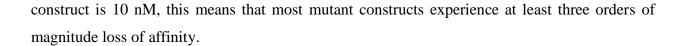
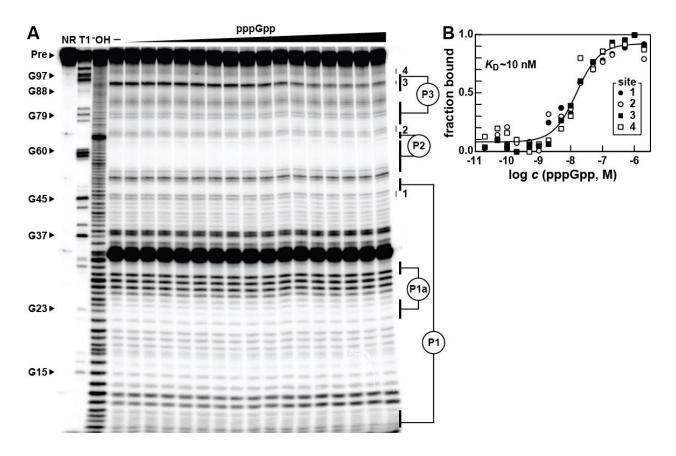

SI Appendix


Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems


Madeline E. Sherlock,¹ Narasimhan Sudarsan,² Ronald R. Breaker^{1,2,3}*

¹Department of Molecular Biophysics and Biochemistry, ²Howard Hughes Medical Institute, ³Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103, USA.

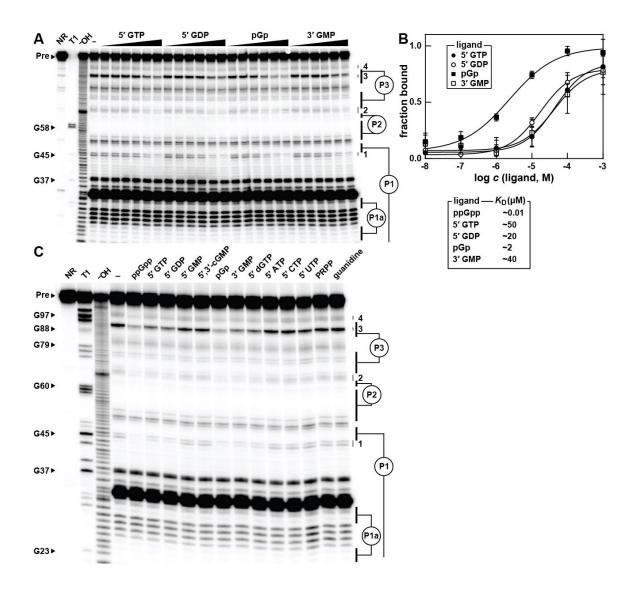


Fig. S1. Mutation of conserved nucleotides disrupt ppGpp binding. (*A*) Sequence and secondary structure of the 112 *ilvE* RNA from *T. oceani*. Single nucleotide positions that were altered to produce each mutant RNA are identified with boxes, annotated with the nucleotide identity of each mutation, and labeled M1 through M6. M7 contains mutations at both positions specified by M5 and M6. (*B*) PAGE analysis of in-line probing assays with WT and mutated sequences of the 112 *ilvE* RNA in the presence of 0, 100 nM, 1 μ M, 10 μ M, or 100 μ M ppGpp. Additional annotations are as described in the legend to **Fig. 2B**. Note that, for the mutant constructs, either no modulation (M2, M3, M5, M6) or very little modulation (M1, M4) is observed only at the highest ppGpp concentrations tested (10 μ M and100 μ M). Because the *K*_D measured for the WT

Fig. S2. Recognition of pppGpp by a riboswitch aptamer. (*A*) PAGE analysis of the products of in-line probing of 5'-³²P-labeled 112 *ilvE* RNA in the presence of increasing pppGpp concentrations. In-line probing experiments contained either no ligand (–) or pppGpp ranging from 20 pM to 2 μ M. Annotations are as described for **Fig. 2B**. (*B*) Plot of the fraction of RNA bound by pppGpp, as determined by the normalized fraction of RNA scission at regions 1 through 4 as a function of the logarithm of pppGpp concentration. Additional details are as describe in the legend to **Fig. 2***C*.

Fig. S3. Binding selectivity of a representative ppGpp riboswitch. (*A*) PAGE analysis of in-line probing reactions of the 112 *ilvE* aptamer from *T. oceani* (see **Fig. 2***A*) in the presence of structural analogs of ppGpp that exhibited structural modulation. Each compound was tested at 10 nM, 100 nM, 1 μ M, 10 μ M, 100 μ M, and 1 mM. Annotations are as described for **Fig. 2***B*. (*B*) Plot of the fraction of RNA bound by each ligand, as determined by the average and standard deviation of the normalized fraction of RNA scission at regions 1-4 as a function of the logarithm of ligand concentration. Additional details are as describe in the legend to **Fig. 2***C*. (*C*) PAGE analysis of in-line probing reactions of the 112 *ilvE* aptamer in the presence of 100 μ M concentration of various analogs of ppGpp, nucleotides, or the known ligands of other *ykkC* motif RNA subtypes (PRPP and guanidine).

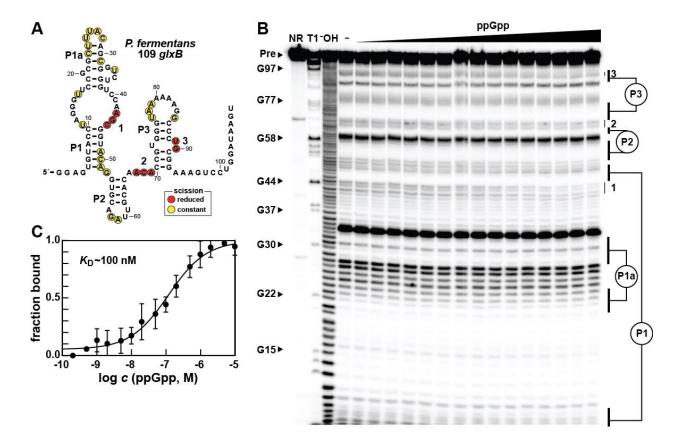
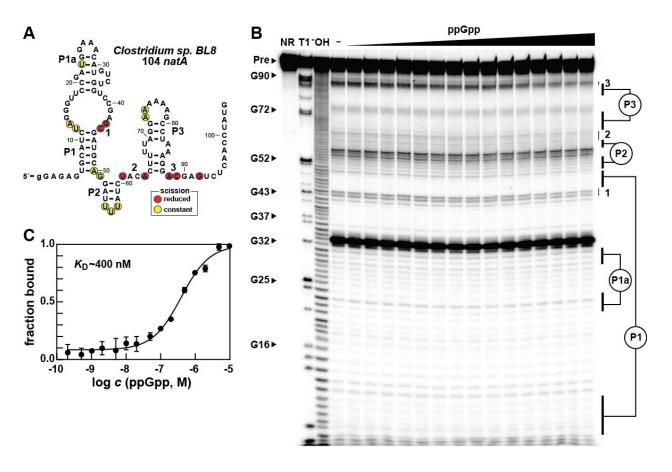



Fig. S4. Ligand binding by an additional ppGpp riboswitch aptamer representative found upstream of glutamate synthase genes. (A) Sequence and secondary structure of the 109 nucleotide RNA derived from the glxB gene of Pelosinus fermentans. Data collected in B were used to determine regions of constant or reduced scission upon the addition of ppGpp to in-line probing assays. (B) PAGE analysis of the products of in-line probing of 5'-³²P-labeled 109 glxB RNA in the presence of increasing ppGpp concentrations. Annotations are as described for Figure 2B. In-line probing experiments contained either no ligand (-) or ppGpp ranging from 200 pM to 10 µM. Regions 1-3 of the RNA exhibit structural stabilization in a ppGpp-dependent manner. Note that this banding pattern and the pattern of changes resulting from in-line probing assay reactions are not identical to those observed for the original T. oceani ilvE construct presented in Fig. 2. The distinct nucleotide sequences of these representatives will exhibit patterns specific to these individual constructs. (C) Plot of the fraction of 109 glxB RNA bound to ligand as a function of the logarithm of ppGpp concentration. The fraction bound value plotted at each ppGpp concentration is the average of the values derived from band intensities at regions 1, 2 and 3 after normalization to a value between 1 (band intensity in the absence of ppGpp) and 0 (band intensity at maximum ppGpp concentration). The fraction bound value equals 1 minus

the band intensity value. Error bars indicate standard deviation. Additional details are as describe in the legend to **Fig.** *2C*.

Fig. S5. Ligand binding by an additional ppGpp riboswitch aptamer representative found upstream of *natA*. (*A*) Sequence and secondary structure of the 104 nucleotide RNA derived from the *natA* gene of *Clostridium sp. BL8*. Data collected in *B* were used to determine regions of constant or reduced scission upon the addition of ppGpp to in-line probing assays. (*B*) PAGE analysis of the products of in-line probing of 5'-³²P-labeled 104 *natA* RNA in the presence of increasing ppGpp concentrations. Annotations are as described for Figure 2B. In-line probing experiments contained either no ligand (–) or ppGpp ranging from 200 pM to 10 μ M. Regions 1-3 of the RNA exhibit structural stabilization in a ppGpp-dependent manner. Note that this banding pattern and the pattern of changes resulting from in-line probing assay reactions are not identical to those observed for the original *T. oceani ilvE* construct presented in **Fig. 2**. The distinct nucleotide sequences of these representatives will exhibit patterns specific to these individual constructs. (*C*) Plot of the fraction of 104 *natA* RNA bound to ligand as a function of

the logarithm of ppGpp concentration. The fraction bound value plotted at each ppGpp concentration was derived as described in the legend to **SI Appendix**, **Fig. S4**. Additional details are as describe in the legend to **Fig. 2***C*.

Name	Sequence	Annotation
MES137	TAATACGACTCACTATAGG	Forward template for transcription
	AAGTGTACCTTAGGGTTCC	of the WT <i>T. oceani</i> 112 <i>ilvE</i> RNA
	GGCCATAAGGCGTCAGCG	
	ACCGAGCGGTACAATCCG	
	GGG	
MES138	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
	TGGAGCCTTTTATGCTCAC	of the WT <i>T. oceani</i> 112 <i>ilvE</i> RNA
	GGTGTTCCGGGTTTCCCCG	
	GATTGTACCGCTCGG	
	TAATACGACTCACTATAGG	Forward template for transcription
	AAGTGTACCTTAGGGTTCC	of the M1 <i>T. oceani</i> 112 <i>ilvE</i> RNA
MES177	GGCCATAAGGCGTCAGCG	
	ACCGAACGGTACAATCCG	
	GGG	
MES178	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
	TGGAGCCTTTTATGCTCAC	of the M1 <i>T. oceani</i> 112 <i>ilvE</i> RNA
	GGTGTTCCGGGTTTCCCCG	
	GATTGTACCGTTCGG	
	TAATACGACTCACTATAGG	Forward template for transcription
	AAGTGTACCTTAGGGTTCC	of the M2 <i>T. oceani</i> 112 <i>ilvE</i> RNA
MES179	GGCCATAAGGCGTCAGCG	
	ACCGAGAGGTACAATCCG	
	GGG	
	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
MES180	TGGAGCCTTTTATGCTCAC	of the M2 T. oceani 112 ilvE RNA
MES180	GGTGTTCCGGGTTTCCCCG	
	GATTGTACCTCTCGG	
	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
MEC101	TGGAGCCTTTTATGCTCAC	of the M3 T. oceani 112 ilvE RNA
MES181	GGTTTTCCGGGTTTCCCCG	
	GATTGTACCGCTCGG	
	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
	TGGAGCCTTTTATGCTCAC	of the M4 <i>T. oceani</i> 112 <i>ilvE</i> RNA
MES182	GGGGTTCCGGGTTTCCCCG	
	GATTGTACCGCTCGG	
MES183	TCTTTTAGGAACTTGCCGC	Reverse template for transcription
	TGGAGCCTTTTATGCTCAC	of the M5 <i>T. oceani</i> 112 <i>ilvE</i> RNA
	CGTGTTCCGGGTTTCCCCG	
	GATTGTACCGCTCGG	
MES184	TCTTTTAGGAACTTGCGGC	Reverse template for transcription
	TGGAGCCTTTTATGCTCAC	of the M6 <i>T. oceani</i> 112 <i>ilvE</i> RNA
	GGTGTTCCGGGTTTCCCCG	
	GATTGTACCGCTCGG	

Supplementary Table 1 | Sequences of synthetic DNAs used in this study.

	Reverse template for transcription
	of the M7 T. oceani 112 ilvE RNA
GATTGTACCGCTCGG	
TCTTTTAGGAACTTGCCGC	
TGGAGCCTTTTATGCTCAC	Reverse template for transcription of the M8 <i>T. oceani</i> 112 <i>ilvE</i> RNA
GGTATTCCGGGTTTCCCCG	
GATTGTACCGCTCGG	
TAATACGACTCACTATAGG	Forward template for transcription of the WT <i>P. fermentans</i> 109 glxB RNA
	Reverse template for transcription of the WT <i>P. fermentans</i> 109 glxB
	RNA
	Forward template for transcription of the WT <i>Clostridium sp. BL8</i> 104 <i>natA</i> RNA
CATAGGTTGAGACTCGTCC	Reverse template for transcription of the WT <i>Clostridium sp. BL8</i> 104 <i>natA</i> RNA
TTTAGGCTTTTTTCCTAAA	
AGTGTAGATAAAATCCTGC	
ATCGCTCGGACCAGAC	
GCGCACATGAGAATTCCAG	IDT G-block containing the WT <i>D.</i> <i>hafniense ilvE</i> riboswitch and controlled by the <i>B. subtilis lysC</i> promoter, for serving as a dsDNA template for <i>in vitro</i> transcription termination assays
CGACGCTGTTGATCCTTTT	
AAATAAGTCTGATAAAATG	
TGAACTAAAGTTATAAATG	
AAAGAATGTATTATAACAG	
	IDT G-block containing the
	mutation of a conserved nucleotide (M9) <i>D. hafniense</i> riboswitch and controlled by the <i>B. subtilis lysC</i>
AAAGAATGTATTATAACAG	promoter, for serving as a dsDNA
CAGGAAGTGTACCTAGGGT	template for <i>in vitro</i> transcription termination assays
TCCGGGAGCTGCTCCGTCT	
	TGGAGCCTTTTATGCTCAC GGTATTCCGGGTTTCCCCG GATTGTACCGCTCGG TAATACGACTCACTATAGG AGTGTACCTAGGGTTCCGC GCTTTACAGCGGTCTGGTC CAAGCGGTACAGGGTC CAAGCGGTACAGGTGC ACTTATCCAGGACTTTCCG CAGGGCCTTTTTTACCCAC GGTGTTGTGCAATCTGCAC CTGTACCGCTTGGACC TAATACGACTCACTATAGG AGAGTGCATCTAGGGTTCC GATGGAAACATGTCTGGTC CGAGCGATGCAGG CATAGGTTGAGACTCGTCC TTTAGGCTTTTTTCCTAAA AGTGTAGATAAAATCCTGC ATCGCTCGGACCAGAC GCGCACATGAGAATTCCAG CGACGCTGTTGATCCTTT AAATAAGTCTGATAAAATG TGAACTAAAGTTATAAATG AAAGAATGTATTATAACAG CAGGGAGCGGAGAAATTCCTGC GGTCCGAGCGGTACAAAA TCCAGAGCATGGATCCTCT GGTCCGAGCGGTACAAAA TCCAGAGCATGGATCCTCG CGAGGCAGAAGTGTACCAGAC CGGTGGGCAGAAAATACC CGGGGAGCTGCTCCGTCT GGTCCGAGCGGAAAATACC CGGGGAAGCTGCTCCGA GGGCACATGAGAATTCCAG GGTCCGAGCGGAAAATACC CGAGGGAAGCACGCT CGGGTATGAGAACACCGCT CGAGCGCACATGAGAATTCCAG GGGCACATGAGAACACCGCT CGAGCGCACATGAAAATACC CGAGGAAGTGTACCTAGGGT

	TCCAGAGCATGGATTTACA CCGTGGGCAGAAAATACC CGAGCGGAAAGTTCCTCGA GAGGGTAGGAACACCGCT CGGTTTTCTATAATATTCA	
MES157	GAGGATCCCCAGCTGCGC GCGCACATGAGAATTCCAG CGACG	Forward primer for amplification of <i>D. hafniense ilvE</i> single-round transcription termination assay templates
MES158	GCGCAGCTGGGGATCCTCT G	Reverse primer for amplification of the <i>D. hafniense ilvE</i> WT and M9 single-round transcription termination assay templates
MES200	CCGAGCGGTGTTCCTACCC TC	Reverse primer for amplification of the M10 <i>D. hafniense ilvE</i> single- round transcription termination assay template
MES204	GCGCAGCTGGGGATCCTCT GAATATTATAAAAAACCG AGCGGTGTTCCTACCC	Reverse primer for amplification of the M11 <i>D. hafniense ilvE</i> single- round transcription termination assay template