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S1. APPROXIMATION FOR ABSTRACTION
OF PLANT LEAF XYLEM FLOW

For the theoretical approach employed here, the sap
flow in the plant leaf xylem network is not considered
in its full complexity, but approximations are made ab-
stracting the characteristics of the plant leaf xylem flow
network to allow for an analytic treatment. We are in-
terested in the constraints active transport in a network
puts on the metabolite supply in a tissue. For this rea-
son, we focus on the transport in the intravascular path-
ways. As stated in section S3 A, for the calculation of
the absorption along a vessel, the flow velocity in indi-
vidual tubes is calculated using Kirchhoff’s circuit laws.
The calculation of the flows using Kirchoff’s circuit laws,
however, demands idealizations of the xylem vessel net-
work regarding the distribution of the outflow sites and
the vessel geometry. Focusing on the the outflow, fluid
is evaporating through small pores, called stomata, that
are distributed evenly over the surface of the leaf. As
stomata are not connected to the xylem network, the
fluid is leaving the xylem vessel and flows through the
extravascular tissue to the stomata sites. Considering a
uniform distribution of stomata and the same outflow of
fluid at every stomata, the amount of fluid leaving each
tube can be estimated. However, Kirchoff’s circuit law
demands that outflow is a property of nodes, while no
fluid loss is allowed along tubes of a network. Integrat-
ing the total stomata outflow and redistributing it back
to the nodes, such that every node has the same outflow
of fluid, results in flow profiles consistent with the esti-
mate of a steady outflow of fluid along each tube. The
redistribution of the outflow sites is well accepted in the
literature [1, 2]. As we consider steady state solutions,
we assume a balance between total inflow of fluid in the
network and outflow out of the network. For short time
scales this balance is not expected to hold in real plants
given the storage capacities of the tissue. Yet, here we are
interested in long time scales warranting the balance be-
tween in- and outflow. Focusing on the vessel geometry,
application of Kirchoff’s circuit laws requires an estimate
of the hydraulic resistance along each vessel. To this end,
xylem vessels are estimated as circular straight tube.

For given inflow and outflow at every node, the pres-
sures at every node and thus the flow between nodes
are fully defined, as Kirchhoff’s circuit law is applied.
Note, that setting both the pressure and the flow values
at the nodes at the same time overdetermines the sys-
tem, as flow values and pressure values are determining
each other consistently. We chose flow values as input
to model stomata conductance and calculated the pres-
sures. The calculated pressures result in pressure drops
between tubes connecting nodes, which then results in
fluid flow between these nodes.

The flow resulting from this calculation is in agreement
with an observed linear dependence of the total pressure
drop with the total inflow of solute [3], see Fig. S1(a).
Fig. S1(a) shows the pressure difference between the first

inflow node and the last outflow node on the bottom side
of the network for three different inflow rates using the
networks shown in Fig. 2. A regression through the origin
results in a slope of ≈ 0.015 s Pa µm−3. In addition our
model agrees with observations [3] of a steady decrease of
the flow velocity along the network length as the distance
to the inflow site increases, see Fig. S1(b). The profile
is taken along the center vertical axis of the rectangular
network excerpt of the network with optimal inflow as
shown in Fig.2.

S2. ARTIFACTS IN SUPPLY PATTERN DUE
TO SYMMETRIES IN NETWORK EXCERPT

For the rectangular network excerpt, we consider a tes-
sellation with small triangles resulting in a highly inter-
connected network. To avoid artifacts in supply patterns
originating from a high intrinsic symmetry, all node po-
sitions were slightly randomized. Examples of artifacts
in supply patterns are visualized in Fig. S2. Fig. S2 (a)
shows a non-randomized network that otherwise has the
same network parameters and influx rate as the network
in Fig. 2 (b). In contrast to the randomized network,
the non-randomized network shows a clearly symmetric
absorption pattern, as the absorption near the axis is de-
creased and the absorption near the left and right margin
of the network is increased. Comparing the flow profiles
of the two networks along a horizontal row, as indicated
by a blue line in Fig. S2 (a), shows a high regularity for
the non-randomized network, see Fig. S2 (b). The fluctu-
ations of the flow velocity are stronger in the randomized
network, see Fig. S2 (c). While for the non-randomized
network the flow in tubes in the direction of the bound-
aries of the network is strictly faster than in tubes that
lead flow toward the center of the network, the same
tendency is still observable in the randomized network,
though here not strictly true anymore. Faster flow to the
margins of the network, results in a stronger displace-
ment of metabolites to the margins. This is observable
for both Fig. 2 (b) and much more amplified Fig. S2 (a).
This effect results from the assumption that no further
in and outflow of fluid is considered on the side of the
network excerpt at the margins.

S3. NUMERICAL METHODS

A. Calculation of absorption profiles in a network

For the calculation of absorption profiles the absorp-
tion along each tube of the network was calculated in-
dividually. The gist of the calculation is to apply Eq. 6
on each tube of the network. For a given network topol-
ogy, we consider all variables of Eq. 6 as known, with
exception of the average flow velocity and the inflow of
metabolites in a tube. The calculation of the absorption
profile is hence following two steps:
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1. First using Kirchhoff’s circuit laws, we compute the
velocity profile in the network. Besides the flow
velocity in each tube, the velocity profile also states
for each node all tubes that start or end at that
node.

2. The absorption profile is calculated by iterating
through the nodes of the network. In each iteration
step, it is determined whether the absorption is cal-
culated in all tubes ending at a node. If this is the
case, the absorption in all tubes starting from this
node is calculated. Otherwise the node is ignored
and the next node is analyzed until absorption in all
nodes has been determined. The iterations starts
with the tubes starting at an inflow node.

We focus on steady state solutions only. As a con-
sequence, all metabolites flowing into an node are re-
distributed proportional to diffusion and flux in the
tubes starting from this node. The surface integrals
of the flux over the cross-sectional area A of each
tube at a node point k have to add up to zero:∑ends in k

i∈tube JiAi =
∑starts in k

i∈tube JiAi. In each individ-
ual tube the flux of metabolites is proportional to the
metabolite concentration, Eq. (5), J = C(U + κβ/`).
This determines the influx of metabolites in tubes
branching from a node with J0 = C̃n(U + κβ/`).

We understand C̃n as a node concentration with
C̃n =

∑inflow
i JiAi/

∑outflow
k (Uk + κβ/`k)Ak, summing

over all inflowing and outflowing tubes, respectively. The
metabolite outflux at the end of a tube is given by the
difference of metabolite influx and total absorption along
the tube. Finally, at the lower end of the considered
network excerpt, opposite the inflow nodes, remaining
metabolites are flowing out of the network. Since the
outflowing metabolites would lead to an accumulation of
metabolites, we state the amount of metabolites not ab-
sorbed for every considered network excerpt.

B. Optimization of the network architecture

In contrast to the absorption profiles, the optimized
network topology is simulated by iteratively optimizing
the network topology for uniform absorption. As the
network couples absorption rates with the network’s flow
profile, no closed analytic formulation can be derived for
the optimization of the network architecture.

To numerically optimize for a uniform supply pattern,
we minimize the differences in absorption φi−φj among
all tubes. To penalize especially large differences in ab-
sorption, we sum the exponential of differences in absorp-
tion and define a score function by

H{φn} =

N∑
i,j

exp((φi − φj)2/α), (S1)

where α = 〈φ〉2 is a normalization factor. For the
sake of comparability of different network architectures

and supply patterns, we also penalize metabolite out-
flux at the end of the network by an additional fac-
tor. The difference in absorption H is multiplied by
(1 + f(Jout,tot/Jin,tot)), where Jout,tot/Jin,tot is the per-
centage of outflowing metabolite. A functional form of
f(x) = exp(1/x) is chosen to penalize higher outflux
stronger than lower outflux. This score is used to cre-
ate a potential landscape with a dimensionality propor-
tional to the number of tubes in the considered network.
The aim is to find the global minimum of the potential
landscape. However, this is not feasible due to the high
dimensionality of the landscape. To approach this prob-
lem, we used a stochastic Metropolis-Hastings sampler
combined with simulated annealing in order to find local
minima of the potential landscape. Optimized network
topologies were determined for different inflow rates. The
usage of Monte-Carlo methods allows a reduction of the
computational time. This makes estimates of optimized
topologies feasible.

The gist of the Monte Carlo sampler is to randomly
choose an alternated network topology and calculate the
similarity score. By this, the sample space is probed for
the minimal value. For systematic sampling that allows
an ergodic coverage of the sample space while reducing
the computation time, a Metropolis-Hasting algorithm
combined with simulated annealing is used. The idea of
the algorithm is to chose a new sample close to the last
accepted sample point. If the new sample point has a
smaller score according to Eq. S1, the new sample point is
accepted. If the new sample point has a bigger score, the
sample point is accepted proportional to an exponential
distribution with p ∝ exp(−βT (H{φn}new −H{φn}old)).
Here the factor βT is a parameter that determines how
often upward fluctuations appear. Upward fluctuations
are needed to allow the algorithm to cross potential bar-
riers. This prevents the algorithm from being trapped in
local minima and guarantees an ergodic sampling of the
whole space.

To tackle the potential hierarchy in tube patterns, we
only allow the change of a random cluster of adjoining
tubes. The usage of clustered changes is also suited to
find inhomogeneous and hierarchical patterns, which we
did not find here in the end. Changing the number of
tubes Nc in a cluster changes the proximity of the new
sample point to the last accepted sample point. For all
chosen tubes the start and end node are slightly changed
by addition or subtraction of a small value drawn from a
normal distribution with a variance of a one-twentieth of
the initial average tube length `. The radius is dilated or
constricted by addition or subtraction of a small value ∆
for all chosen tubes. The value of the change is a fraction
of the current radius of the tube, here denoted as frac-
tion of change. The fraction of change is distributed uni-
formly where Fc denotes the maximal fraction of change.
Whether a tube is dilated or constricted is chosen ran-
domly.

To achieve faster convergence to minima, a heuristic
argument can be used to bias the choice of tube dila-
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tion or constriction. As the radius of a tube is reduced,
the wall area is reduced and hence the absorption is de-
creased. Note, that this does not hold for all tubes as
the problem is highly coupled but presents a good rule
of thumb. Implementing a biased choice for the dila-
tion or constriction, the acceptance probability has to be
changed for the algorithm to remain ergodic.

If φi > φ̄, the probability to expand a tube i by ∆
is pi+ = 1/3, whereas the probability to dilate the tube
by ∆ is pi− = 2/3 and vice versa for φi < φ̄. Here,
φ̄ is the mean absorption over all tubes given by the
last accepted topology. Using this procedure to chose
the next state x(i+1)c, we have to estimate the fraction
p(x(i+1)c|xi)/p(xi|x(i+1)c). This fraction is dependent on

the sample (φj)
i
N and on the sample (φj)

i+1
N . Since the

choice of dilating or expanding a tube k is solely depen-
dent on φik, we can factorize

p(xi|x(i+1)c) =

tubes∏
k

p(xik |x(i+1)ck) =

tubes∏
k

pk(φik).

For tubes which change the regime from below average
to above average the fractions pk(φik)/pk(φi+1

k ) = 1 can-
cel out. The fraction is hence given by the number of
tubes which stayed above average or which stayed below
average and made the favored step. Given the number
of tubes which stayed in their regime and the number of
tubes which made the unfavored step, we can express the
fraction by

M =
p(x(i+1)c|xi)
p(xi|x(i+1)c)

= 2#tubes, remained−2·#unfav. changes.

The measured change has to be multiplied to the accep-
tance probability, such that

p ∝M · exp(−βT (H{φn}new −H{φn}old)).

To identify optimal network architectures, we iteratively
reduce the fluctuations within the Metropolis-Hasting al-
gorithm by employing simulated annealing. Our simu-
lated annealing algorithm has five phase. In each new
phase the proximity of the new sample points is in-
creased, as Fc and Nc are reduced. Also the frequency of
upward fluctuations is decreased as βT is increased. The
first phases are used to allow for strong fluctuations to
overcome large barriers in the potential landscape. In the
later phases the best minimum is finer and finer approx-
imated, see Fig. S3. The idea of simulated annealing is
inspired by the physical picture of crystallization, where
the crystal is partly melted to improve the homogeneity
of the crystal structure.

Beside minimizing the outflux of solute, we set the con-
straint of a constant surface area of the network. This
constraint is equivalent with conservation of the total ma-
terial used to build the network. We enforce this con-
straint by estimating the total difference in the radial R
and length ` distribution and in a second step dilate or

expand all tubes by the same amount such that the total
difference equals zero.

We allow in our simulation for cutting of tubes and
thus for modification of our initial network topology.
Hence, we define a cutoff parameter Rcut. If any radius
is smaller Ri < Rcut, this tube is regarded as cut and
Ri = 0. Cutting of tubes that would result in uncon-
nected parts of the network with the remaining network
was prohibited. The initial state of the network is a mesh,
representing a tesselation of space, with randomly chosen
radii distribution.

To achieve convergence to a low minimum the algo-
rithm parameters βT , Nc, and Fc have to be estimated
for each annealing phase of the algorithm. Here strong
fluctuations should be observable in the first phase, while
almost no fluctuations to higher similarity scores should
be observable in the last phase. Note, that for changes in
the dimension of the to be optimized topology, the algo-
rithm parameters have to be reevaluated and adjusted.
For our optimization, an initial value of βT = 25 was
chosen. This value was increased in each phase as the
value of the previous was multiplied by a factor of 5. A
value of Nc = 50 was chosen and not changed for dif-
ferent phases. Fraction of change was initially chosen as
Fc = 0.1 decreased by a multiplication with 0.75 for each
phase. A total number of 60000 samples was considered
for each inflow rate. All of the 5 annealing phases were
all of the same length.

S4. VERIFICATION OF THE
APPROXIMATION IN ANALYTICAL

CALCULATION

For the verification of the three analytical approxima-
tions made in section Metabolite absorption across a fluid
filled tube, we identify three dimensionless parameters,
which all have to be much smaller than one for the ap-
proximations to hold:

R · γ � 1, (S2)

R2〈U〉
κ`

� 1, (S3)

R/`� 1. (S4)

As these parameters have to hold for all tubes, we de-
termine the maximal value of these three parameters for
each network considered in the paper. If the maximal
values are much smaller than one, then all tubes in the
network will fulfill the conditions proposed in the approx-
imations. The values are evaluated for Fig. 2 and Fig. 4
in the paper. The values are listed in Tab. S1. The
approximations are also tested for an altered parameter
range, see Fig. S4 and Fig. S5. All networks agree with
the approximations made.

3



Supplementary Material: Flow rate controls uniform metabolite supply Meigel et al.

TABLE S1. Verification of approximations

Uniform radius networks Fig. 2
Low inflow Medium inflow High inflow

max(Rγ) 3× 10−5 3× 10−5 3× 10−5

max
(
R2〈U〉
κ`

)
1.2× 10−3 5.0× 10−3 9.1× 10−3

max(R`) 4.3× 10−2 4.9× 10−2 4.4× 10−2

Optimized radius networks Fig. 4
Low inflow Medium inflow High inflow

max(Rγ) 1.6× 10−4 1.4× 10−4 1.1× 10−4

max
(
R2〈U〉
κ`

)
6.5× 10−3 9.6× 10−3 17.6× 10−3

max(R`) 0.176 0.162 0.107

Uniform radius networks (altered parameter range) Fig. S4
Low inflow Medium inflow High inflow

max(Rγ) 2.1× 10−4 2.1× 10−4 2.1× 10−4

max
(
R2〈U〉
κ`

)
0.8× 10−2 2.6× 10−2 4.1× 10−2

max(R`) 2.5× 10−2 2.4× 10−2 2.3× 10−2

Optimized radius networks (altered parameter range) Fig. S5
Low inflow Medium inflow High inflow

max(Rγ) 1.3× 10−3 7.0× 10−4 8.9× 10−4

max
(
R2〈U〉
κ`

)
3.1× 10−2 4.5× 10−2 0.23

max(R`) 0.15 0.065 0.19

S5. SUPPLY PATTERNS QUALITATIVELY
INDEPENDENT OF PARAMETER CHOICE

To show that our theoretical framework holds for
a wide range of parameters, we exemplarily changed
the parameters used in Fig. S4 by one order of
magnitude from ` = 0.1 mm to ` = 1.8 mm and
from R = 3 µm to R = 30 µm. The order of mag-
nitude of the total inflow rate is chosen to yield
velocities observable in lower order xylem vessels
〈U〉r ≈ 1 µm s−1. We vary the fluid inflow rate from
Qin = 1× 10−4 mm3 s−1 to Qin = 5× 10−4 mm3 s−1.
For molecular diffusivity, we keep a value of
κ = 1× 10−10 m2 s−1 as we consider small molecules.
The network size was not altered with N ≈ 1000 tubes
considered for the network. For the absorption param-
eter, we consider γ = 7 m−1. All approximations made
in the section Metabolite absorption across a fluid filled
tube hold also for this parameter choice as demonstrated
in Tab. S1. Comparison of Fig. S4 and Fig. S5 with
Fig. 2 and Fig. 4 show qualitative agreement for the
considered range of the parameter choice. This is in
agreement with the scaling prediction of Fig. 3.
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FIG. S1. (a) Linear dependence of the pressure drop over the network with inflow rate. Pressure drop is measured as the
difference in pressure between the first inflow node and the last outflow node on the bottom of the network, see Fig. 2. The
regression through the origin has a slope of 0.015 s Pa µm−3. (b) Flow profile along the center vertical axis of Fig. 2(b). With
increasing distance from the inflow node the flow velocity decreases.

(a) (b) (c)

FIG. S2. (a) Absorption pattern in a non-randomized triangulated network showing a clear pattern that is due to the high
symmetry of the network. Randomization of network node positions removes pattern, therefore the pattern is identified as
artefact due to high degree of symmetry. Flow velocity profile along a horizontal axis for a non-randomized (b) and randomized
network (c) as indicated by blue horizontal line in (a) and correspondingly Fig. 2b. The parameter settings are the same as for
Fig. 2 for optimal inflow.
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FIG. S3. Exemplary plot of the score function development
over time. Every data point shows the score of the last ac-
cepted sample point at a time point. We implemented sim-
ulated annealing with five phases, where initial phases allow
for large fluctuations necessary to cross potential barriers, fol-
lowed by later phase with only small fluctuations resulting in a
finer estimation of the found minimum. Parameters as in the
slow inflow example in Fig. 4. Vertical dotted lines indicate
different phases of the simulated annealing.
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FIG. S4. Supply patterns are controlled by
fluid inflow rates. Supply pattern of a rect-
angular tissue section pervaded by a trans-
port network for increasing fluid inflow rate
ranging from (a) Qin = 1× 10−4 mm3 s−1, via
(b) Qin = 3.3× 10−4 mm3 s−1, to (c) Qin =
5× 10−4 mm3 s−1. The transport network is
build of tubes of equal radius and roughly equal
length triangulating the tissue section under
consideration. Left column: Supply pattern in
every triangulated tissue section given by the
average metabolite absorption along neighbor-
ing tubes. The absorption is normalized with
the inverse of the total influx J−1

tot and the to-
tal number of tubes N . Right column: Stan-
dard deviation and mean absorption per row
counting downward from the inflow nodes at
the top of the network. At low inflow rate (a)
metabolites are absorbed close to inflow and
are not transported through the network while
for high inflow rate (c) metabolites get flushed
through the network for being absorbed mainly
at the end. The variance in absorption across
all tubes is 0.9 for low inflow rate and 0.33 for
high inflow rate. In between these two cases an
optimal inflow rate with the lowest variance ex-
ists (b) that yields uniform supply and a overall
variance of only 0.07. Metabolites are absorbed
across tube walls into the tissue, few remaining
metabolites are flowing out at the bottom end
amounting to 0.03%, 0.8%, and 3.15% for (a),
(b), and (c), respectively.
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FIG. S5. Optimized network architectures for
uniform metabolite supply patterns. Supply
pattern for the same low (a), optimal (b) and
high (c) inflow rate as in Fig. S4 but opti-
mized network architecture. Left column: Sup-
ply pattern in every triangulated tissue sec-
tion given by the average metabolite absorp-
tion along neighboring tubes, see also FIG S4.
Thickness of tubes represents the tube radius.
Middle column: Standard deviation and mean
absorption per row counting downward from
the inflow nodes at the top of the network.
Right column: Standard deviation and mean
radius per row. Dashed line marks average tube
radius. (a) For low inflow rate tubes contract
near inflow nodes, speeding up flows there and
thus propagating metabolites further down the
network. Tubes dilate toward the network end
further increasing absorption there. Variance
in absorption is reduced by almost an order of
magnitude down to 0.12. (c) For high inflow
rate tubes dilated close to the inflow nodes,
slowing down flow there and thus increasing ab-
sorption. Variance is reduced by an order of
magnitude to 0.027. (b) For the optimal flow
rate variance in absorption is reduced by an or-
der of magnitude down to 0.0052. Note, that
although metabolite outflux is penalized, it in-
creased for all topologies to (a) 6.3%, (b) 1.9%
and (c) 1.6%.
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