CHEMISTRY A European Journal

Supporting Information

Heterolytic Si—H Bond Cleavage at a Molybdenum-Oxido-Based Lewis Pair

Niklas Zwettler, Simon P. Walg, Ferdinand Belaj, and Nadia C. Mösch-Zanetti*[a]

chem_201800226_sm_miscellaneous_information.pdf

Content Supplementary figures	3
Figure S1. ¹⁹ F NMR spectra of the concentration dependent equilibrium of 2 (\bullet) with MeCN·B(C ₆ F ₅) ₃ (\Box) in C ₆ D ₆	3
Figure S2. IR spectra of compounds 1, ^[1] 2 and 3a in the region from 350 to 3500 cm ⁻¹	4
Figure S3. Scan rate dependence of the redox couples assigned to Mo(VI)/Mo(V) for complex 2 (left), 3a (middle) and 3c (right)	4
Figure S4. ¹⁹ F NMR spectra of the reaction of 3a with benzaldehyde in C_6D_6	4
Figure S5. ¹ H NMR spectra of the reaction of 3a with benzaldehyde in C_6D_6	5
Figure S6. ¹⁹ F NMR spectra of the reaction of 3a with benzaldehyde in CD_2Cl_2	5
Figure S7. ¹ H NMR spectra of the reaction of 3a with benzaldehyde in CD ₂ Cl ₂	6
Figure S8. ¹¹ B NMR spectrum of Int 3a ' from the reaction of 3a with benzaldehyde in CD ₂ Cl ₂ after 24 h	6
Figure S9. Superimposed ¹ H NMR spectra of Int 3a' and Int 3a'-d ₁	7
Figure S10. ¹³ C NMR spectrum of Int 3a'-d ₁	7
NMR and MS spectra of the compounds	8
Figure S11. ¹ H NMR spectrum of complex 2 in CD ₂ Cl ₂	8
Figure S12. ¹¹ B NMR spectrum of complex 2 in CD ₂ Cl ₂	8
Figure S13. ¹³ C NMR spectrum of complex 2 in CD ₂ Cl ₂	9
Figure S14. ¹⁹ F NMR spectrum of complex 2 in CD ₂ Cl ₂	9
Figure S15. ¹ H NMR spectrum of complex 3a in CD ₂ Cl ₂ 1	10
Figure S16. ¹¹ B NMR spectrum of complex 3a in CD ₂ CI ₂ 1	10
Figure S17. ¹¹ B NMR spectrum of complex 3a-d ₁ in CD ₂ Cl ₂ 1	11
Figure S18. ¹³ C NMR spectrum of complex 3a in CD ₂ Cl ₂ 1	11
Figure S19. ¹⁹ F NMR spectrum of complex 3a in CD ₂ CI ₂ 1	12
Figure S20. ¹ H NMR spectrum of complex 3b in CD ₂ Cl ₂ 1	12
Figure S21. ¹¹ B NMR spectrum of complex 3b in CD ₂ Cl ₂ 1	13
Figure S22. ¹³ C NMR spectrum of complex 3b in CD ₂ Cl ₂ 1	13
Figure S23. ¹⁹ F NMR spectrum of complex 3b in CD ₂ Cl ₂ 1	14
Figure S24. ¹ H NMR spectrum of complex 3c in CD ₂ Cl ₂ 1	14
Figure S25. ¹³ C NMR spectrum of complex 3c in CD ₂ Cl ₂ 1	15
Figure S26. ¹⁹ F NMR spectrum of complex 3c in CD ₂ Cl ₂ 1	15
Figure S27. ¹ H NMR spectrum of complex 4a in CD ₂ Cl ₂ 1	16
Figure S28. ¹³ C NMR spectrum of complex 4a in CD ₂ Cl ₂ 1	16
Figure S29. ¹⁹ F NMR spectrum of complex 4a in CD ₂ CI ₂ 1	17
Figure S30. ¹ H NMR spectrum of complex 4b in CD ₂ Cl ₂ 1	17

Figure S31. ¹¹ B NMR spectrum of complex 4b in CD ₂ Cl ₂	18
Figure S32. ¹³ C NMR spectrum of complex 4b in CD ₂ Cl ₂	18
Figure S33. ¹⁹ F NMR spectrum of complex 4b in CD ₂ Cl ₂	19
Figure S34. ESI-MS (positive mode) spectrum for 3a , showing the peak for [Mo(OSiEt ₃)(N <i>t</i> Bu)] ⁺ with the correct isotope pattern.	19
Figure S35. ESI-MS (negative mode) spectrum for 3a , showing peaks for $[HB(C_6F_5)_3]$ $[HOB(C_6F_5)_3]^-$.	⁻ and 20
Figure S36. ESI-MS (positive mode) spectrum for 3b , showing the peak for [Mo(OSiPh ₃)(N <i>t</i> Bu)] ⁺ with the correct isotope pattern.	20
Figure S37. ESI-MS (negative mode) spectrum for $3b$, showing the peak for [HB(C ₆ F	₅)₃] [–] . 21
Figure S38. ESI-MS (positive mode) spectrum for 4b , showing the peak for [Mo(OSiPh ₃)(N <i>t</i> Bu)] ⁺ with the correct isotope pattern.	21
Figure S39. ESI-MS (negative mode) spectrum for 4b, showing a peak for $[FB(C_6F_5)]$	₃] [−] , .22
Electrochemistry data of the compounds	22
Figure S40. Full sweep-width cyclovoltammogram of complex 1 ^[1] in MeCN	22
Figure S41. Full sweep-width cyclovoltammogram of complex 2 in CH ₂ Cl ₂	23
Figure S42. Full sweep-width cyclovoltammogram of complex 3a in MeCN.	23
Figure S43. Full sweep-width cyclovoltammogram of complex 3b in MeCN	23
Figure S44. Full sweep-width cyclovoltammogram of complex 3c in MeCN	24
Crystallographic data for 2 and 4b	25
Crystal structure determination of 2	25
Figure S45. Stereoscopic ORTEP ^[5] plot of 2	25
Table S1. Crystal data and structure refinement for 2 (CCDC deposition number: 157	4332) 26
Table S2. Selected bond lengths [Å] and angles [°] for 2.	27
Crystal structure determination of 4b.	27
Figure S46. Stereoscopic ORTEP ^[5] plot of the complex cation found in 4b	28
Figure S47. Stereoscopic ORTEP ^[5] plot of 4b	28
Table S3. Crystal data and structure refinement for 4b (CCDC deposition number: 1574333)	29
Table S4. Selected bond lengths [Å] and angles [°] for 4b	30
References	30

Supplementary figures

^{126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168} ppm

Figure S1.¹⁹F NMR spectra of the concentration dependent equilibrium of **2** (\bullet) with MeCN·B(C₆F₅)₃ (\Box) in C₆D₆.

Figure S3. Scan rate dependence of the redox couples assigned to Mo(VI)/Mo(V) for complex 2 (left), 3a (middle) and 3c (right).

Figure S4. ¹⁹F NMR spectra of the reaction of **3a** with benzaldehyde in C_6D_6 . The red boxes mark the resonances for the Lewis adduct **2**, the blue boxes mark residual $[HB(C_6F_5)_3]^-$ from **3a** and the resonances in the green boxes correspond to the anion of the intermediate species **Int 3a**'.

Figure S5. ¹H NMR spectra of the reaction of **3a** with benzaldehyde in C_6D_6 . The red boxes correspond to Bn-OSiEt₃, the blue box refers to residual benzaldehyde and the # symbols correspond to Bn–OH impurity. The resonance in the green box corresponds to the intermediate species **Int 3a**'.

Figure S6. ¹⁹F NMR spectra of the reaction of **3a** with benzaldehyde in CD_2Cl_2 . The blue boxes mark the resonances for the $[HB(C_6F_5)_3]^-$ anion of the initial complex **3a** and the resonances in the green boxes correspond to the intermediate species **Int 3a'**, consistent to literature.^[2] Lewis adduct **2** is only formed in minute quantities, marked with the red boxes.

Figure S7. ¹H NMR spectra of the reaction of **3a** with benzaldehyde in CD_2CI_2 . The resonances in the green boxes correspond to the intermediate species **Int 3a'**, the blue boxes refer to residual benzaldehyde and the yellow box shows the decrease of the B–H resonance. No formation of complex **2** or Bn–OSiEt₃ is observed within 24 h of reaction time, after 72 h, the conversion is ~ 5%.

Figure S8. ¹¹B NMR spectrum of **Int 3a'** from the reaction of **3a** with benzaldehyde in CD_2Cl_2 after 24 h.

8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 5.4 5.3 5.2 4.3 4.2 1.5 1.4 1.3 1.2 0.9 0.8 ppm

Figure S9. Superimposed ¹H NMR spectra of **Int 3a'** and **Int 3a'-d**₁ showing the different peak areas for the benzylate methylene group; Red: **Int 3a'**, $-(CH_2)$ - group integrates for two protons, Green: **Int 3a'-d**₁, -(CHD)- group integrates for one proton. Additional signals in the spectrum of **Int 3a'-d**₁ correspond to excess benzaldehyde.

Figure S10. ¹³C NMR spectrum of **Int 3a'-d**₁ showing the characteristic triplet for the -(CHD)- group arising from ${}^{1}J_{(C-D)}$ coupling. The mixture also contains excess Et₃SiD and PhCHO as a result of *in situ* measurements.

NMR and MS spectra of the compounds

Figure S12. ¹¹B NMR spectrum of complex 2 in CD₂Cl₂.

Figure S14. ¹⁹F NMR spectrum of complex 2 in CD₂Cl₂.

Figure S16. ¹¹B NMR spectrum of complex 3a in CD₂Cl₂.

Figure S17. ¹¹B NMR spectrum of complex **3a-d**₁ in CD₂Cl₂.

Figure S18. ¹³C NMR spectrum of complex 3a in CD₂Cl₂.

Figure S20. ¹H NMR spectrum of complex 3b in CD₂Cl₂.

Figure S21. ¹¹B NMR spectrum of complex 3b in CD₂Cl₂.

Figure S22. ¹³C NMR spectrum of complex 3b in CD_2CI_2 . S13

Figure S23. ¹⁹F NMR spectrum of complex 3b in CD₂Cl₂.

Figure S24. ¹H NMR spectrum of complex 3c in CD₂Cl₂.

Figure S26. ¹⁹F NMR spectrum of complex 3c in CD₂Cl₂.

Figure S28. ¹³C NMR spectrum of complex 4a in CD₂Cl₂.

Figure S29. ¹⁹F NMR spectrum of complex 4a in CD_2CI_2 .

Figure S30. ¹H NMR spectrum of complex 4b in CD₂Cl₂.

Figure S31. ¹¹B NMR spectrum of complex 4b in CD₂Cl₂.

Figure S32. ¹³C NMR spectrum of complex 4b in CD₂Cl₂.

Figure S33. ¹⁹F NMR spectrum of complex 4b in CD₂Cl₂.

Figure S34. ESI-MS (positive mode) spectrum for **3a**, showing the peak for $[Mo(OSiEt_3)(NtBu)]^+$ with the correct isotope pattern.

Figure S35. ESI-MS (negative mode) spectrum for **3a**, showing peaks for $[HB(C_6F_5)_3]^-$ and $[HOB(C_6F_5)_3]^-$, the latter presumably originating from a reaction with adventitious water in the sample.

Figure S36. ESI-MS (positive mode) spectrum for **3b**, showing the peak for $[Mo(OSiPh_3)(NtBu)]^+$ with the correct isotope pattern.

Figure S37. ESI-MS (negative mode) spectrum for **3b**, showing the peak for $[HB(C_6F_5)_3]^-$.

Figure S38. ESI-MS (positive mode) spectrum for **4b**, showing the peak for $[Mo(OSiPh_3)(NtBu)]^+$ with the correct isotope pattern.

Figure S39. ESI-MS (negative mode) spectrum for **4b**, showing a peak for $[FB(C_6F_5)_3]^-$, accompanied by a small amount of $[HOB(C_6F_5)_3]^-$, the latter presumably originating from a reaction with adventitious water in the sample.

Electrochemistry data of the compounds

Figure S40. Full sweep-width cyclovoltammogram of complex 1^[1] in MeCN.

Figure S41. Full sweep-width cyclovoltammogram of complex 2 in CH₂Cl₂.

Figure S42. Full sweep-width cyclovoltammogram of complex 3a in MeCN.

Figure S43. Full sweep-width cyclovoltammogram of complex 3b in MeCN.

Figure S44. Full sweep-width cyclovoltammogram of complex 3c in MeCN.

Crystallographic data for 2 and 4b

Crystal structure determination of 2. The structure was solved by direct methods (SHELXS-97)^[3] and refined by full-matrix least-squares techniques against F^2 (SHELXL-2014/6).^[4] The non-hydrogen atoms of the two complexes of the asymmetric unit were refined with anisotropic displacement parameters without any constraints. The H atoms of the phenyl rings including any adjacent CH=N groups were put at the external bisectors of the C–C–C angles at C–H distances of 0.95Å and common isotropic displacement parameters were refined for the H atoms of the same ring. The H atoms of the *tert*-butyl groups were refined with common isotropic displacement parameters for the H atoms of the same ring. The H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the C–C bonds, and C–H distances of 0.98Å. For 809 parameters final *R* indices of R₁ = 0.0360 and wR² = 0.0900 (GOF = 1.028) were obtained. The largest peak in a difference Fourier map was 0.807eÅ⁻³.

Figure S45. Stereoscopic ORTEP^[5] plot of **2** showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level. The H atoms were omitted for clarity reasons.

Table S1. Crystal data and structure refinement for 2 (CCDC deposition number: 1574332)

Crystal data

Empirical formula	$C_{64}H_{61}BF_{15}MoN_3O_3$
Formula weight	1311.90
Crystal description	block, red
Crystal size	0.32 x 0.19 x 0.18mm
Crystal system, space group	monoclinic. P 2 ₁ /n
Unit cell dimensions: a	12 0188(14)Å
h	26 208(3)Å
5	18 0156(10)Å
ß	05.221/5\9
) /olumo	90.221(0)
	5953.6(TT)A
	4 4 40 40 4 - (
	1.464Mg/m ²
F(000)	2688
Linear absorption coefficient µ	0.316mm '
Absorption correction	semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.841
Unit cell determination	2.48° < Θ < 33.67°
	9805 reflections used at 100K
Data collection	
Temperature	100K
Diffractometer	Bruker APEX-II CCD
Radiation source	Incoatec microfocus sealed tube
Radiation and wavelength	MoK~ 0.71073Å
Monochromator	multilaver monochromator
Scan type	h and w scans
A range for data collection	4 87 to 33 00°
D range for data collection	00754 / 00400
Reflections collected / unique	02701/22432
Significant unique reflections	17789 with $1 > 20(1)$
R(Int), R(sigma)	0.0490, 0.0477
Completeness to $\Theta = 33.0^{\circ}$	100.0%
D. C	
Reinement	F H a a b b a c b c c b c c c c c c c c c c
Refinement method	Full-matrix least-squares on F
Data / parameters / restraints	22432 / 809 / 0
Goodness-of-fit on F ²	1.028
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0360, wR2 = 0.0831
R indices (all data)	R1 = 0.0515, wR2 = 0.0900
Extinction expression	none
Weighting scheme	w = $1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where P = $(F_o^2 + 2F_c^2)/3$
Weighting scheme parameters a, b	0.0357, 2.7963
Largest Δ/σ in last cycle	0.002
Largest difference peak and hole	0.807 and -0.546e/Å ³
Structure Solution Program	SHELXS-97 (Sheldrick, 2008)
Structure Refinement Program	SHELXI -2014/6 (Sheldrick 2015)
ettertare realization on riogram	

Table S2. Selected bond lengths [Å] and angles [°] for 2.

Mo(1)–N(1)	1.725	9(12)	
Mo(1)–O(2)	1.822	21(9)	
Mo(1)–O(11)	1.958	3(10)	
Mo(1)–O(21)	1.957	′0(́9)	
Mo(1)–N(17)	2.314	0(12)	
Mo(1)–N(27)	2.295	57(11)	
O(2)–B(1)	1.500	2(16)	
O(11)-Mo(1)-C	0(21)	158.63(4)	
N(1)-Mo(1)-N(17)	170.36(5)	
O(2)-Mo(1)-N(2)	27)	165.81(4)	
B(1)-O(2)-Mo(1)	162.72(9)	
C(1)-N(1)-Mo(1)	175.08(10)	
C(11)-O(11)-N	lo(1)	138.36(9)	
C(17)-N(17)-C	(101)	115.06(11)	
C(17)-N(17)-M	o(1)	123.44(9)	
C(101)-N(17)-I	Mo(1)	120.37(8)	
C(21)-O(21)-N	lo(1)	134.49(8)	
C(27)-N(27)-C	(201)	112.55(11)	
C(27)-N(27)-M	o(1)	121.04(9)	
C(201)-N(27)-I	Mo(1)	125.69(8)	

Crystal structure determination of 4b. The structure was solved by direct methods (SHELXS-97)^[3] and refined by full-matrix least-squares techniques against F^2 (SHELXL-2014/6).^[4] The n-pentane molecules are disordered over two orientations and were refined with site occupation factors of 0.5. The C–C bonds in these solvent molecules were restrained to 1.53Å and the same anisotropic displacement parameters were used for the C atoms. The other non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the aromatic rings as well as those of the imino groups were put at the external bisectors of the C–C–C angles at C–H distances of 0.95Å and common isotropic displacement parameters were refined for the H atoms of the same ring including the H atom of the adjacent imino group. The H atoms of the same group and idealized geometries with tetrahedral angles, enabling rotation around the C–C bonds, and C–H distances of 0.98Å. The H atoms of the solvent molecules were included with idealized geometries and their isotropic displacement parameters fixed to 1.2 times U_{eq} of the C atom they are bonded to. For 1027 parameters final *R* indices of R1 = 0.0434 and wR² = 0.1283 (GOF = 1.038) were obtained. The largest peak in a difference Fourier map was 0.669eÅ⁻³.

Figure S46. Stereoscopic ORTEP^[5] plot of the complex cation found in **4b** showing the atomic numbering scheme. The probability ellipsoids are drawn at the 30% probability level. The H atoms were omitted for clarity reasons.

Figure S47. Stereoscopic ORTEP^[5] plot of **4b** showing the atomic numbering scheme. The probability ellipsoids are drawn at the 30% probability level. H27 is drawn with an arbitrary radius; the other H atoms were omitted for clarity.

Table S3. Crystal data and structure refinement for 4b (CCDC deposition number: 1574333)

Crystal data

Empirical formula	$C_{64}H_{76}MoN_3O_3Si^+ C_{18}BF_{16}^- \cdot C_5H_{12}$
Formula weight	1662.44
Crystal description	plate, amber
Crystal size	0.30 x 0.26 x 0.03mm
Crystal system, space group	monoclinic, P 2 ₁ /c
Unit cell dimensions: a	13.3781(10)Å
b	36.228(3)A
c	18.4909(13)Å
β	97.748(3)°
Volume	8880.0(12)Å ³
Z Calculated density F(000) Linear absorption coefficient µ Absorption correction Max. and min. transmission Unit cell determination	4 1.243Mg/m ³ 3440 0.241mm ⁻¹ semi-empirical from equivalents 1.000 and 0.839 2.31° < Θ < 25.52° 9947 reflections used at 100K
Data collection	
Temperature	100K
Diffractometer	Bruker APEX-II CCD
Radiation source	Incoatec microfocus sealed tube
Radiation and wavelength	MoK _a , 0.71073Å
Monochromator	multilayer monochromator
Scan type	ϕ and ω scans
Θ range for data collection	1.86 to 25.00°
Reflections collected / unique	50857 / 15605
Significant unique reflections	11678 with I > 2 σ (I)
R(int), R(sigma)	0.0368, 0.0601
Completeness to $\Theta = 25.0^{\circ}$	99.9%
Refinement	F 11
Refinement method	Full-matrix least-squares on F ²
Data / parameters / restraints	15605 / 1027 / 14
Goodness-of-fit on F^2	1.038
Final R indices [I > $2\sigma(I)$]	R1 = 0.0434, wR2 = 0.1170
R indices (all data)	R1 = 0.0663, wR2 = 0.1283
Extinction expression	none
Weighting scheme	w = 1/ $[\sigma^2(F_o^2)+(aP)^2+bP]$ where P = $(F_o^2+2F_c^2)/3$
Weighting scheme parameters a, b	0.0691, 1.9520
Largest Δ/σ in last cycle	0.001
Largest difference peak and hole	0.669 and -0.404e/Å ³
Structure Solution Program	SHELXS-97 (Sheldrick, 2008)
Structure Refinement Program	SHELXL-2014/6 (Sheldrick, 2015)

Table S4. Selected bond leng	gths [Å] and angles [°] for 4b .
------------------------------	------------------------	-------------------

$M_{\odot}(1) = N(1)$	1.71E(0)
NO(1) - N(1)	1.7 15(2)
MO(1) - O(2)	1.8975(19)
Mo(1)–O(11)	1.9391(18)
Mo(1)–O(21)	1.9365(18)
Mo(1)–N(17)	2.315(2)
Mo(1)–N(27)	2.214(2)
N(1)–C(1)	1.470(4)
O(2)–Si(1)	1.630(2)
O(11)–C(11)	1.344(3)
C(17)–N(17)	1.291(3)
O(21)–C(21)	1.354(3)
C(27)–N(27)	1.289(4)
B(1)_F(1)	1.435(3)
B(1)–C(61)	1.646(5)
B(1)–C(71)	1.648(4)
B(1)–C(81)	1.649(5)
O(11)-Mo(1)-O	(21) 163.05(8)
N(1)-Mo(1)-N(1	17) 170.64(9)
O(2)-Mo(1)-N(2	27) 163.49(8)
C(1)-N(1)-Mo(1)	1) 175.60(19)
Si(1)-O(2)-Mo(1) 155.54(12)
C(11)-O(11)-M	o(1) 143.05(17)
C(17)-N(17)-C	(101) 114.2(2)
C(17)–N(17)–M	o(1) 125.59(18)
C(101)-N(17)-N	No(1)120.03(17)
C(21) - O(21) - M	o(1) 125.99(16)
C(27) = N(27) = C	(201) 115.8(2)
C(27)-N(27)-M(27)	(1) 121 15(17)
C(201) = N(27) = N(27)	$M_0(1)123.04(18)$
	10, 17, 120.04(10)

References

- [1] N. Zwettler, N. Grover, F. Belaj, K. Kirchner, N. C. Mösch-Zanetti, Inorg. Chem. 2017, 56(17), 10147–10150.
- [2] M. H. Holthausen, T. Mahdi, C. Schlepphorst, L. J. Hounjet, J. J. Weigand, D. W. Stephan, *Chem. Commun.* 2014, *50*(70), 10038–10040.
- [3] G. M. Sheldrick, Acta Crystallogr, A 2008, 64(Pt 1), 112–122.
- [4] G. M. Sheldrick, Acta Crystallogr, C 2015, 71(Pt 1), 3-8.
- [5] C. K. Johnson, ORTEP. Report ORNL-3794, Tennessee, USA, 1965.