#### **Supplementary information**

## Inhibition of ANO1/TMEM16A induces apoptosis in human prostate carcinoma cells by activating TNF- $\alpha$ signaling

Yan Song<sup>1</sup>, Jian Gao<sup>1</sup>, Lizhao Guan<sup>1</sup>, Xiaoling Chen<sup>1</sup>, Jianjun Gao<sup>2</sup> and KeWei Wang<sup>1,2</sup>¶

<sup>1</sup>Department of Molecular and Cellular Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191; and <sup>2</sup>Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China

<sup>¶</sup>To whom correspondence should be addressed: KWW (wangkw@bjmu.edu.cn or wangkw@qdu.edu.cn) Tel: (8610) 82805065 Fax: (8610) 82805065





(A). Two siRNA targeting sites in human ANO1/TMEM16A gene (GenBankNM\_018043). (B). PC-3 cells were transfected by ANO1-siRNAs for 72 h. Relative amount of ANO1 mRNA expression was examined using qPCR and presented after being normalized to  $\beta$ -actin (means  $\pm$ SEM; n = 7 independent experiments). \*\*\* p < 0.001 are for statistical comparisons. (C). Top panel, representative images of ANO1 expression by western blot. Bottom panel, quantitative analysis of ANO1 protein expression. Data are expressed as means  $\pm$  SEM (n = 5independent experiments). \*\*\* p < 0.001 are for statistical comparisons.





(A&B). Silencing of endogenous ANO1 does not significantly decrease cell growth in RWPE-1 or DU145 cells. Cells were transfected with ANO1-siRNAs or NCsi (negative control). Line graph showing relative of viable cell number of RWPE-1 cells (A) or DU145 cells (B) after ANO1 knockdown (means  $\pm$  SEM, n = 6). Viable cell number was accessed by CCK-8 assay.

(C&D). No effect on apoptosis in DU145 cells by ANO1 silencing. (C) Bar graph showing apoptosis accessed by Cell Death Detection ELISA<sup>PLUS</sup> Kit (means  $\pm$  SEM, n = 4). Parallel plates with the same treatment were used for cell counting. (D) Apoptosis was assessed by Annexin V-FITC/PI Apoptosis Detection Kit using a Flow Cytometer. Bar graph showing percentage of apoptotic cells after knockdown of ANO1 for 72 h (means  $\pm$  SEM, n = 3).



### Figure S3. Identification of ANO1 stable overexpression in RWPE-1 cells.

(A). The vector pIRES2-EGFP was used to construct ANO1 plasmids.

(B). Relative amount of ANO1 mRNA expression was examined using qPCR and presented after being normalized to  $\beta$ -actin (means  $\pm$  SEM; n = 3 independent experiments). \* p < 0.05 are for statistical comparisons.

(C). Top panel, representative images of ANO1 expression by western blot analysis. Bottom panel, quantitative analysis of ANO1 protein expression. Data are expressed as means  $\pm$  SEM (n = 4 independent experiments). \*\* p < 0.01 are for statistical comparisons.



Figure S4. Verification of apoptosis related gene expression in ANO1-RNAi treated PC-3 cell. PC-3 cells were transfected by ANO1-siRNAs for 72 h. Relative amount of ANO1 mRNA expression was examined using qPCR. Data are presented after being normalized to  $\beta$ -actin (means  $\pm$  SEM; *n* = 3 independent experiments).



# Figure S5. Inhibition of LPS-induced TNF- $\alpha$ production in primary mouse macrophages by pharmacological activation of ANO1.

(A) Primary mouse macrophages were cultured in 24-well plate (1,000,000 cells per well). Cells were pre-treated with ANO1 activator, Eact (10, 30  $\mu$ M) for 24 h, followed by stimulation with 0.1  $\mu$ g/mL LPS to induce TNF- $\alpha$  release. After 24 h of LPS stimulation, levels of TNF- $\alpha$  in culture supernatants were measured by ELISA. The data are presented as means  $\pm$  SEM (n = 9). \*\* p < 0.01, \*\*\* p < 0.001. Activation of ANO1 by Eact inhibits LPS-induced TNF- $\alpha$  production in a dose-dependent manner.

(B) The relative mRNA expression of TNF- $\alpha$  and ANO1 was examined using qPCR and data are presented after being normalized to  $\beta$ -actin (means  $\pm$  SEM; n = 4). \* p < 0.05. LPS up-regulated the mRNA expression of TNF- $\alpha$ , and down-regulated the mRNA expression of ANO1. Eact dose-dependently inhibited the expression of TNF- $\alpha$  induced by LPS-stimulation in primary mouse macrophages.



Figure S6. TNF-α down-regulates ANO1 expression in PC-3 cells.

PC-3 cells were cultured in 6-well plate (100,000 cells per well) and were treated with different concentrations of human recombinant TNF- $\alpha$  (10 pg/ml, 10 ng/ml, and 10 µg/ml). After 24 h of treatment, the relative protein and mRNA expression of ANO1 was measured using western blot and qPCR. The data are presented after being normalized to  $\beta$ -actin (means  $\pm$  SEM; n = 4; \* p < 0.05, \*\* p < 0.01). Human recombinant TNF- $\alpha$  decreases ANO1 expression in PC-3 cells.



### Figure S7. Verification of TNF-R1 and TRADD expression.

Immunoblots of lysates from prostate cells as described. Data are expressed as means  $\pm$  SEM. There was no significant change observed in TNFR1 (n = 3) and TRADD (n = 5) expression in either PC-3 cells or RWPE-1 cells.

| Symbol   | Description                                    | log <sub>2</sub> Ratio | log <sub>2</sub> Ratio |
|----------|------------------------------------------------|------------------------|------------------------|
|          |                                                | (siRNA1/NC)            | (siRNA3/NC)            |
| CASP7    | caspase 7                                      | 1.461                  | 1.145                  |
| AKT3     | AKT serine/threonine kinase 3                  | 0.582                  | 1.591                  |
| BIRC3    | baculoviral IAP repeat containing 3            | 0.071                  | 2.063                  |
| ZC3H12A  | zinc finger CCCH-type containing 12A           | 0.798                  | 1.233                  |
| PIK3CD   | phosphatidylinositol-4,5-bisphosphate 3-kinase | 1.345                  | 0.681                  |
|          | catalytic subunit delta                        |                        |                        |
| TNFSF10  | tumor necrosis factor superfamily member 10,   | 1.183                  | 0.826                  |
|          | TRAIL                                          |                        |                        |
| CIDEA    | cell death-inducing DFFA-like effector a       | 0.981                  | 0.978                  |
| IRAK2    | interleukin 1 receptor associated kinase 2     | 0.678                  | 1.253                  |
| BID      | BH3 interacting domain death agonist           | 1.327                  | 0.594                  |
| NFKBIA   | NFKB inhibitor alpha                           | 0.605                  | 1.304                  |
| CYCS     | cytochrome c, somatic                          | 1.248                  | 0.558                  |
| CASP6    | caspase-6                                      | 0.883                  | 0.684                  |
| CASP8    | caspase-8                                      | 0.727                  | 0.170                  |
| CASP3    | caspase-3                                      | -1.540                 | 1.143                  |
| IL1B     | interleukin 1 beta                             | -1.344                 | -0.117                 |
| CAPN2    | calpain 2                                      | -0.423                 | -1.533                 |
| CASP2    | caspase-2                                      | -1.234                 | -0.823                 |
| TNFRSF1B | tumor necrosis factor receptor superfamily     | -0.756                 | -1.759                 |
|          | member 1B, TNFR2                               |                        |                        |
| H1F0     | H1 histone family, member 0                    | -2.815                 | -1.985                 |
| TOP2A    | topoisomerase (DNA) II alpha 170kDa            | -2.325                 | -2.960                 |
| CIDEC    | cell death inducing DFFA like effector c       | -1.926                 | -3.929                 |

Table S1. Differential expression of apoptosis related genes in ANO1-RNAi treated PC-3 cells by digital gene expression profiling.

 $log_2Ratio > 0$  means up-regulation,  $log_2Ratio < 0$  means down-regulation

| Table S2. Sequences of primers used for qP |
|--------------------------------------------|
|--------------------------------------------|

| Gene      | Forward (5'3')          | Reverse (5'3')          |
|-----------|-------------------------|-------------------------|
| hβ-actin  | CATGTACGTTGCTATCCAGGC   | CTCCTTAATGTCACGCACGAT   |
| hANO1     | GAGCCAAAGACATCGGAATCTG  | TGAAGGAGATCACGAAGGCAT   |
| hTNF-α    | CATGTACGTTGCTATCCAGGC   | CCCTAAGCCCCCAATTCTCT    |
| hAKT3     | TGTGGATTTACCTTATCCCCTCA | GTTTGGCTTTGGTCGTTCTGT   |
| hBID      | ATGGACCGTAGCATCCCTCC    | GTAGGTGCGTAGGTTCTGGT    |
| hBIRC3    | AAGCTACCTCTCAGCCTACTTT  | CCACTGTTTTCTGTACCCGGA   |
| hCAPN2    | GTTCTGGCAATACGGCGAGT    | CTTCGGCTGAATGCACAAAGA   |
| hCASP2    | AGCTGTTGTTGAGCGAATTGT   | AGCAAGTTGAGGAGTTCCACA   |
| hCASP3    | CATGGAAGCGAATCAATGGACT  | CTGTACCAGACCGAGATGTCA   |
| hCASP6    | ATGGCGAAGGCAATCACATTT   | GTGCTGGTTTCCCCGACAT     |
| hCASP7    | CGGTCCTCGTTTGTACCGTC    | CGCCCATACCTGTCACTTTATCA |
| hCASP8    | TTTCTGCCTACAGGGTCATGC   | GCTGCTTCTCTCTTTGCTGAA   |
| hCIDEA    | TTATGGGATCACAGACTAAGCGA | TGCTCCTGTCATGGTTGGAGA   |
| hCIDEC    | AAGTCCCTTAGCCTTCTCTACC  | CCTTCCTCACGCTTCGATCC    |
| hCYCS     | CTTTGGGCGGAAGACAGGTC    | TTATTGGCGGCTGTGTAAGAG   |
| hH1F0     | CGCGCCAGTCCATTCAGAA     | ACAACTTGATCTGCGAGTCAG   |
| hIL1B     | ATGATGGCTTATTACAGTGGCAA | GTCGGAGATTCGTAGCTGGA    |
| hIRAK2    | GAAATCAGGTGTCCCATTCCAG  | TGGGGAGGTCGCTTCTCAA     |
| hNFKBIA   | CTCCGAGACTTTCGAGGAAATAC | GCCATTGTAGTTGGTAGCCTTCA |
| hPIK3CD   | AAGGAGGAGAAATCAGAGCGTT  | GAAGAGCGGCTCATACTGGG    |
| hTNFRSF1B | CGGGCCAACATGCAAAAGTC    | CAGATGCGGTTCTGTTCCC     |
| hTNFSF10  | GCTCGTTGGTAAAGTACACGTA  | TGCGTGCTGATCGTGATCTTC   |
| hTOP2A    | ACCATTGCAGCCTGTAAATGA   | GGGCGGAGCAAAATATGTTCC   |
| hZC3H12A  | GGCAGTGAACTGGTTTCTGGA   | GATCCCGTCAGACTCGTAGG    |

Table S3. Sequences of ANO1 shRNA

| Gene             | Forward (5'3')                                                     | Reverse (5'3')                                                     |
|------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| ANO1<br>shRNA1   | CCGGGACGTGTACAAAGGCC<br>AAGTACTCGAGTACTTGGCC<br>TTTGTACACGTCTTTTTG | AATTCAAAAAGACGTGTACA<br>AGGCCAAGTACTCGAGTACT<br>ATGGCCTTTGTACACGTC |
| control<br>shRNA | CCGGGACGAGTGGTCTAGTT<br>GAGAACTCGAGTTCTCAACT<br>AGACCACTCGTCTTTTTG | AATTCAAAAAGACGAGTGGT<br>CTAGTTGAGAACTCGAGTTC<br>TCAACTAGACCACTCGTC |