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S1.		Bioassay	data:	selection	criteria	and	spatio-temporal	distribution	
Our	 insecticide	 resistance	 bioassay	 data	 set	 includes	 information	 about	 the	
mosquitoes	 tested,	 the	 number	 of	 mosquitoes	 in	 the	 sample,	 the	 sample	
collection	 and	 the	 bioassay	 conditions	 and	 protocol	 (1).	 	 Some	 of	 this	
information	was	 used	 to	 select	 a	 subset	 of	 records	 for	 inclusion	 in	 our	 study,	
including	the	mosquito	sample	identification	data	(available	at	either	the	genus,	
complex	or	species	level),	the	collection	site	location,	the	bioassay	protocol,	the	
insecticide	 tested	 and	 whether	 a	 synergist	 was	 used,	 and	 the	 insecticide	
concentration	and	exposure	period	 (1).	 	We	only	 included	bioassays	 that	were	
conducted	over	the	period	2000-2015	on	samples	collected	within	two	separate	
spatial	 regions:	 a	 rectangular	 region	 in	 West	 Africa	 that	 extends	 from	 0°N	 to	
16.3°N	and	-18°W	to	19°W,	and	a	rectangular	region	in	East	Africa	that	extends	
from	 -28°N	 to	16.5°N	and	24.5°W	 to	51.5°W	 (Fig.	 1).	Only	bioassay	 results	 for	
which	 the	 sample	 collection	 location	 was	 assigned	 a	 point	 coordinate	 were	
included,	noting	 that	 for	 these	bioassays	 the	collection	area	 is	 less	 than	25km2	
(1).	 	 Further,	we	 consider	only	bioassays	 conducted	on	mosquito	 samples	 that	
were	identified	as	belonging	to	the	An.	gambiae	complex.		The	majority	of	these	
studies	 (~80%)	 did	 not	 identify	 the	 individual	 species	within	 the	An.	gambiae	
complex	 to	which	 the	 sampled	mosquitoes	 belonged,	 therefore	 our	 study	does	
not	 account	 for	differences	 in	 insecticide	 resistance	phenotypes	 that	 can	occur	
across	these	sibling	species	(2-11).			
We	 included	bioassays	conducted	using	 insecticides	 from	 four	different	classes	
(Fig.	 1).	 	 For	 pyrethroids	 this	 included	 three	 insecticides:	 deltamethrin,	
permethrin	 and	 λ-cyhalothrin.	 	 For	 organochlorines,	 only	 bioassays	 conducted	
using	 DDT	were	 included,	 and	 for	 carbamates	 only	 bioassays	 conducted	 using	
bendiocarb	were	included.		For	organophosphates,	our	data	subset	for	the	west	
Africa	 region	 includes	 only	bioassays	 that	 used	 fenitrothion,	while	 for	 the	 east	
Africa	 region	 our	 data	 includes	 bioassays	 that	 used	 both	 fenitrothion	 and	
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malathion.	 	 Bioassays	 for	which	 the	 insecticide	 concentration	 or	 the	 exposure	
time	 differ	 from	 that	 defined	 by	 the	 standard	 WHO	 insecticide	 susceptibility	
bioassay	protocol	(12)	were	excluded	from	the	analysis.		Also	excluded	were	any	
bioassays	performed	on	a	sample	of	less	than	20	mosquitoes	and	any	bioassays	
that	used	synergists.		
The	final	data	set	included	a	total	of	5,595	data	points	that	met	these	criteria	(see	
Table	 S1	 for	 a	 breakdown	 by	 insecticide	 type	 and	 across	 the	 east	 and	 west	
regions).	We	note	 that	 this	dataset	does	not	provide	mortality	values	 for	 all	 of	
the	insecticides	of	interest	at	each	of	the	1,183	locations	so	associations	among	
these	 insecticides	 cannot	 be	 analysed	 directly.	 	 For	 example,	 for	 pyrethroids,	
there	are	only	20	point	 locations	 for	which	we	have	5	or	more	records	for	two	
different	pyrethroid	 types.	 	 Further	 the	 spatiotemporal	distribution	of	data	 for	
each	 insecticide	 is	 not	 uniform	 or	 random	 and	 each	 distribution	 incorporates	
sampling	 biases	 (Fig.	 1	 and	 Figs.	 S1-S4).	 For	 these	 reasons	 we	 evaluated	 the	
relationships	among	the	 insecticides	by	 incorporating	 these	datasets	 from	field	
populations	into	a	geostatistical	model.	
	
	
	 No.	bioassay	

results	
No.	unique	
locations	

Insecticide	 East	 West	 East	 West	
Pyrethroids	
		deltamethrin	
			permethrin	
			λ-cylohalothrin	

	
732	
522	
364	

	
747	
504	
194	

	
405	
321	
246	

	
485	
317	
132	

Organochlorines	
			DDT	

	
552	

	
597	

	
370	

	
403	

Organophosphates	
			fenitrothion	
			malathion	

	
148	
141	

	
268	

-	

	
100	
119	

	
150	

-	
Carbamates	
			Bendiocarb	

	
385	

	
441	

	
256	

	
248	

Total	 5,595	 1,183	
Table	S1.	Number	of	bioassay	data	points	available	for	each	insecticide	in	each	
region.		
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Figure	 S1.	 	 The	 number	 of	 bioassay	 records	 for	 the	 three	 pyrethroid	 types,	
deltamethrin	(red),	permethrin	(green)	and	λ-cyhalothrin	(blue)	by	country	and	
year.	
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Figure	S2.		The	number	of	DDT	bioassay	records	by	country	and	year.	
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Figure	S3.		The	number	of	bendiocarb	bioassay	records	by	country	and	year.	
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Figure	 S4.	 	 The	 number	 of	 bioassay	 records	 for	 the	 two	 organophosphates,	
fenitrothion	(red)	and	malathion	(blue)	by	country	and	year.	
	
S2.	Posterior	validation	for	models	incorporating	pyrethoids	and	DDT	
We	present	posterior	validation	results	for	the	linear	models	of	coregionalization	
(LMCs)	that	were	preferred	over	models	that	assumed	resistance	phenotypes	did	
not	 interact	 across	 insecticides.	 	 These	models	 are	 described	 in	 the	main	 text,	
and	include	LMCs	that	jointly	modelled	resistance	to	the	three	pyrethroid	types	
(deltamethrin,	 permethrin	 and	 λ-cyhalothrin)	 as	 well	 as	 LMCs	 that	 jointly	
modelled	 resistance	 between	 these	 three	 pyrethroids	 and	 DDT.	 	 For	 these	
models	we	verified	that	the	probability	integral	transform	(PIT)	histograms	were	
approximately	uniform	(Figs.	S5	&	S6).		For	each	insecticide	type	 ,	
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10-fold	 out-of-sample	 cross	 validation	was	 performed	 by	 fitting	 the	models	 to	
ten	 subsets	 of	 the	 proportional	 mortality	 data	 where	 each	 data	 subset	 was	
created	 by	withholding	 a	 randomly	 selected	 sample	 of	 vI	data	 points,	where	 vI	
was	 set	 to	 10%	 of	 the	 total	 number	 of	 records	 for	 insecticide	 type	 I.	 	We	 use	
these	out-of-sample	predictions	to	verify	the	predictive	accuracy	of	our	models	
(Figs.	S7-S9).	 	 	We	also	use	 the	root	mean	squared	error	 (RMSE)	of	 the	out-of-
sample	 predictions	 to	 support	 the	 comparison	 of	WAIC	 values	 across	 the	 two	
model	 types	 described	 above.	 	 Finally,	 we	 verified	 that	 the	 distribution	 of	 the	
observed	 proportional	 mortality	 values	 across	 all	 space-time	 locations	 was	
similar	 to	 that	 of	 co-located	 simulations	 from	 the	 posterior,	 based	 on	 1000	
simulated	data	sets	(Fig.	S11	&	S12).	
	
S2.1.	Probability	integral	transform	histograms	
The	 probability	 integral	 transform	 (PIT)	 is	 calculated	 from	 the	 value	 of	 the	
cumulative	predictive	distribution	at	the	observation	locations	and	times	(13).		If	
the	 observations	 follow	 the	 predictive	 distribution,	 the	 distribution	 of	 the	 PIT	
values	across	the	observation	locations	and	times	is	approximately	uniform.		The	
R-INLA	 package	 (http://www.r-inla.org)	 provides	 approximate	 cross-validated	
PIT	 values	 where	 the	 PIT	 value	 for	 observation	 i	 is	 adjusted	 to	 omit	 the	
contribution	of	 the	 ith	observation	 to	 the	posterior	predictive	distribution	 (14).			
We	 use	 PIT	 histograms	 to	 assess	 the	 calibration	 of	 out-of-sample	 predictions.		
The	 PIT	 histograms	 are	 approximately	 uniform	 for	 the	 LMC	 model	 for	
pyrethroids	(Fig.	S5)	and	the	LMC	model	for	DDT	and	pyrethroids	(Fig.	S6).	
	

	
Figure	S5.		Histograms	of	the	PIT	values	comparing	observations	and	cumulative	
predictive	densities	for	the	LMC	that	includes	bioassay	observations	for	the	three	
pyrethroid	types,	deltamethrin,	permethrin	and	λ-cyhalothrin.	
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Figure	S6.		Histograms	of	the	PIT	values	comparing	observations	and	cumulative	
predictive	densities	for	the	LMC	that	includes	bioassay	observations	for	DDT	and	
the	three	pyrethroid	types,	deltamethrin,	permethrin	and	λ-cyhalothrin.	
	
S2.2.	K-fold	out-of-sample	validation	
For	each	insecticide	type,	10-fold	out-of-sample	cross	validation	was	performed	
by	 fitting	 the	models	 to	 ten	 subsets	 of	 the	 proportional	 mortality	 data	 where	
each	data	 subset	was	 created	by	withholding	a	 randomly	 selected	 sample	of	vI	
data	 points,	 where	 vI	 was	 set	 to	 10%	 of	 the	 total	 number	 of	 records	 for	
insecticide	type	I	(Table	S2).		The	LMC	for	pyrethroids	produced	a	lower	out-of-
sample	 RMSE	 than	 the	model	which	 excluded	 interactions	 between	 resistance	
across	insecticides	for	all	insecticides,	except	for	permethrin	for	the	west	region,	
where	the	RMSE	for	the	two	models	was	the	same	(Table	S2).		The	LMC	for	DDT	
and	pyrethroids	produced	a	lower	RMSE	for	DDT	resistance	predictions	for	the	
west	region	but	the	RMSE	for	the	east	region	was	the	same	for	the	two	models	
(Table	 S2).	 	 For	 models	 incorporating	 other	 combinations	 of	 insecticides	 the	
RMSE	was	the	same	or	higher	than	that	produced	by	the	model	which	excluded	
interactions	(Table	S2).			
Plots	of	 the	out-of-sample	predicted	means	against	 the	observed	values	 for	 the	
LMC	model	for	pyrethroids	for	the	west	region	(Fig.	S7)	and	the	east	region	(Fig.	
S8)	 show	 that	 the	majority	 of	 predictions	 are	 accurate	 but	 some	 observations	
have	 large	 deviations	 from	 the	 predicted	 mean.	 	 A	 similar	 pattern	 arises	 in	
comparing	the	observed	DDT	resistances	 to	 the	predicted	means	(Fig.	S9).	 	We	
attribute	 these	 deviations	 to	 the	 high	 sampling	 variability	 of	 the	 bioassay	
observations	 and	 the	 sparse	 spatio-temporal	 coverage	 of	 the	 data	 (Fig.	 1	 and	
Figs.	S1-S4).	
	
Insecticide	
bioassays	
included	 in	
model	

Out-of-sample	RMSE	
West	region	 East	region	
LMC	 No	

interactions	
LMC	 No	

interactions	
D,P,L	 0.20	(D)	

0.21	(P)	
0.18	(L)	
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Och,D,P,L	 0.19	(O)	 0.20	(O)	 0.18	(O)	 0.18	(O)	
Ca,D,P,L	 0.15	(B)	 0.15	(B)	 0.15	(B)	 0.13	(B)	
Oph,D,P,L	 0.1	(Oph)	 0.1	(Oph)	 0.1	(Oph)	 0.09	(Oph)	
Och,Ca	 0.17	(O)	

0.15	(B)	
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Och,	Oph	 0.17	(O)	
0.09	(Oph)	

0.17	(O)	
0.09	(Oph)	

0.22	(O)	
0.08	(Oph)	

0.19	(O)	
0.08	(Oph)	

Ca,	Oph	 0.15	(B)	
0.09	(Oph)	

0.15	(B)	
0.09	(Oph)	

0.15	(B)	
0.08	(Oph)	

0.12	(B)	
0.08	(Oph)	

Table	S2.	 	The	out-of-sample	RMSE	for	predicted	resistance	to	each	insecticide	
for	 an	 LMC	 and	 a	 model	 where	 resistances	 do	 not	 interact	 across	 different	
insecticides.	 	 Independent	models	 are	 fitted	 to	 the	west	 and	east	 regions.	 	The	
insecticide	 bioassays	 included	 in	 the	 two	 models	 are	 denoted	 as	 follows:	
deltamethrin	(D),	permethrin	(P),	λ-cyhalothrin	(L),	DDT	(Och),	bendiocarb	(Ca),	
organophosphates	 including	 fenitrothion	 for	 the	 west	 region	 and	 both	
fenitrothion	and	malathion	for	the	east	region	(Oph).	 	For	models	that	consider	
resistances	 to	 all	 pyrethroids	 together	 with	 resistances	 to	 an	 insecticide	 from	
another	 class,	 resistances	 to	 the	 three	 pyrethroids	 are	modelled	 using	 an	 LMC	
that	 allows	 interactions	 between	 resistances	 across	 the	 pyrethroid	 types	 (see	
text).	
	

	
Figure	S7.	 	Comparing	withheld	bioassay	mortality	observations	with	the	mean	
mortality	predicted	by	the	LMC	for	pyrethroids	for	the	west	region.	
	

	
Figure	S8.	 	Comparing	withheld	bioassay	mortality	observations	with	the	mean	
mortality	predicted	by	the	LMC	for	pyrethroids	for	the	east	region.	
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Figure	 S9.	 	Comparing	withheld	DDT	bioassay	mortality	observations	with	the	
mean	mortality	predicted	by	the	LMC	for	DDT	and	pyrethroids.	
	
S2.3.		Comparison	of	pointwise	WAIC	values	
In	addition	to	our	comparison	of	the	WAIC	given	by	the	LMC	model	and	a	model	
which	 excluded	 interactions	 between	 resistance	 across	 insecticides,	 we	
compared	 the	distributions	of	 the	 contribution	of	 each	data	point	 to	 the	WAIC	
produced	by	the	two	models.		In	the	case	of	the	models	for	predicting	resistance	
to	 the	 three	 pyrethroids,	 a	 greater	 proportion	 of	 the	 data	 have	 lower	 WAIC	
values	 for	 the	 LMC	 (Fig.	 S10A	&	 B),	 although	 for	 both	models	 there	 are	 some	
observations	 that	 are	 less	 accurately	 predicted	 and	 have	 much	 higher	 WAIC	
values.	 	 For	 the	models	 used	 to	 predict	 resistance	 to	 both	 DDT	 and	 the	 three	
pyrethroids,	the	LMC	also	produced	a	greater	proportion	of	smaller	WAIC	values	
than	a	model	 that	excluded	 interactions	across	 the	 two	 insecticide	classes	(Fig.	
S10C	&	D),	but	the	difference	between	the	two	models	is	less	than	that	produced	
by	excluding	interactions	among	pyrethroids.	
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Figure	 S10.	 	 The	 distribution	 of	 the	 WAIC	 values	 for	 each	 data	 point.	 	 A-B.		
Results	 for	 the	 LMC	 (red)	 and	 a	 geostatistical	 model	 that	 excludes	 resistance	
interactions	 across	 insecticides	 (blue)	 fitted	 to	 bioassay	 results	 for	 the	 three	
pyrethroid	types	are	shown.				C-D.		Results	for	the	LMC	(red)	and	a	geostatistical	
model	that	excludes	resistance	interactions	between	DDT	and	pyrethroids	(blue)	
fitted	to	bioassay	results	for	DDT	and	the	three	pyrethroid	types.	
	
S2.4.		Other	posterior	predictive	checks	
We	also	compared	the	distribution	of	the	proportional	mortality	observations	for	
each	 insecticide	 type	 across	 all	 sample	 collection	 locations	 and	 times	with	 the	
posterior	 distribution	 of	 the	 model	 predictions	 at	 these	 same	 locations	 and	
times.	 	 Posterior	 distributions	 of	 the	 predicted	 values	 were	 based	 on	 10000	
draws	from	the	posterior	(obtained	using	the	“inla.posterior.sample()”	function;	
http://www.r-inla.org).	 	 The	 distributions	 of	 observed	 and	 simulated	 data	 are	
similar	for	the	west	region	(Fig.	S11)	and	for	the	east	region	(Fig.	S12).	
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Figure	 S11.	 	 Comparing	 histograms	 of	 the	 bioassay	 observations	 for	 the	west	
region	with	histograms	of	posterior	simulations	of	these	data.	
	

	
Figure	 S12.	 	 Comparing	 histograms	 of	 the	 bioassay	 observations	 for	 the	 east	
region	with	histograms	of	posterior	simulations	of	these	data		
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S3.	 	 Predicted	 cross-insecticide	 interaction	 strengths	 for	 models	
incorporating	pyrethroids	and	DDT	
We	 compared	 the	 posterior	 distributions	 of	 the	 coefficients	 of	 λ(•,•) of	 the	
predicted	 interactions	 between	 the	 predicted	 prevalence	 of	 resistance	 across	
different	insecticide	types	(see	eqn	2	and	section	S6)	produced	by	the	LMC	fitted	
to	 the	west	and	east	regions.	 	For	 the	LMC	fitted	to	 the	bioassay	data	 for	 three	
pyrethroid	types,	the	posterior	distributions	for	both	regions	overlap	in	the	case	
of	 all	 coefficients	 (Fig.	 S13).	 	 This	 indicates	 that	 the	 strength	 of	 the	 predicted	
interactions	 between	 the	 three	 pyrethroid	 types	 is	 similar	 across	 the	 two	
regions.	 	 We	 also	 assessed	 whether	 resistance	 relationships	 across	 the	
pyrethroid	insecticides	could	be	parsimoniously	assessed	by	fitting	a	single	LMC	
to	 the	 full	 set	of	bioassay	data	 combined	across	 the	 two	 separate	 regions.	 	We	
note	 that	 this	 approach	 requires	 the	 assumption	 of	 stationarity	 to	 be	 applied	
across	 a	much	 larger	 spatial	 area	 (see	 section	 S6).	 	 This	 single	model	 showed	
lower	predictive	accuracy	compared	to	 the	 two	separate	LMCs	 for	each	region.		
The	 single	model	 produced	 a	WAIC	 of	 10089.68	which	 is	 substantially	 higher	
than	the	sum	of	the	WAIC	values	over	the	two	separate	models	(9824.22).	 	The	
single	model	also	produced	an	RMSE	for	the	10-fold	out-of-sample	validation	of	
0.180,	 which	 is	 higher	 than	 the	 RMSE	 of	 0.175	 produced	 by	 10-fold	 out-of-
sample	 validation	 across	 the	 combined	 withheld	 data	 for	 the	 two	 separate	
models.	 	 We	 therefore	 conclude	 that	 applying	 separate	 model	 fits	 to	 each	
separate	 spatial	 region,	 and	 avoiding	 the	 assumption	 of	 stationarity	 across	 a	
larger	spatial	scale,	is	preferable.	
For	 the	 LMC	 fitted	 to	 the	 bioassay	 data	 for	 the	 DDT	 and	 the	 three	 pyrethroid	
types,	 there	 is	a	credible	difference	between	the	posterior	distributions	of	λA,D
(the	 coefficient	 describing	 the	 strength	 of	 the	 interaction	 between	 predicted	
resistance	 to	deltamethrin	and	DDT)	 for	 the	west	and	east	 regions	 (Fig.	S14A).		
This	 difference	 contributes	 to	 the	 differences	 in	 the	 form	 of	 the	 predicted	
resistance	relationships	between	DDT	and	the	three	pyrethroid	types	seen	in	Fig.	
3.	
	
	

Figure	S13.	 	Posterior	distributions	of	the	coefficients	of	predicted	interactions	
between	 A.	 Deltamethrin	 and	 permethrin.	 	 B.	 	 Deltamethrin	 and	
lambdacyhalothrin.	 	C.	Permethrin	and	λ-cyhalothrin.	 	Blue	and	red	 lines	show	
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the	models	fitted	to	the	pyrethroid	bioassay	data	from	the	west	and	east	regions,	
respectively.	
	

	
Figure	S14.	 	Posterior	distributions	of	the	coefficients	of	predicted	interactions	
between	A.	Deltamethrin	and	DDT.	 	B.	 	Permethrin	and	DDT.	 	C.	 λ-cyhalothrin	
and	DDT.	 	Blue	and	red	lines	show	the	models	fitted	to	the	pyrethroid	bioassay	
data	from	the	west	and	east	regions,	respectively.	
	
S4.		Predicted	resistance	relationships	across	the	other	insecticide	
combinations	
For	 models	 which	 included	 bioassay	 results	 for	 all	 other	 combinations	 of	
insecticide	 classes,	 the	 LMC	 which	 included	 interactions	 between	 resistance	
across	 insecticide	 classes	did	not	 perform	better	 than	 a	model	which	 assumed	
independence	 of	 resistance	 across	 insecticide	 classes.	 	 The	 lack	 of	 interaction	
predicted	by	the	LMC	is	visually	apparent	and	two	examples	are	given	(Figs.	S15	
&	S16).	
	

		
Figure	 S15.	 Predicted	mean	 proportional	 bioassay	mortality	 to	 bendiocarb	 vs	
deltamethrin.		Points	show	the	predicted	mean	at	each	location	and	time	for	the	
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west	region	(blue)	and	the	east	region	(red).		Colour	intensity	indicates	the	width	
of	the	posterior	credible	interval	(CI)	of	the	predicted	mean.	
	

	
Figure	 S16.	Predicted	mean	proportional	bioassay	mortality	 to	 fenitrothion	vs	
deltamethrin.		Points	show	the	predicted	mean	at	each	location	and	time	for	the	
west	region	(blue)	and	the	east	region	(red).		Colour	intensity	indicates	the	width	
of	the	posterior	credible	interval	(CI)	of	the	predicted	mean.	
	
S5.		Analysis	of	linear	associations	between	DDT	and	pyrethroid	resistance	
and	the	prevalence	of	Vgsc	point	mutations	
We	 used	 ordinary	 least	 squares	 (OLS)	 linear	 regression	 models	 to	 assess	
associations	 between	 predicted	 mean	 resistance	 to	 DDT	 and	 the	 three	
pyrethroids	 and	 the	 observed	 frequency	 of	 Vgsc	mutations	 in	 field-collected	
Anopheles	gambiae	complex	samples.		We	included	two	covariates,	the	frequency	
of	L1014L	and	L1014S	mutations,	noting	 that	 these	covariates	also	account	 for	
the	 frequency	 of	 the	 only	 other	 allele	 type,	 L1014F.	 	 Using	 cluster	 robust	
standard	 errors	 (15,	 16),	 we	 found	 significant	 associations	 between	 predicted	
mean	mortality	following	exposure	to	DDT	and	the	prevalence	of	the	L1014L	and	
L1014S	Vgsc	alleles	(Table	S3).		In	the	case	of	predicted	mean	mortality	following	
exposure	 to	 deltamethrin,	 permethrin	 or	 λ-cyhalothrin,	 we	 found	 a	 significant	
effect	of	 either	 type	of	Vgsc	mutation	but	 there	was	no	 significant	 effect	of	 the	
particular	type	of	mutation	(L1014F	or	L1014S)	(Table	S3).	
	
Insecticide	
type	

Intercept	(SE)	 L1014L	(SE)	 L1014S	(SE)	

DDT	 1.48	(0.24)*	 0.61	(0.05)*	 0.31	(0.06)*	

Deltamethrin	 2.38	(0.3)*	 0.27	(0.06)*	 -0.01	(0.07)	
Permethrin	 1.37	(0.24)*	 0.31	(0.05)*	 0.08	(0.06)	
λ-cyhalothrin	 1.46	(0.33)*	 0.27	(0.06)*	 0.04	(0.08)	
Table	S3.		Results	of	linear	regression	model	fits	using	predicted	mean	mortality	
to	 DDT	 and	 three	 different	 pyrethroid	 types	 as	 the	 response	 variable	 and	 the	
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observed	 prevalence	 of	 each	 type	 of	 Vgsc	 mutation	 as	 the	 two	 dependent	
variables.		Asteriks	(*)	denote	P	<	0.05.	
	
S6.		Spatio-temporal	Bayesian	statistical	models	
We	 start	 by	 defining	 a	 Bayesian	 hierarchical	 formulation	 of	 our	 model	 of	 the	
proportional	mortality	records	for	bioassays	conducted	using	a	single	insecticide	
type	A	(eqn	1)	as	follows:	
	
gA (si, t) | uA (si, t),θA ~ N(βA +AuA (si, t),σ A

2 ) 	 	 	 	 	 									(S1a)	
uA (si, t) = φAuA (si, t −1)+ωA (si, t) 	 	 	 	 	 	 									(S1b)	
where	

Cov(ωA (si, t),ωA (s j, ʹt )) =
0, t ≠ ʹt
σωA

2 CA (h), t = ʹt

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	 	 	 	 										(S1c)	

and	
θA ~ π A 	 	 	 	 	 	 	 	 	 									
where	π A is	 a	vector	of	prior	probability	distributions	 for	 the	hyperparameters	
θA = [βA,σ A,σωA

,κA,φA ] 		 (see	section	S6.1	 for	 their	specification)	and	uA (si, t) is	a	
spatio-temporal	Gaussian	Markov	Random	Field	(GMRF;	(17)).	 	βA and	σ A are	a	
fixed	intercept	and	the	standard	deviation	of	the	observation	noise,	respectively	
(as	 defined	 in	 the	 Methods	 section	 of	 the	 main	 text),	 σωA

,κA and	 φA are	
parameters	of	the	GMRF	(see	below),	and	A	is	a	sparse	observation	matrix	that	
maps	 the	 GMRF	 to	 function	 evaluations	 at	 local	 observations.	 	 The	 spatio-
temporal	GMRF,	uA (si, t) ,	 is	composed	of	a	spatial	GMRF	that	evolves	according	
to	 a	 first	 order	 temporal	 auto-regressive	 process	 (AR(1))	 with	 correlation	φA
(18).	 	 The	 innovation	 noise	ωA (si, t) 	is	 a	 temporally	 uncorrelated	 Gaussian	
process	 with	 variance	σωA

2 and	 a	 spatial	 correlation	 structure	 CA(h)	 that	 is	
constant	 in	 time	 and	 defines	 the	 spatial	 dependence	 structure	 of	 the	
observations	 (19).	 	 	 Our	 spatial	 GMRF	 model	 follows	 the	 Integrated	 Nested	
Laplace	 Approximation	 (INLA)	 approach	 (Lindgren	 et	 al.	 2011),	 whereby	 we	
assume	 that	 CA(h)	 is	 a	 Matérn	 covariance	 function.	 	 In	 developing	 the	 INLA	
approach,	Lindgren	et	al.	 (2011)	used	the	Matérn	covariance	function	to	define	
an	approximation	to	a	GMRF	using	stochastic	partial	differential	equations.		The	
Matérn	 covariance	 function	 CA(h)	 depends	 on	 the	 spatial	 separation	 distance	
between	 two	 points,	 h = si − s j 	as	 well	 as	 a	 scale	 parameter	κA and	 a	 fixed	
smoothness	 parameter	ν which	 is	 set	 to	 1.	 	 The	 spatial	 process	 is	 therefore	
assumed	to	be	second-order	stationary	and	isotropic	(19).		
To	jointly	model	bioassay	mortality	observations	for	two	insecticides	A	and	B	we	
combine	eqns	(S1)	with	an	additional	hierarchical	model	 that	 introduces	a	 link	
between	mortality	for	the	two	insecticides	through	the	spatial	component	of	the	
mean,	uA (si, t) :	
	
gB (si, t) | uB (si, t),uA (si, t),θB,σωA

,κA,φA ~ N(βB +λB,AAuA (si, t)+AuB (si, t),σ B
2 ) 				(S2a)	

uB (si, t) = φBuB (si, t −1)+ωB (si, t) 	 	 	 	 	 	 										(S2b)	
where	
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Cov(ωB (si, t),ωB (s j, ʹt )) =
0, t ≠ ʹt
σωB

2 CB (h), t = ʹt
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	 	 	 	 										(S2c)	

and	
θB ~ π B 	 	 	 	 	 	 	 	 	 											
where	π B is	 a	vector	of	prior	probability	distributions	 for	 the	hyperparameters	
θB = [βB,λB,A,σ B,σωB

,κB,φB ] 	(section	 S6.1).	 	 The	 spatio-temporal	 GMRF,	uB (si, t) ,	
has	 variance	 σωB

2 and	 a	 Matérn	 covariance	 function,	 CB(h)	 with	 scale	 and	
smoothness	parameters		κB 	and	ν .		The	coefficient	λB,A describes	the	strength	of	
the	 interaction	 between	 predicted	 prevalence	 of	 resistance	 to	 the	 two	
insecticides.	 	We	 implement	 the	models	(S1)	and	the	 joint	model	given	by	(S1)	
and	(S2)	using	the	R-INLA	package	(http://www.r-inla.org)	to	obtain	estimates	
of	the	posterior	distributions	of	uA (si, t) ,	uB (si, t) ,	θA 	and	θB .	
Our	 LMC	models	 of	 bioassay	mortality	 observations	 for	 up	 to	 four	 insecticide	
types,	A,	B,	C	 and	D,	 were	 developed	 using	 a	 straightforward	 extension	 of	 the	
approach	specified	in	the	main	text	(eqns	(1)	and	(2))	using	the	above	Bayesian	
hierarchical	 method	 (eqns	 (S1)	 and	 (S2)).	 	 Thus,	 our	 models	 of	 the	 logit	
transformed	mortality	observations	for	insecticides	C	and	D	are	given	by:	
	
gC (si, t) = βC +λC,AuA (si, t)+λC,BuB (si, t)+uC (si, t)+ eC 	 	 	 												(S3)	
gD (si, t) = βD +λD,AuA (si, t)+λD,BuB (si, t)+λD,CuC (si, t)+uD (si, t)+ eD 	 												(S4)	
	
where	uC (si, t)and	uD (si, t) 	are	 GMRFs	 	 defined	 in	 the	 same	way	 as	uB (si, t) 	and	
uA (si, t) 	(eqns	 (S1b,c)	 and	 (S2b,c))	 and	 λC,A ,	 λC,B ,	 λD,A , λD,B 	and	 λD,C 	are	
constant	 coefficients.	 	 We	 define	 the	 probability	 of	 gC (si, t) 	conditional	 on	βC ,	
λC,A ,	λC,B ,	σC ,	 as	well	 as	uC (si, t) ,	uB (si, t) ,	uA (si, t) 	and	 their	 variance,	 scale	 and	
smoothness	parameters,	similarly	to	eqn	(S2a).	 	The	conditional	probability	 for	
gD (si, t) 	is	defined	by	continuing	this	hierarchical	procedure.		
For	the	organophosphates	class	we	have	a	small	number	of	observations	for	two	
insecticide	 types,	 fenitrothion	 and	 malathion,	 which	 we	 denote	 A1	and	 A2.	 	To	
model	 resistance	 to	 these	 two	 insecticides	 we	 modify	 eqn	 (S1a)	 to	 allow	
resistance	to	each	insecticide	to	differ	by	a	fixed	effect:	
	
gA1 (si, t) | uA (si, t),θA ~ N(βA1

+AuA (si, t),σ A
2 )

gA2 (si, t) | uA (si, t),θA ~ N(βA2
+AuA (si, t),σ A

2 )
	 	 	 	 												(S5)	

The	 two	 constants	 βA1
and	 βA2

are	 then	 included	 into	 the	 vector	 of	
hyperparameters,	θA .			
	
S6.1.		Prior	distribution	specification	
For	 the	model	with	a	single	response	variable	(eqns	S1)	we	use	a	PC	precision	
prior	 (Krainski	 2017;	 Simpson	 et	 al.	 2017)	 for	 the	 standard	 deviations	σ A and	
σωΑ

setting	the	upper	limit	U	=	5	and	the	probabilityα =0.01.		Our	prior	for	κA is	
given	by	setting	a	PC	prior	on	the	range	parameter	(20)	setting	the	 lower	 limit	
U=0.0003	 and	 the	 probabilityα =0.01,	 noting	 that	 we	 define	 spatial	 locations	
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using	 a	 3D	Cartesian	 coordinate	 system.	 	Our	 prior	 for	φA is	 a	 PC	 prior	 for	 the	
correlation	parameter	in	a	first	order	autoregressive	(AR(1))	model	(20)	where	
we	 set	 the	 upper	 limit	 U=0.5	 and	 the	 probabilityα =0.5.	 	 For	 βA we	 use	 a	
Gaussian	distribution	with	a	mean	of	 zero	and	a	precision	parameter	τ =0.001.		
For	our	 joint	models	of	multiple	 response	variables	 (eqns	S2-S4)	we	use	 these	
same	 standard	 deviation,	 range,	 AR(1)	 correlation	 parameter	 and	 fixed	 effect	
prior	distributions.		We	use	Gaussian	priors	with	a	mean	of	zero	and	a	precision	
parameter	τ =0.1	for	each	of	the	random	effect	coefficients	λ(•,•) .	
	
S7.		Vgsc	allele	frequency	data	selection	criteria	
If	allele	frequencies	were	provided	for	subsamples	that	split	out	either	individual	
species	or	dead/alive	mosquitoes,	these	values	were	only	combined	and	used	if	
no	 selection	 was	 performed	 that	 could	 bias	 the	 proportion	 of	 species	 or	
dead/alive	 mosquitoes	 and	 thus	 potentially	 bias	 the	 allele	 frequency	 for	 the	
species	 complex	 sample.	 For	 example,	 results	 that	 only	 provided	 allele	
frequencies	 for	 one	 species	 from	 a	 multi-species	 sample	 were	 excluded.	
Likewise,	results	for	subsamples	selected	to	include	equal	numbers	of	dead	and	
alive	mosquitoes	were	also	excluded.	This	protocol	accounted	 for	 cases	where,	
according	to	the	 information	reported,	 the	original	sample	was	manipulated	by	
drawing	 one	 or	more	 subsets,	 subdivision,	 or	 both	 subsetting	 and	 subdivision.			
We	 only	 included	 results	 for	 three	 types	 of	 samples:	 1.	 	 Samples	 that	 had	 not	
been	subsetted	or	subdivided.	 	2.	 	Samples	which	had	been	subdivided	but	not	
subsetted.		3.		Samples	that	had	been	randomly	subsampled	and	not	subdivided.		
In	 cases	 where	 the	 sample	 had	 been	 subdivided	 we	 also	 required	 that	 the	
number	of	mosquitoes	in	each	subset	be	reported.		We	then	calculated	the	Vgsc	
allele	prevalence	 in	 the	 total	 sample	combined	across	 the	subsets.	 	 In	addition,	
we	also	excluded	records	where	the	Vgsc	allele	prevalence	was	based	on	a	total	
sample	size	of	 less	than	40	mosquitoes	or	where	the	sample	collection	location	
could	not	be	assigned	a	point	coordinate.			
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