to 

16,384 bit-segmented chemical structural features per molecule, the CGM dataset is 

computationally challenging. In general terms, the NBL algorithm performs a special case of a 

regression analysis given the observation of active compound features f for each sentinel strain s. 

Assuming that compound features are independent p(f|s), we compute the conditional probability 

for each strain p(s|f). The Naïve Bayes approach is well suited for multi-class learning for 

complex data and has been proven to be efficient with respect to complexity and predictive 

performance (Keiser et al., 2009; Besnard et al., 2012; Fernandez-Delgado et al., 2014). For each 

deletion strain, compounds were classified as active (Z-score < - 4) or non-active. For each 



 

Wildenhain et al Supplemental Information - Page 4 

compound, ECFP4 (long) fingerprints based on a circular topological connectivity traverse 

algorithm were used as implemented in Pipeline Pilot 6.0 (Accelrys). All molecules were 

stripped of any embedded solvents. Structural features were learned for each deletion strain using 

the Pipeline Pilot implementation of a multinomial Laplacian-Modified Naïve Bayes learner. For 

each sentinel Δs a subset of a compounds will show activity out of a total of k, this defines the 

baseline probability of compounds being active per sentinel: 

p(Δs) = a/k                                                           (1) 

Each compound contains a number of structural features that are either active or non-active in a 

particular sentinel. The conditional probability for each feature fi that is present in compounds to 

be active in Δs, would then be:  

p(fi|Δs) = afi/kfi                                                        (2) 

The ‘naivety’ of this approach treats all features as independent probabilities, so Bayes’ rule can 

be written as: 

 𝑝 𝑠|𝑓 = !
!(!!)!

!!!
𝑝 𝑠 𝑝 𝑓! 𝑠!

!!!                                      (3) 

where 𝑝 𝑠 = 𝑎/𝑘 and m is the total number of features in the training data. A correction 

parameter is introduced to avoid over confidence of p(s|f) = 1 (if a subset of features that are 

unique and all found active in the dataset) and to avoid 𝑝 𝑠|𝑓 = 0 (a single feature 𝑓! may not 

be present). The probability estimate can be approximated and the formula becomes: 

 𝑝^ 𝑠 𝑓! = (𝐹! + 𝐿 ∗ 𝑝(𝑠))/(𝐹 + 𝐿)                                       (4) 

 where 𝐿 = 𝑝 𝑠 !! is the Laplace correction and 𝐹! is the active feature count in Δs and F is the 

total feature count for 𝑓!. The likelihood score 𝐸! for each sentinel strain given a compound is 

therefore: 

 𝐸! = log   !!!!
!!!!                                                         (5) 

Where i is the sum of all feature log probabilities 1 to m. The validation for each class Δs given a 

compound c* was performed using leave-one-out cross-validation as illustrated in Fig. S5A. All 

Δs models and AUC performance values can be found in Table S6. 

 

Prediction of chemical synergies from genetic interaction network data (SONARG and 

SONARGN). The SONARG algorithm utilizes bipartite graphs and a second-degree measure to 

describe the underlying network between two compounds based on genetic interactions. The 
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algorithm first builds a bipartite graph to narrow in on the most likely targets of two compounds 

ci and cj, and then ranks the genetic interaction edges presumed to mediate a synergistic 

interaction between ci and cj. The target space and target genes for single compounds were 

identified through the following steps: (1) Sensitive deletion strains VS for each cryptagen were 

identified based on CGM data (Z-score ≤ -4 for SONARG) or the Naïve Bayes likelihoods (using 

the third quartile, Q3, for SONARGN). (2) Genetic interactions for the set of sensitive deletion 

strains VS were used to identify all neighbors VT that formed the target space. VS and VT are sets 

of nodes of a bipartite graph that are connected by an edge if a genetic interaction between two 

genes has been reported (based on BioGRID release number 3.076) (Chatr-Aryamontri et al., 

2015). No edge in E connects vertices within the same set of nodes. The graph is defined as 

𝐺 = 𝑉! ∪ 𝑉! ,𝐸 , where 𝑉! = 𝑠!|1 ≤ 𝑖 ≤ 𝑘  and 𝑉! = 𝑡!|1 ≤ 𝑗 ≤ 𝑛 . To represent edges 

within VS, we introduce the connected nodes into VT represented as 𝑉! = 𝑠!! ∧   𝑡!|1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛 . Each 𝑠! is either sensitive 𝑠!! = 1 or non-active 𝑠!! = 0 (𝑠!! = 1 and 𝑠!! = −1 

were also tested but the algorithm did not perform as well). The weight of edge Eij for a pair of 

nodes si, tj is defined as si*m where m is the number of inferred interactions between these nodes 

based on genetic interaction data. To rank the nodes in VT, each node tj is assigned a score that is 

the sum of the weights of all edges that link to tj. (3) The sum of the n=35 highest tj (ℎ𝑠! =

𝑡!!
! ) is used to characterize the target space of each cryptagen. P-values are calculated from 

1,000 permutations to estimate a background distribution using as many 𝑠!! as there are 𝑠!! 

(Spitzer et al., 2011; Dittmar et al., 2013). The value of n was chosen empirically to balance 

target space size with computational costs. (4) If there is no significant enrichment in ℎ𝑠! over 

the background permutations (p-value >= 0.05), return to step 2, remove the weakest bioactive 

hit and re-run analysis. Continue to loop through steps 2-4 until SONAR ℎ𝑠! is significant or 

terminate calculation if total number of 𝑠!! is reduced to 4. If a significant gene set 𝑠!! is found, 

this defines target space set 𝑡!!. (5) The highest ranked genes in 𝑡!!  are most likely to represent 

actual targets of molecule ci (see Table S6). (6) For each compound pair, a score indicative of an 

interaction between compounds ci and cj is calculated using the target space sets 𝑡!! and 𝑡!!. Edges 

are added between nodes in 𝑡!! and 𝑡!! if a genetic interaction has been documented between 

genes in the two sets. For example, the weight on edge 𝑡!! + 𝑡!!  is  𝑡! + 𝑡!. The score for the target 

space sets 𝑡!! and 𝑡!! is the sum of all edge weights between the two target space sets (ℎ𝑠!"# =
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𝐸!"!
! , with n=35). A p-value estimate was derived as in step 3 above. 

 

Prediction of chemical synergies using a random forest ensemble learner (SONARGNR and 

SONARNR). Random forest learners are ensembles of decision trees that enable robust predictive 

performance in machine learning applications and, importantly, require little parameter tuning 

(Breiman, 2001; Calle and Urrea, 2011; Fernandez-Delgado et al., 2014). The chemical-genetic 

relationships of the 195 deletion strains in conjunction with the 8128 pairwise compound 

interactions are computationally less complex than the entire CGM, which invokes a large 

number of genetic relationships that may or may not be informative. The chemical-genetic 

response is thus complex and it is not straightforward to link putative targets to the compound 

action. The non-parametric nature of the random forest approach is preferable given the derived 

dataset. The data was analysed using R and the packages FactoMineR and corrplot. Parameter 

tuning on the training and test data were carried out with the R packages caret, randomForest 

and ROCR. The SONARGNR descriptor space used for machine learning contained the Pearson 

correlation 𝑝!" of strain sensitivity between all pairs of compounds, the shared genetic 

interactions (sgi) between target spaces (Spitzer et al., 2011), the sum values ℎ𝑠!" , ℎ𝑠!"  ℎ𝑠!"# 

and the p-values for Vx and Vy. All antagonistic compound pairs were removed and pairs with 

Bliss independence > 0.25 were considered synergistic. To obtain a balanced data set, 700 

molecule pairs each for synergistic and non-synergistic class were selected at random from the 

CM. The dataset was randomly split into 1/3 training and 2/3 test data. In order to build a 

predictor and visualize the data, 5-fold cross validation, using 512 trees with 3 variables at each 

split were used (see Fig. S3E). The synergy prediction dataset for SONARNR was built as 

illustrated in Fig. S7A. The RF algorithm uses 512 trees, randomly tests 17 sentinels at each split 

and the node size limit is set to a minimum of 14 outcomes per leaf node (Fig. S7B,C). Forest 

assemblies with different numbers of sentinel strains were used to check how many sentinel 

model parameters are needed to stabilize and minimize the out of bag error rate (Fig. S7D). 

 

Dose-response surface assays. Dose-response surfaces for growth inhibition by compound pairs 

were assessed in wild type (BY4743) and pdr1Δpdr3Δ (MT2481) S. cerevisiae strains in 96-well 

flat bottom plates. Strains were seeded at 50,000 cells per well and treated with 2-fold serial 

dilutions for each compound (1 µM to 128 µM) for all possible combinations in an 8x8 matrix. 
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Plates were incubated at 30 °C and OD600 measurements taken when DMSO controls reached 

saturation, between 16 h and 24 h after inoculation. 

 For the pathogenic fungi Cryptococcus neoformans (H99), Cryptococcus gattii (R265), 

Candida albicans (ATCC#90028), Candida parapsilosis (ATCC#90018) and Aspergillus 

fumigatus (Af293) 4x4 mini-checkerboards were performed with compound concentrations 

adjusted around minimal inhibitory concentrations (MICs) for each species. Strains were grown 

in 100 µL SC medium in round bottom (Candida and Cryptococcus) or flat bottom (A. 

fumigatus) 96-well plates. For Candida and Cryptococcus species, overnight cultures were 

adjusted to OD600 = 0.14, then diluted 1:500 and grown in the presence of compounds or controls 

for 48 h (Candida) and 72 h (Cryptococcus) at 30 °C without shaking, followed by OD600 

determinations of re-suspended cultures. A. fumigatus was plated at a density of 1x104 conidia 

per well and growth was assessed visually after 24 h incubation at 37 °C in the presence of 5% 

CO2. 

 Compound dilution series (1 µM to 128 µM) were prepared in Dulbecco's phosphate-

buffered saline (PBS) at pH 7.4 for assay of HeLa cells. Final DMSO concentrations in cell 

cultures were kept at or below 0.03% for all dilutions. HeLa cells were grown in Phenol Red-free 

medium using dialyzed fetal bovine serum to avoid potential interactions with estrogen and other 

hormones. Cells were initially plated at 7000 cells per well in 100 µL MEM (Gibco) in flat 

bottom 96-well plates and incubated at 37 °C with 5% CO2 for 72 h prior to addition of diluted 

compounds. To avoid confounding effects of evaporation, medium containing compounds or 

solvent control was replaced every 24 h. For HEK293 cells, compounds were diluted in 100 µL 

MEM for a final DMSO concentration of less than 1%. Cells were initially plated at 5000 cells 

per well in 100 µL MEM (Gibco), and incubated at 37 °C with 5% CO2 for 48 h before addition 

of diluted compounds. After 48 h incubation at 37°C, cell viability was assessed with PrestoBlue 

(Invitrogen) after 2 h incubation at 37 °C with 5% CO2 as per instructions of the manufacturer. 

 
General statistical methods. Heatmap representations of CGM, CM and NBL data shown in 

Figures 1, 2 and 3 were clustered using average linkage hierarchical clustering. Heatmaps 

generated for Figures S6 and S9 used single linkage hierarchical clustering. Networks in Figures 

4D, S6A and S9A were generated using Cytoscape (Su et al., 2014), as well as the Cytoscape 
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plug-ins BINGO (Maere et al., 2005) and Golorize (Garcia et al., 2007). Graphs were built by 

obtaining all sentinel strains that were among top 3 predicted compound targets for synergistic 

compound pairs (SONARGNR network) or top 3 sensitive sentinel strains (SONARNR network). 

Edge weights were based on SONARGNR-derived parameter hsExy or NBL likelihood of 

sensitivity to compounds. Only the top 100 edges are shown. Graphs were corrected by 

subtraction of average weights for the same graph sampled from 730 non-synergistic pairs. All 

genetic interactions were drawn from BioGRID release 3.076 (Chatr-Aryamontri et al., 2015) 

and annotated protein complexes in Figure S1D were derived from a previous study (Pu et al., 

2009). 

 

Supplemental Tables 
All supplemental tables are available at http://chemgrid.org/cgm/index.php. 

 

Table S1. CGM Library Composition, Related to Figure 1 

Table S2. Unique Compounds in CGM, Related to Figure 1 

Table S3. S. cerevisiae Sentinel Strains Used in this Study, Related to Figure 1 

Table S4. Information on the 128 Cryptagens in the CM, Related to Figure 2 

Table S5. Literature Curation of Yeast Targets for 27 Characterized Compounds and SONARG 

Target Predictions, Related to Figure 3 

Table S6. Area Under the Curve (AUC) for Each Deletion Strain Class (Sentinel) using a Naïve 

Bayes Multinomial Classifier, Related to Figure 3 

Table S7. Bliss Independence and SONARNR Synergy Scores for Pairwise Combinations in the 

CM, Related to Figure 4 

Table S8. Confusion Matrices and Prediction Statistics for SONARNR, Related to Figure 4 

Table S9. Dose-Response Surface Verification Data for S. cerevisiae, Related to Figures 5, 6, 

S10. Drug pump deficient strain, 163 pairs; wild type strain, 83 pairs. 

Table S10. Bliss Independence Scores from Dose-Response Surfaces in S. cerevisiae, Related to 

Figures 5, 6 and S10 
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