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A Identification of unannotated promoters in E. coli with
growth-dependent differential expression.

Here we briefly describe how the unannotated promoters of the main text (purT, xylE, and dgoR) were
chosen. Fig. S1 summarizes the current state of regulatory knownledge in E. coli and those promoters
considered in this work. Here, we parse the database RegulonDB that lists all known regulatory reatures
in E. coli, with the striking finding that more than half the operons lack any annotated transcription
factor binding sites (denoted by red lines). To identify candidate promoters with which to apply
Sort-Seq, we made use of a variety of genome-wide datasets1,2. Specifically, in the case of the purT
promoter, network inference approaches2 led us to a number of unannotated genes that appeared to be
sensitive to purine (others included yieH and adeP). Since the purT promoter lacked any experimental
characterization and with ChIP-chip data suggesting PurR may be involved3, it appeared to be a good
starting point with which to apply our approach. The promoters of xylE and dgoR, were identified from
a recent study by Schmidt et al.1. They used mass spectrometry and measured the copy number per cell
of more than 2,300 proteins (about 55% of the E. coli proteome) across 22 growth conditions. These
conditions included different carbon sources, temperature, pH, growth phase, media, and growth in
chemostats. This provided us with a rich set of measurements with which to identify unannotated
promoters where a particular growth condition influenced expression and may be under transcriptional
regulation. The rest of this section describes how the data of Schmidt et al. was used to identify
candidate promoters.

Figure S1. Summary of transcriptional regulatory knowledge in E. coli. left panel:
Well-characterized promoters considered in this work. The schematics highlight the known regulatory
architectures for the annotated promoters of marRAB, relBE, and lacZYA. The center plot identifies the
genomic location of different operons in E. coli. Operons with annotated TF binding sites are shown in
blue, while those lacking regulatory descriptions are shown in red4. The genomic location of the
promoters considered in this work are labeled. Right panel: promoters associated with the operons of
yebG and the poorly-characterized operons purT, xylE, and dgoRKADT. The promoters of yebG and
purT are oriented in opposite directions. Repressor binding sites are shown in green, activator binding
sites in yellow, and RNA polymerase (RNAP) binding sites in blue. The poorly characterized regulatory
DNA is noted by a hashed pattern. The identification of regulated operons was performed using the
annotated operons listed on RegulonDB4, which are based on manually curated experimental and
computational data. An operon was considered to be regulated if it had at least one transcription factor
binding site associated with it.
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In order to identify candidate genes using the mass spectrometry copy number data, we ranked each
protein based on its copy number in a particular growth condition, divided by the average copy number
across the 22 conditions. Regulated proteins should be among those that exhibit a large change in copy
number in one or a few growth conditions. As a confirmation of this, among the proteins with known
regulation, we came across the GalE protein which was found to have significantly higher expression
when cells are grown in galactose (Fig. S2A). GalE is involved in galactose catabolism, and its
expression is known to increase due to loss of repression of the galE promoter when cells were grown in
galactose5,6. Among promoters that did not have any annotated regulation, we show the expression of
DgoD for several different carbon sources (Fig. S2B). Cells grown in galactose showed much higher
expression of the DgoD gene, with about 675 copies per cell, compared to at most 15 copies per cell
across the other growth conditions. This is only one of many examples where a protein showed a large
differential expression level across growth conditions (which include xylE ), and suggests that many of
these unannotated promoters may actually be under regulation.

Another way to view their data set is to calculate the coefficient of variation (the ratio of the
standard deviation to the mean protein copy number) for each gene across the 22 growth conditions. In
Fig. S2C, the coefficient of variation is plotted for each of the proteins measured in this study, separated
by whether their promoter contains any known transcription factor binding sites (identified from
RegulonDB4). For GalE, whose expression was perturbed by growth in galactose, we find a calculated
coefficient of variation of 1.18. Using this as our reference for a regulated gene that was perturbed in the
study, there appear to be many unannotated genes that show similar or larger coefficient of variations,
further suggesting candidates that may be under regulation. Among these, DgoD for example has a
coefficient of variation of 3.64. Among the other proteins we investigated, XylE also has a high
coefficient of variation, equal to 2.73, and shows almost no expression unless cells are grown in the
presence of xylose as the carbon source. While we only pursued the promoters associated with
expression of DgoR, DgoD, DgoK, DgoA, and XylE, there are many other unannotated promoters that
will be of interest in future work.
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Figure S2. Identification of unannotated genes with potential regulation and distribution
of known transcription factor binding sites in E. coli. (A) Here we show the protein copy
numbers per cell for GalE across several carbon sources. Expression was sensitive to the presence of
galactose which is consistent with its known regulation (with about 5000 copies per cell, versus about
500 for most other growth conditions). (B) DgoD was also found to be sensitive to the presence of
galactose as the carbon source. The copy number was measured to be 675 copies per cell when cells were
grown in galactose, and 15 copies per cell or less in all other conditions considered. For both (A) and
(B), values are shown for growth in M9 minimal media, with glucose, xylose, acetate, galactose, and
glycerol as carbon sources and obtained from1. (C) Coefficient of variation (standard deviation divided
by mean copy number) across the 22 growth conditions for each protein measured in1. Proteins are
identified as either having regulatory annotation (blue) or not (red) using the annotations in
RegulonDB4. GalE is noted among the annotated genes and provides a reference as a gene that is known
to be regulated and be perturbed in this study, as shown in (A).

B Characterization of library diversity and sorting sensitivity.

B.1 Sort-Seq of the rel promoter using different sorting conditions.

In the work of the main text, Sort-Seq was performed by sorting cell libraries into four bins based on
their fluorescence, each containing about 15 percent of the population. The remaining population was
not collected and was discarded to waste. Due to the variability in expression of a single clonal
population (Fig. S3A), sorting into a larger number of narrower bins was not expected to provide
additional resolution for the sequence-dependent fluorescence distribution. Given the success in
identifying the known regulatory binding sites of the lacZ, relB, and marR promoters, and agreement
between the inferred sequences logos and available sequence logos (see Supplemental Fig. S4), these
conditions appeared to provide sufficient information to accurately analyze our libraries.

However, as an additional check that our results were not being influenced by the specific sorting
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scheme, we also tested several other sorting conditions using our relB promoter library. Here cells were
sorted into either four or eight bins, with a sorting gate containing between 10 and 22 percent of the
population per bin. The associated expression shift plots and information footprints (defined in
Supplemental Section H) are shown in Fig. S3B-D. In general we found little difference between each of
these experiments. Energy matrices for the binding sites were similarly in agreement, with a Pearson
correlation coefficient between matrix parameters generally greater than 0.9 across the different
conditions tested.

B.2 Analysis of library diversity using data from the mar promoter.

Here we provide additional characterization of the mutagenized promoter libraries, using a library from
the marR promoter as a representative example (70 bp region containing RNAP and MarR repressor
sites). With the exception of the lacZ promoter, all library oligonucleotide pools were purchased from
Integrated DNA Technologies (USA) with a target mutation rate of nine percent per nucleotide position.
For the lacZ promoter library, we purchased an oligonucleotide pool using their Ultramer branded
technology to allow for a longer mutagenized region that covered the known set of regulatory binding
sites. While we intended to have a similar mutation rate, through sequencing we found a mutation rate
closer to three percent per nucleotide position. While unexpected, it provided a test of two different
mutation rates in our initial validation of the methodology using well-characterized promoters.

To get a better sense of how the mutation rate varies across the libraries, we plot a histogram of the
number of mutations per base pair for the entire set of sequences found in the marR promoter library
(Fig. S3E). We obtained an average mutation rate of 10.4% in this library, close to our target rate of 9%,
though there is some variability in this mutation rate as might be expected given that the incorporation
of mutations in the DNA synthesis procedure is a random process. Since we are using these sequence
data sets to infer sequence-specific models of binding between DNA and transcription factors, it was also
of interest to consider the mutational coverage found within the library. As shown in Fig. S3F, all
single-point mutations and a large fraction of two-point mutations were present within the library. Due
to the large number of possible three point mutants in a 60 bp region, only a small subset of the possible
sequences will be found in the library.
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Figure S3. Analysis of the library mutation spectrum and effect of Sort-Seq sorting
conditions. (A) Here we used our relBE promoter library to test whether the sorting procedure
influenced our Sort-Seq data analysis. The fluorescence histogram of the wild-type promoter plasmid
(single clonal population) and the mutated library for the relB promoter are shown. Expression shifts
and information footprints are shown for cells sorted under three different scenarios in (B) -(D). In (B)
cells were sorted using the approach of the main text where cells were sorted into 4 bins, each containing
15% of the population. (continued on next page)
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Figure S3. (continued from previous page) In (C) cells were similarly sorted into 4 bins, but where each
bin contained about 22% of the population. In (D) cells were sorted into 8 bins, each containing about
10% of the population. The histograms beside each information footprint identify the approximate
gating windows used to sort each fluorescence bin population. Histograms were based on between
400,000-500,000 cell counts. The same cell culture was used for each of the three Sort-Seq experiments
performed here, sorted during the same sorting session. Cells were grown in M9 minimal media with
0.5% glucose like in the main text. (E) Histogram showing the mutation rate across all sequences found
in the 60 bp marRAB library containing the RNAP and MarR repressor binding sites. Analysis was
based on sequences from all fluorescence sorted bins. (F) The fraction of all possible unique sequences
with one, two, or three mutations is shown for the marRAB library of (E). The coverage quickly drops
for possible three-point mutations due to the large sequence space at this mutation frequency.

C Generation of sequence logos.

Sequence logos provide a simple way to visualize the sequence specificity of a transcription factor to
DNA, as well as the amount of information present at each position7. Here we describe how we generate
them using either known genomic binding sites or the energy matrices from our Sort-Seq data. In each
case we need to calculate a 4xL position weight matrix for a binding site of length L, which is used to
estimate the position-dependent information content that will then be used to construct a sequence logo.
In Section C.1 we consider position weight matrices from known genomic binding sites, while in Section
C.2 we consider position weight matrices from our Sort-Seq data. Lastly, in Section C.3, we use our
position weight matrices to construct sequence logos.

C.1 Generating position weight matrices from known genomic binding
sites.

To construct a position weight matrix using these genomic binding sites, we must first align all the
available binding site sequences and determine the nucleotide statistics at each position. Specifically, we
count the number of each nucleotide, Nij , at each position along the binding site. Here the subscript i
refers to the position, while j refers to the nucleotide, A, C, G, or T . We can then calculate a position
probability matrix (also 4xL) where each entry is found by dividing these counts by the total number of
sequences in our alignment,

pij =
Nij
Ng

. (S1)

Note that in situations where the number of aligned sequences is small (e.g., less than five),
pseudocounts8 are often added to regularize the probabilities of the counts in the calculation of position
probabilities,

pij =
Ni,j +Bp
Ng + 4 ·Bp

, (S2)

where Bp is the value of the pseudocount. The argument for their use is that when selecting from a
small number of binding site sequences, just by chance infrequent nucleotides will be absent, and
assigning them a probability (pij , noted above) of zero may be too stringent of a penalty8,9. We let
Bp = 0.1. In the limit of zero binding site sequences (i..e with no sequences observed), this will result in
probabilities pij approximately equal to the background probability used in calculating the position
weight matrix below (and a non-informative sequence logo).

Finally, the values of the position weight matrix are found by calculating the log probabilities relative
to a background model10,

PWM ij = log2

pij
bj
. (S3)
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The background model reflects assumptions about the genomic background of the system under
investigation. For instance, in many cases it may be reasonable to assume each base is equally likely to
occur. Given that we know the base frequencies for E. coli, we choose a background model that reflects
these frequencies (bj : A = 0.246, C = 0.254, G = 0.254, and T = 0.246 for strain MG1655; BioNumbers
ID 100528, http://bionumbers.hms.harvard.edu). From Equation S3, we can see that the value at the
i, jth position will be zero if the probability, pij , matches that of the background model, but non-zero
otherwise. This reflects the fact that base frequencies matching the background model tell us nothing
about the binding preferences of the transcription factor, while deviation from this background
frequency indicates sequence specificity.

C.2 Generating position weight matrices from Sort-Seq data.

Next we construct a position weight matrix using our Sort-Seq data. Here we appeal to the result from
Berg and von Hippel, that the logarithms of the base frequencies above should be proportional to their
binding energy contributions10,11. Berg and von Hippel considered a statistical mechanical system
containing L independent binding site positions, with the choice of nucleotide at each position
corresponding to a change in the energy level by εij relative to the lowest energy state at that position.
εij corresponds to the energy entry from our energy matrix, scaled to absolute units, εij = A · θij +B
(where θij is the i, jth entry as further discussed in Section H.3.3). An important assumption is that all
nucleotide sequences that provide an equivalent binding energy will have equal probability of being
present as a binding site. In this way, we can relate the binding energies considered here to the statistical
distribution of binding sites in the previous section. The probability pij of choosing a nucleotide at
position i will then be proportional to the probability that position i has energy εij . Specifically, the
probabilities will be given by their Boltzmann factors normalized by the sum of states for all nucleotides,

pij =
bj · e−βA·θij ·sij∑T
j=A bj · e−βA·θij ·sij

, (S4)

where β = 1/kBT , with kB is Boltzmann’s constant and T the absolute temperature. As above, bj
refers to the background probabilities of each nucleotide. Note that the energy scaling factor B drops
out of this equation since it is shared across each term.

One difficulty that arises when we use energy matrices that are not in absolute energy units is that
we are left with an unknown scale factor A, preventing calculation of pij . We appeal to the expectation
that mismatches usually involve an energy cost of 1-3 kBT

12. In other work within our group, we have
found this to be a reasonable assumption for LacI. Therefore, we approximate it such that the average
cost of a mutation 〈A× θi,j〉 = 2kBT . We can then calculate a position weight matrix from Equation S3.

C.3 Construction of sequence logo

With our position weight matrices in hand we now construct sequence logos by calculating the average
information content at each position along the binding site. With our four letter alphabet there is a
maximum amount of information of 2 bits (log2 4 = 2 bits) at each position i. The information content
will be zero at a position when the nucleotide frequencies match the genomic background, and will have
a maximum of 2 bits only if a specific nucleotide is completely conserved. The total information content
at position i is determined through calculation of the Shannon entropy, and is given by,

Ii =

T∑
j=A

pij · log2
pij
bi

=

T∑
j=A

pij · PWMij . (S5)

Here, PWMij refers to the i, jth entry in the position weight matrix10,13. The total information content
contained in the position weight matrix is then the sum of information content across the length of the
binding site.

To construct a sequence logo, the height of each letter at each position i is determined by,
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Seqlogoij = pij · Ii, (S6)

which is in units of bits. This causes each nucleotide in the sequence logo to be displayed as the
proportion of the nucleotide expected at that position scaled by the amount of information contained at
that position7. To construct sequence logos we use custom Python code written by Justin Kinney and
available on our GitHub repository for this work
(https://www.github.com/RPGroup-PBoC/sortseq belliveau; DOI: 10.5281/zenodo.1184169).

C.4 Comparison of Sort-Seq sequence logos.

For the various annotated binding sites identified in this work we used our Sort-Seq data to generate
energy matrices. While these energy matrices provide a concrete way to understand the
sequence-dependent DNA-protein interaction, it was also useful to generate sequence logos for
visualization and to compare with sequence logos more conventionally generated using known genomic
binding site sequences. In Fig. S4 we show this comparison for transcription factors with three or more
known genomic binding sites, with agreement more apparent when genomic binding site logos are based
on a larger number of known sequences.

We also report the Pearson correlation coefficient between the position weight matrices from the
Sort-Seq inference and the genomic alignment. To compare the two position weight matrices we first
apply identical ‘gauge fixing’ to both matrices being compared (discussed further in Section H.3.1).
Each column of the matrices are set to have a mean energy of zero and their matrix norms (or inner
products) are normalized to have value one. Under this constraint, the Pearson correlation coefficient is
simply given by the summed product of matrix entries,

r =
COV (PWM’X ,PWM’Y )

σX · σY
=

L∑
i=1

T∑
j=A

PWM’X,i,j · PWM’Y,i,j . (S7)

Here, COV refers to the covariance between PWM’X and PWM’Y , where the superscript prime
indicates that the matrices have been gauge fixed (mean energy in each column of zero and the matrix
norm of 1). The subscript X, for example, would correspond to the Sort-Seq matrix, and Y, to the
genomic matrix. σX and σY refer to the standard deviation of the matrix entries for PWM’X and
PWM’Y . We note that while Pearson correlation coefficient provide one useful metric to compare energy
matrices, there are alternative metrics that are also commonly used (Kullback-Leibler divergence,
Euclidean distance, and Pearson χ2 test, among others; See Gupta et al. 200714 which is the publication
for the TOMTOM motif comparison software and provides a good summary of these).
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Figure S4. Comparison between Sort-Seq and genomic-based sequence logos. Comparisons
are shown for LacI, CRP, MarA, Fis, PurR, XylR, LexA, and RNAP. Binding site sequences were
obtained from RegulonDB, where n identifies the number of genomic binding sites that were used to
construct the sequence logo. The Sort-Seq RNAP logo is based on data from the rel promoter. For the
genomic RNAP logo, sequences were taken from computationally predicted RNAP binding sites on
RegulonDB (top 3.3 % scored sequences using their reported metric) for the 6 bp regions of the -10 and
-35 binding sites. Pearson correlation coefficients are calculated with Equation S7 using the position
weight matrices from the Sort-Seq and genomic matrices. For LexA, the first four bp were not used in
the calculation due to overlap with the -10 RNAP binding site of the yebG promoter.

D Statistical mechanical model of the DNA affinity
chromatography approach.

In order to better understand the factors that govern the success of the DNA affinity chromatography
method, we took a statistical-mechanical approach to help identify the key parameters that will
influence the fold enrichment of transcription factors that we measure. We are interested in calculating
the probability that the transcription factor of interest binds to the target DNA sequence used for
purification. We will ignore possible binding by proteins to the magnetic beads, to which the DNA
oligonucleotides are tethered.

To calculate the probability that the transcription factor of interest is bound, we will simplify our
problem by assuming that all other proteins present in the lysate will bind the DNA with some average
nonspecific binding energy. This must be included since these proteins will act as potential competitors
for the tethered DNA. We must first enumerate the possible states of our DNA. For each DNA affinity
purification, this will include the following three states: 1) no protein bound to the DNA, 2) the target
transcription factor bound, and 3) a nonspecific protein is bound. These are shown in Supplemental
Fig. S5D for each of the DNA oligonucleotides used for the two different purifications performed.

The non-normalized probability of each state occurring is simply given by e−β(εi−µi). Here, εi is the
protein-DNA binding energy and µi, the chemical potential, for species i15. β = 1/kBT , where kB is
Boltzmann’s constant and T is the absolute temperature. The chemical potential contains information
about concentration, and it is possible to alternatively write the non-normalized probability in terms of
these, which we will rewrite as e−β(εi−µi) = Ci/Coe

−β∆εi . Here, Ci is the concentration of protein
species i, and Co, is the standard concentration, which is taken as 1 M. ∆εi is the binding energy for
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species i, which will be taken as relative to the unbound state.
We can now write the statistical weight for each state, which is summarized in Fig. S5D. We allow

the unbound state to act as our reference state with an energy equal to zero, corresponding to a
statistical weight of 1. The probability of our target protein being bound to a certain DNA target,
Pbound,DNA, will then be given by the statistical weight for the state where the target protein is bound,
divided by the sum of statistical weights for each state. This is given by,

Pbound,DNA =
CTF

Co
e−β∆εTF,DNA

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,DNA

(S8)

where the subscript ‘TF,DNA’ identifies the target transcription factor and its binding to a particular
DNA target. In regard to our two purifications shown in Supplemental Fig. S5D, ∆εTF,s refers to the
binding energy of the transcription factor to its target binding site, while ∆εTF,ns refers to the
nonspecific binding energy to non-target reference DNA. In addition, ∆εns refers to the binding energy
of other proteins present in the lysate, which may bind the DNA nonspecifically.

We can now calculate the fraction of bound transcription factor, Pbound,DNA, using some reasonable
values for E. coli16,17. Here we use CTF = 10−8M (about 10 copies per cell), Co = 1M , ∆εTF,s = -
15kBT , and ∆εns = - 5kBT . Cns = 3 · 10−3M , which is the approximate number of proteins in E. coli.
The specific numbers will depend on the DNA target sequence used, the concentration of target protein,
as well as the lysate preparation itself. Here we find Pbound ≈ 0.02. In contrast, for the nonspecifically
bound fraction we calculate about a ten fold higher fraction of nonspecific protein bound to the DNA.
Even though the binding energy for a target transcription factor is significantly stronger than the
competitor proteins that bind nonspecifically, we bind more nonspecific proteins due to their high
concentration. This result in particular highlights our rationale for using an additional reference
purification to distinguish the target transcription factor from non-specifically bound proteins18. We
consider the consequences of this next.

In this second reference purification, the DNA no longer has the target binding site, and thus the
value of Pbound,DNA for the transcription factor should be significantly smaller. We can use Equation S8
to calculate expected ratio of transcription factor bound to target DNA versus reference DNA, given by,

Pbound,target
Pbound,reference

=
CTF

Co
e−β∆εTF,s

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,s

·
1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,ns

CTF

Co
e−β∆εTF,ns

(S9)

=
e−β∆εTF,s

e−β∆εTF,ns

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,ns

1 + Cns

Co
e−β∆εns + CTF

Co
e−β∆εTF,s

. (S10)

Again, the subscript ∆εTF,ns refers to the binding energy of the transcription factor to the non-target
(i.e. non-specific) reference DNA. Using the example values from our calculation of Pbound above, we
find that 1 + Cns

Co
e−β∆εns � e−β∆εTF,s � e−β∆εTF,ns , with Equation S10 simplifying to

Pbound,target
Pbound,reference

≈ e−β∆εTF,s

e−β∆εTF,ns
= e−β(∆εTF,s−∆εTF,ns). (S11)

This result suggests that the enrichment ratio should mainly depend on the difference in binding energy
between the DNA sequences used in the two purifications. Our results from purifying LacI with strains
containing different LacI copy number per cell and with different DNA target sequences (see Section E.3
and Supplemental Fig. S5C) appear to agree with this result in general, where we see greater enrichment
when using the strong Oid target LacI binding site sequence than the weaker O3 binding site sequence.
This appears to influence the enrichment ratio more significantly than protein concentration, although
further work will be needed to fully characterize this relationship.
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E DNA affinity chromatography and mass spectrometry
experimentation and analysis.

In this section we provide additional details on the use of DNA affinity chromatography and mass
spectrometry to identify the transcription factors that bind to our putative binding sites. In particular,
we provide additional data to demonstrate protein labeling and characterize the dynamic range expected
from our enrichment measurements (see Methods Section for more details about the approach). We also
provide data from an affinity chromatography experiment where the same DNA oligonucleotide sequence
was used for both target and control purifications. The ideal result from such an experiment is that each
protein detected is found in equal abundance between the two purifications performed, yielding an
enrichment ratio equal to one. However, there is some inherent variability in such a measurement and
this provides some characterization of that uncertainty. Lastly, we provide additional data showing that
we can purify and identify transcription factors at concentrations ranging from about 10 to 1,000 copies
per cell.

E.1 Characterization of SILAC labeling and measurement of protein
enrichment ratios.

To ensure E. coli cells incorporated the heavy isotope of lysine (13C15
6N2-L-lysine, heavy lysine), we first

generated an auxotropic strain which was unable to synthesize its own lysine through deletion of the
lysA gene19. LysA is an enzyme that catalyzes the last step in lysine biosynthesis. Furthermore, to
ensure proteins would be sufficiently labeled when growing cultures for lysate preparation, we inoculated
our cultures with a large dilution of 1:5,000. This large dilution is important since the inoculate
represents an unlabeled fraction of the cell population. We checked the effective labeling efficiency by
combining lysates from cells grown with heavy and light (natural) lysine over a range of ratios between
0.1/1 to 1,000/1 (heavy / light). The measured ratio in abundance for each of the proteins detected
among the two lysates are plotted in Fig. S5A. In calculating these values, we found that the median
average from our 1/1 combination was measured to be 0.71 (heavy / light). This suggested there may
have been some inaccuracy in the Bradford assay that was used to measure protein concentration prior
to mixing our lysates. We therefore renormalized the ratios according to this measured ratio. The data
suggests a labeling efficiency of at least 99% (red dashed line, in comparison to perfect labeling shown
by the gray dashed line). One important aspect highlighted by this data is that the highest enrichment
ratio we should expect to measure in our DNA affinity experiments is several hundred fold.

E.2 Characterization of protein enrichment variability from identical DNA
targets.

For each DNA affinity chromatography experiment, we are trying to identify a DNA-binding protein
that shows up in higher abundance when we use the target binding site sequence identified by Sort-Seq
(i.e. a transcription factor binding site), relative to a purification where that target sequence has been
mutated away. To ensure that our measured enrichment ratios were not an artifact of noise in the
measurement, it was important to also check the measurement variability when both lysate purifications
used an identical DNA sequence. In this way, we could characterize the inherent variability in such a
measurement. To proceed, we performed experiments using the control DNA sequence that was used in
our purification of the purT promoter target (Fig. 5C, though any DNA oligonucleotide could have been
used). We performed this in triplicate and consider the average enrichment ratios for each protein
measured across the three experiments. In the left panel of Fig. S5B we show the average enrichment
values that were measured for each of the detected proteins. Since many of the data points fall on top of
one another, we also provide a histogram of the associated data (Fig. S5B, right plot). Here we have
taken the logarithm of the enrichment ratios so that the bins are equally spaced. The shaded region in
both plots identifies the range between the 2.5th and 97.5th percentiles, highlighting that the majority of
proteins were found between an enrichment ratio of 0.2 and 3.3 (or log enrichment ratio of between -1.5
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and 1.2). The ideal enrichment expected would be a value of 1.0 or log ratio of 0. In the main text, the
enrichment values for transcription factors found using targets associated with the lacZ, relB, purT,
xylE, and dgoR promoters fall well outside of the range of variability found here.

E.3 Identification of LacI by mass spectrometry using strains with a
variable LacI copy number.

Finally, one experiment that we performed, in addition to purifying LacI with different strength binding
site targets (i.e., Fig. 4A), was to consider the copy number per cell of the LacI target, as copy number
should influence the fraction of bound LacI to the DNA target (see details in Section D). Here we used
strains whose protein concentration has been measured during growth in M9 minimal media with 0.5%
glucose and whose average LacI number had previously been measured to range from the native
expression of 11± 2 tetramers per cell, to a maximum concentration of 870± 170 tetramers per cell. In
Supplemental Fig. S5C we show the enrichment ratios measured for LacI from individual experiments
(n = 1-2 per strain). Here we were able to purify LacI using either the weak O3 or strong Oid binding
site sequence for each of the different strains, though we also see that the O3 target sequence provides
an enrichment that is much closer to the tail of the control experiment in Fig. S5B. Additionally, while
the copy number of LacI appears to affect the enrichment ratio in some experiments, it does not have a
consistently significant effect.

S15/S40



(A)
m

ea
su

re
d
 e

n
ri

ch
m

en
t

(h
ea

vy
 /

 l
ig

h
t)

expected enrichment
(heavy / light)

(B)

(C)

lacZ

target region

p
ro

te
in

 e
n
ri

ch
m

en
t

(h
ea

vy
 /

 l
ig

h
t)

description state statistical
weight

target DNA purification

state

non-target reference
 DNA purification

unbound DNA

transcription
factor bound

non-speci�c
protein bound

statistical
weight

(D)

log protein enrichment
(heavy / light)

fr
ac

ti
o
n

p
ro

te
in

 e
n
ri

ch
m

en
t

(h
ea

vy
 /

 l
ig

h
t)

DNA-binding protein (n=31)

other detected proteins (n=473)

Figure S5. Identification of transcription factors using DNA-affinity chromatography and
mass spectrometry. (A) Characterization of stable isotopic lysine labeling and mass spectrometry
measurement sensitivity. Lysates from cell cultures grown in either heavy (13C15

6N2-L-lysine) or normal
L-lysine were combined at ratios between 0.1:1 to 1000:1 heavy:light and the measured ratios in
abundance are plotted for each protein. Note that for the 1:1 ratio we found a median ratio of 0.71. We
therefore renormalized the ratio values using this as a correction factor. Data points represent the
average values from n = 3 replicates. The gray line represents the expected measurement under perfect
labeling, while the red line represents a 99.1 % labeling efficiency (assuming that some fraction of heavy
lysate is unlabeled). (B) DNA-affinity purification using the same DNA oligonucleotide to purify protein
for both heavy and light cell lysates (n = 3). The scatter plot shows the average enrichment values for
each protein detected. Proteins with DNA binding motifs20 are shown in red (n = 41), while other
detected proteins are in blue (n = 581). Error bars represent the standard deviation, calculated from log
protein enrichment values. The histogram shows the distribution of the measured ratios for all detected
proteins, with 95% of the measurements contained between a log enrichment of -1.5 and 1.2, as indicated
by the shaded region. Lysates were prepared from cells grown in M9 minimal media with 0.5% glucose.
(C) DNA-affinity purification of LacI using three different E. coli strains with repressor copy numbers
per cell of 11± 2, 130± 20, and 870± 170 (tetramers per cell)21. Operator strength was varied by
purifying LacI with either the weak O3 or strong Oid operators. LacI was detected as the most
significantly enriched protein among all proteins detected. Each data point represents the enrichment
from a single purification experiment (n = 1-2 for each strain). (D) States and weights are shown for an
oligonucleotide in which a target transcription factor and other cellular proteins compete for a DNA
binding site. Within the cell lysate, the target protein is present at a concentration CTF , while all other
proteins, which may bind the DNA nonspecifically are present at a concentration Cns. Co is the
standard concentration. The difference in energy between a repressor bound to the target DNA binding
site and an unbound DNA is ∆εTF,s when the binding site is present. Otherwise, the binding energy is
given by ∆εTF,ns. Other proteins that bind nonspecifically, irrespective of the DNA sequence, have a
binding energy of ∆εns.
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F Selection of the mutagenesis window for promoter
dissection by Sort-Seq.

In designing our mutagenized promoter libraries, we found it useful to consider what was known
regarding both the genes of interest and general patterns of transcriptional regulation in E. coli and
bacteria more broadly. Two useful resources were RegulonDB4 and EcoCyc20, which summarize much of
what is known about transcriptional regulation in E. coli. RegulonDB, in particular, aims to compile all
available data regarding gene regulation in E. coli into a single database and is the most complete
record available for E. coli22.

While Sort-Seq enables us to identify all proteins involved at a promoter, one potential limitation is
that a transcription factor binding site will only be identified if it was contained within our mutagenized
region. Using the known transcription factor binding sites in E. coli as a guide in our design, we made
an educated guess regarding where we should search for transcription factor binding sites. Fig. S6 shows
a histogram of all of the transcription factor binding site positions from RegulonDB. By staggering a set
of 60bp windows to cover a 150 bp region, we found we would expect to capture 73 percent of the known
transcription factor binding sites. We chose 60 bp-70 bp windows for most libraries since they could be
readily synthesized by Integrated DNA Technologies (USA) and were more economical than longer
oligonucleotides. We also included about 15 bp of overlap between staggered regions to provide some
replicates of the mutated base pairs on the different libraries.

It is also useful to note that our approach does not require that this specific strategy be used to
create mutagenized promoter constructs. The methodology only requires compatibility between the
length of the mutagenized region probed and the sequencing platform used. Microarray synthesized
oligonucleotides provide another approach for targeted oligonucleotide design23, and error-prone PCR
can enable longer mutagenized windows within a single library24,25. In addition, advances in sequencing,
either through longer reads or alternative sequencing platforms such as PacBio (Pacific Bioscience, USA)
and MinION (Oxford Nanopore Technologies, UK) are making it possible to sequence longer
mutagenized regions, and CRISPR technologies could make it possible to identify longer range
interactions such as DNA looping in bacteria (e.g., a one megabase region was considered in Fulco et
al.26).
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Figure S6. Distribution of known transcription factor binding sites in E. coli. The histogram
shows the genome-wide distribution of transcription factor binding sites relative to their respective
transcription start sites. Binding sites were compiled from RegulonDB and used to calculate the number
of overlapping binding sites at each position using the length and position of each binding site sequence.
The location of the 150 bp mutation window used in this study is shown in blue, expected to capture
upwards of 70% of known transcription factor binding site position.
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G Additional data from Sort-Seq experiments of the main
text.

Here we provide additional data and analysis on the promoters of rel, mar, yebG, purT, xylE, and dgoR
to provide additional support for the results and conclusions made in the main text.

G.1 The rel and mar promoters

In our analysis of the rel and mar promoters in the main text, it was noted that the sequence specificity
of the repressors RelBE and MarR lacked any prior characterization. In order to validate that the
observed features of the expression shift plots were due to binding by these regulatory proteins, we
performed additional Sort-Seq experiments in deletion strains for these regulators. The expression shift
plots were shown in the main text (Fig. 3). Here we provide a more quantitative analysis to show that
the energy matrices for binding by RelBE and MarR poorly describe the sequence data when relBE and
marR are deleted, respectively.

Since the transcription factors have been deleted, we expect the energy matrix predictions of each
sequence’s binding energy to provide no clear trend across the sorted bins (i.e., zero or little mutual
information). To first give a sense for how mutual information is calculated, in Fig. S7A and Fig. S7B
we show the estimated joint distributions when we apply the RelBE energy matrix (from Fig. 2B of the
main text) to either a replicate Sort-Seq experiment or to the ∆relBE deletion data. When applying
the RelBE energy matrix to the wild-type data, we find a clear trend, with strongest binding energies
(lowest rank order) more likely found at the lowest fluorescence bin, and weakest binding energies more
likely in the highest fluorescence bin.

Next we focus in on our data from the deletion strains of relBE and marR (Figure S7C and S7D,
respectively). In each case, we find that our energy matrices poorly describe the data and are not
substantially better than a randomly generated matrix. In Figure S7B it might have been noted that
there were still some positions with non-zero expression shift (i.e., still appear informative). In order to
show that this remaining information cannot be accounted for from our energy matrices, we also
estimated the maximum information present in the ∆ strain data sets (by directly fitting a matrix to
the ∆ strain data). Importantly, we find that these features cannot be explained by our wild-type strain
RelBE and MarR energy matrices, and must be due to other features in the data.

G.2 The yebG promoter

The yebG promoter is among a variety of genes known to increase expression when cells are under DNA
damage stress (SOS response)27. It shares the intergenic region with the purT promoter. In the main
text we considered the yebG promoter in cells grown in standard M9 minimal media with 0.5% glucose
(Fig. 5A, Left). While the expression shifts appeared to align with annotated binding sites for LexA
(positive shift), and the RNAP binding site (negative shift), we did not show evidence for the identity of
each binding protein in the main text. Here we present results from our inference of energy matrices
using our Sort-Seq data, which confirm the identity of the binding proteins. We also explore regulation
of yebG by perturbing the regulatory state through induction of the SOS response27,28.

We begin by considering the Sort-Seq data from cells grown in M9 minimal media with 0.5% glucose.
In Fig. S8A we show the inferred energy matrices associated with the annotated site for LexA. This was
in excellent agreement with the known sequence specificity of LexA (see Fig. S4 for a direct comparison
with the genomic sequence logos). We note, however, that the RNAP binding site was shifted by 9 bp
from the annotated binding site28, with an overlap between the -10 RNAP site and 4 bp of the LexA
binding site.

We were also interested in confirming that the yebG promoter responds DNA stress and is induced as
part of the SOS response. By repeating Sort-Seq in cells grown in non-lethal concentrations of
mitomycin C (1 µg/ml)28 we observed a dramatic increase in expression relative to growth without
mitomycin C. Fluorescence histograms showing expression from our plasmid reporter in
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Figure S7. Predictive information of transcription factor energy matrices when applied
to Sort-Seq data. In (A) and (B) we use our RelBE energy matrix to predict binding energies across
all sequence data for a replicate experiment with wild-type E. coli and a ∆relBE strain, respectively.
The 2-d histograms show the estimated joint probability distributions between bin and rank-ordered
energies (generated by binning sequences into 1000 bins). The calculated information (in mbits) shown
in the joint distribution plot represents the mutual information from these estimated joint distributions.
In (C) and (D) we focus on our transcription factor deletion strains (relBE in (C) and marR in (D)),
and similarly calculate mutual information between bin and energy matrix predictions (again, using their
rank-ordered predictions). The ‘maximum information’ represents the estimated maximum information
that might be obtained by fitting an energy matrix to the ∆ strain data. The ‘random matrix’ represents
the average mutual information calculated from 20 randomly generated energy matrices (error bar
represents standard deviation) applied to the sequence data. To provide consistent comparisons, all
matrices were ‘gauge fixed’ such that the mean energy in each column of zero and the matrix norm of 1.
Note that for MarR we show analysis for the left MarR binding site. In the right binding site, there is
additional information corresponding to the ribosomal binding site. The joint probability distribution
and associated mutual information are calculated following the procedure described in Section H.3.

non-mutagenized promoter constructs are shown in Fig. S8B. From the expression shift plots and
information footprint (which are defined in Section H and used in Kinney et al.29) in Fig. S8D we find
that this is due to loss of repression at the LexA binding site. This is consistent with the expectation
that LexA undergoes proteolysis as part of the SOS response27.
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G.3 The purT promoter

When cells were grown in the presence of adenine, we identified a putative repressor site between the -10
and -35 regions of the RNAP binding site of the purT promoter. In our initial attempt to identify the
associated transcription factor we performed a DNA affinity purification using conditions that matched
the growth conditions where repression was observed. However, as shown in Fig. S8C, the most
significantly enriched protein (GlpR) only showed an enrichment of about 2.9, which was near the
shaded region associated with most other non-specific proteins detected. Only upon repeating our
purification in the presence of hypoxanthine (10 µg/ml) (Fig. 5C) did we find enrichment of PurR
(approximately 350 fold relative to our reference purification).

G.4 The xylE promoter

In the main text it was noted that we could not perform Sort-Seq on the xylE promoter unless cells were
grown in xylose. In Fig. S8E, we show the associated fluorescence histograms from libraries grown in
either glucose or xylose. Interestingly, each mutated window was essentially identical to autofluorescence
when cells were grown in glucose. In contrast, growth in xylose showed differential expression for each of
the mutated regions. While the promoter was expected to be sensitive to the presence of xylose (causing
an increase in expression1), this was still a non-obvious result without prior knowledge of whether
repressors or activators were involved.

In our analysis we also noted in the main text that the identified set of activator binding sites
conformed well with the two other promoters regulated by XylR and CRP, namely xylFG and xylAB.
Here we scanned our inferred energy weight matrix across the intergenic regions of xylFG and xylAB, in
order gain further confidence that the identified feature matched the known binding specificity of these
transcription factors. These are shown in Fig. S8F. At each position in these plots, we use the energy
matrix to calculate the binding energy of the putative transcription factors. For each we identify a
strong peak that does indeed align well with the annotated binding sites of XylR and CRP. While our
predicted binding energies are not in absolute kBT units, they are much more negative than the
promoter background and predict a similar binding energy (in gauge fixed, arbitrary energy units) to the
binding site region of the xylE promoter.

G.5 The dgoR promoter

The last promoter we considered was associated with the expression of the dgoRKADT operon. Due to
the complexity observed, we were unable to show all data in the main text that supported our
identification of the regulatory architecture. In particular, here we show the sensitivity to the different
carbon sources considered and additional analysis of the identified regulatory binding sites for DgoR,
RNAP, and CRP.

G.5.1 The dgoR promoter is induced when cells are grown in galactose and
D-galactonate.

Prior to performing Sort-Seq on this promoter, we confirmed prior observations that expression was
sensitive to the presence of galactose and D-galactonate1,30. Using a wild-type promoter plasmid for the
dgoR promoter, cells were grown in M9 minimal media with either 0.5% glucose, 0.23% D-galactose, or
0.23% D-galactonate. Fluorescence histograms are shown in Fig. S9A, where we observed higher
expression in galactose over glucose, and even higher expression when cells were grown in D-galactonate.

G.5.2 An RNAP binding site is apparent in the downstream region of the dgoR
promoter when cells were grown in glucose.

In Fig. 7A we showed plots comparing the expression shifts upon mutation when cells were grown in
either glucose or D-galactonate. In Fig. S9B we reproduce the expression shift plots along with an energy
matrix for the region from approximately -70 to -30, which helped us to identify the RNAP binding site
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Figure S8. Extended analysis of the yebG, purT, and xylE promoters. (A) Energy matrices
were inferred for the binding sites of LexA and RNAP. Data are from cells grown in M9 minimal media
with 0.5% glucose. (B) Fluorescence histograms for a wild-type yebG promoter plasmid are shown for
cells grown in M9 minimal media with 0.5% glucose, and with or without mitomycin C (1 µg/ml).
Mitomycin C induces the SOS response28 and dramatically increases expression from the yebG promoter.
Autofluorescence histograms refer to cells that did not contain the GFP promoter plasmid. (C) DNA
affinity chromatography performed using the identified repressor site on the purT promoter. Cell lysate
was produced from cells grown in M9 minimal media with 0.5 % glucose and binding was performed in
the presence of adenine (100 µg/ml) to match the growth conditions where repression was observed. (D)
Information footprints and expression shift plots are shown for the yebG promoter in the presence or
absence of mitomycin C (1 µg/ml). Cells were grown in M9 minimal media 0.5% glucose. (E)
Fluorescence histograms are shown for the three xylE libraries (different mutated regions), with cells
grown in M9 minimal media with either 0.5% glucose or 0.5% xylose. While xylose led to differential
expression for the different libraries, cells grown in glucose were identical to autofluorescence. (F) The
energy matrix associated with two tandem putative binding sites for xylR and CRP (Fig. 6C) was
scanned across the intergenic regions of xylAB, xylFG, and xylE. The predicted energy is plotted for each
position, and a strong binding site was identified in each promoter (red arrow). For xylAB, and xylFG,
this matched the known binding sites for XylR and CRP on these promoters and their sequences and
binding energy predictions are noted below the plots. The promoters of xylAB and xylFG share the same
intergenic regions, but are in opposite coding directions. The reverse complement of the binding site
identified in the xylAB promoter also showed a strong binding energy prediction (gray arrow in xylFG
scan).
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in this region. While the -10 TATAAT motif is quite apparent, the -35 site is less clear. Interestingly,
while the -35 region shows a most energetically favorable sequence of TTTACA (close to the consensus
of TTGACA), the wild-type sequence is CCCCCC and suggests this is a weak RNAP binding site.

G.5.3 Deletion of the dgoR gene recovers the induced phenotype.

Comparing the expression shift values at each position in cells grown in either glucose or D-galactonate,
we find that they are poorly correlated (Fig. S9C, left plot). However, upon identifying DgoR as a
putative regulator in the upstream region of the promoter, we then performed Sort-Seq in a ∆dgoR
strain. This was shown in Fig. 7D with cells grown in glucose. Interestingly, the expression shifts were
much more similar to the wild-type cells grown in D-galactonate, suggesting that deletion of dgoR has
switched regulation to the induced state (Fig. S9C, right plot).

While it is unclear what causes the noisy profiles in the expression shift plots, one hypothesis was
that the different RNAP binding sites were producing at least two distinct mRNA transcriptions, whose
5’ untranslated might influence transcript stability and GFP expression. In particular, the upstream
RNAP binding site will generate a much longer 5’ untranslated region and mutations that influence
mRNA structure and stability might show up as an effect on expression within the region we considered
by Sort-Seq. Using the Salis lab ribosomal binding site calculator31 and RNA structure predictions with
NUPACK32, we predicted the secondary structure of the two expected mRNAs transcripts (Fig. S9D).
We find that the longer transcript (expected when cells are grown with D-galactonate), does indeed
predict a strong secondary structure that alter translation from this transcript.

G.5.4 Simulations of upstream promoter region identify multiple overlapping RNAP
binding sites.

Next we consider additional analysis to support the presence of overlapping RNAP sites that was noted
in Fig. 7C. Since Sort-Seq does not differentiate between multiple transcription start sites, the sorted
data will represent a mixture of all transcripts generated from the promoter. Using our RNAP energy
matrix from the relBE promoter (with an additional 1 bp spacer included to increase the distance
between -10 and -35 to 18 bp), we were able to identify multiple overlapping sequences that each
predicted a similar binding energy by RNAP. The sequence logo in Fig. 7C of the main text (top logo)
therefore likely represents the convolution of these multiple binding sites and would explain why we do
not see the conventional -35 RNAP motif in the sequence logo.

To convince ourselves that this was a reasonable hypothesis, we performed several Sort-Seq
simulations of the dgoR promoter to estimate what we may have expected if 1-3 of these identified
RNAP binding sites were functional. These simulations use energy matrices and a thermodynamic
model of regulation to predict gene expression as a function of regulatory sequence in an attempt to
mimic a real Sort-Seq experiment. The code used is available on our GitHub repository
(https://www.github.com/RPGroup-PBoC/sortseq belliveau; DOI: 10.5281/zenodo.1184169) and we
briefly describe the approach here. We began by first generating a library of five million mutated dgoR
promoter sequences (10% mutation rate). We then assumed that transcription from each RNAP is
proportional to P/NNS · e−βE where P is the RNAP copy number per cell, NNS = 4.6× 106 refers to
the number of non-specific binding sites on the genome, and β = 1/kBT , where kB is Boltzmann’s
constant and T is the absolute temperature. We introduced noise into our simulation by assuming that
the RNAP copy number P was normally distributed across our library with a mean value of 3, 000 and
standard deviation of 750 copies per cell1,33. As defined in Supplemental Section H.3.1, E represents the
binding energy as determined from the energy matrix.

Using these calculations to predict expression from each mutated sequence, the sequences were then
computationally sorted in the same manner as that performed experimentally. We did this assuming the
presence of one, two, or three active RNAP binding sites based on those identified. As shown in
Fig. S9F, the presence of three RNAP binding sites produces a result that conforms much better with
experimental results than the presence of only one RNAP binding site. Note that binding sites were
successively included into the model based on their predicted binding energies (wild-type RNAP 1: -1.99
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a.u., wild-type RNAP 2: -1.74 a.u., wild-type RNAP 3: -1.60 a.u.; versus an average of -0.14 a.u. and
standard deviation of 0.56 a.u. when the energy matrix is scanned across the promoter).

G.5.5 The presence of the class II CRP activator binding site is enhanced using strain
JK10, grown with cAMP.

Lastly, we show additional evidence to support the claim of a putative binding site for CRP. Since CRP
binds to DNA by co-activation through binding with cAMP, we used the strain JK10 (based on
TK31029; MG1655 ∆cyaA∆cpdA), where we could control binding of CRP to DNA by direct
supplement of cAMP to the growth media. Here we grew cells in EZrich MOPS media (Teknova, CA,
USA) with D-galactonate as the carbon source and supplemented with 500 µM cAMP. While the
sequence logos in Fig. 7E showed a good match with the left site of the CRP binding site, our
hypothesis here was that addition of a high concentration of cAMP might enhance the CRP motif in our
data. This appeared to be the case, and the right side of the binding site (which overlaps the -35 RNAP
binding site) shows a stronger preference for the sequence CAC than present with the wild-type E. coli
strain (important for binding by CRP in both the lac and xylE promoters).
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Figure S9. Extended analysis of the dgoR promoter. (A) Flow cytometry histograms of cells
containing a wild-type dgoR promoter plasmid are shown for cells grown in M9 minimal media with
0.5% glucose, 0.23% galactose, or 0.23% D-galactonate. (B) Identification of an RNAP binding site that
appears active when cells are grown in M9 minimal media with 0.5% glucose. The inferred energy
matrix exhibits a clear -10 RNAP binding site (consensus sequence is TATAAT) and a poor -35 binding
site (CCCCCC). (C) Expression shift values are plotted against each other (glucose vs. D-galactonate,
and ∆dgoR glucose vs. D-galactonate) for positions -120 bp to -14 bp relative to the dgoR coding gene.
Note that these are the same values used to generate the plot in Fig. 7A, just plotted against each other
for each position. ∆dgoR cells appear to have the same regulatory phenotype as cells grown in
D-galactonate, with a line of best fit showing much higher correlation between these data sets. (D)
Predicted RNA transcript structure based on the two distinct RNAP binding sites. Growth in
D-galactonate leads to the long 5’ untranslated region and is found to produce strong secondary
structure which predicts significantly lower translation rates of the dgoR gene than with the short
transcript. The ATG start codon is identified. (E) Sequence logos were generated for the most upstream
60bp region containing the putative RNAP and CRP binding sites. Data is from Sort-Seq in strain JK10
(derivative of TK31029) and binding of CRP was induced through addition of 500 µM cAMP. Cells were
grown in EZrich MOPS media (Teknova, CA, USA) with D-Galactonate as the carbon source. In
comparison to the sequence logos shown in Fig. 7C (growth in D-galactonate), the right side of the CRP
binding site is now in better agreement with the logo from the lac promoter. (F) Sequence logos are
shown for simulated data for the upstream region of the dgoR promoter assuming one, two, or three
RNAP binding sites. The top sequence logo shows the experimental result for Sort-Seq performed in a
∆dgoR genetic background, with cells grown in glucose.
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H Extended Sort-Seq data analysis details.

H.1 Calculation of expression shifts

One of the first ways we analyze the sequence data from our Sort-Seq experiment is to look at the
consequence of mutations at each position on the overall fluorescence. Specifically, at each position we
calculate the average fluorescence bin of mutated nucleotides and compare this to the average bin for all
the sequences in the data set (i.e. expression shift). Since we find that most mutations are deleterious to
the binding of transcription factors or RNAP, we can use the change in fluorescence to identify regions
associated with binding by repressors or activators and RNAP. This provides an alternative to the
information footprints calculated in Kinney et al., 2010. While the information footprints can also be
useful, the sign of the expression shifts is useful to determine the type of regulatory protein.

First we calculate the average bin for all the sequences in the data set. We let Nf be the total
number of sequences in each bin, where f refers to the bin number (f = 1, 2, 3, and 4, for four bins).
The average fluorescence bin is then given by the arithmetic average across all bins,

〈f〉 =

4∑
f=1

f · p(f) =

4∑
f=1

f · Nf∑4
f=1Nf

, (S12)

where p(f) is the fraction of sequences in bin f . Note that the denominator is just the total number of

sequences, N =
∑4
f=1Nf , and that this average will be independent of position.

Next we need to determine the average fluorescence bin of a mutated nucleotide at each position i.
Since the number of mutated nucleotides may differ at each position, we define the number of mutated
nucleotides in each bin and position as Mf,i. The subscript ‘f, i’ is used to identify which bin f and
position i are being considered. The average fluorescence bin of a mutated nucleotide can then similarly
be found,

〈fmut,i〉 =

4∑
f=1

f · pmut,i(f) =

4∑
f=1

f · Mf,i∑4
f=1Mf,i

, (S13)

where in this case, pmut,i(f) refers to the fraction of mutated nucleotides in bin f , and at position i.
Finally, we can now calculate the average fluorescence bin shift upon mutation, which is given by the

differences in Equation S13 and Equation S12,

〈∆fmut,i〉 = 〈fmut,i〉 − 〈f〉 ==

4∑
f=1

f · ( Mf,i∑4
f=1Mf,i

− Nf∑4
f=1Nf

). (S14)

Note that when we plot the fluorescence bin shift for a region where we have multiple data points (i.e.
from different mutated, but overlapping regions of the DNA), we plot the average calculated value of
〈∆fmut,i〉 from the different experiments.

We also note that it is possible to re-weight each bin by its mean fluorescence, f̃ (i.e. instead of

f = 1, 2, 3, 4, use the average fluorescence shift in arbitrary fluorescence units). Here we replace f with f̃
in Equation S14. For example, under situations where different sort conditions were used across
experiments, this re-normalization should allow better comparison of values across experiments. The
fluorescence values for f̃ can be determined by regrowing the sorted cells and measuring the mean
fluorescence of each sorted cell population.

H.2 Calculation of information footprints

Another way that we analyze the data from our Sort-Seq experiments is to calculate an information
footprint29. This allows us to identify whether there are any positions along the mutagenesis window
that are informative in relating sequence S and fluorescence bin f . Said differently, an informative
region would be one that if given some knowledge about the sequence, we should be able to predict
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which fluorescence bin the promoter sequence might be found in. The mathematical way of
implementing this intuition is to use the quantity known as the mutual information.

We can calculate the mutual information between sequence and fluorescence bin, I(bj , f), at each
position i along the mutagenesis window by calculating the fraction of each nucleotide bj (= A, C, G, T )
found within each bin f . This allows us to estimate the joint probability distribution pi(bj , f) at each
position i. For example, p10(A, 2) would denote the probability that we observe an A in the second
fluorescence bin at position i=10 along our promoter. The mutual information at each position is then
defined by,

Ii(bj , f) =

T∑
bj=A

Nf∑
f=1

pi(bj , f) log

(
pi(bj , f)

pi(bj)pi(f)

)
(S15)

where we have summed over all nucleotides and the Nf fluorescent bins that the sequences were found
in. There is also a finite sample correction that can be applied,34, since Equation S15 tends to
overestimate the true mutual information. This is given by

Ii(bj , f) =
T∑

bj=A

Nf∑
f=1

pi(bj , f) log

(
pi(bj , f)

pi(bj)pi(f)

)
−

(nbj − 1) · (nf − 1) · log2e

2 ·N
+O(N−2), (S16)

where nbj = 4 is the number of nucleotides, and nf is the number of bins that cells have been sorted into.

H.3 Inference of energy matrix models with Sort-Seq data.

In order to predict the influence of DNA sequence on binding by regulatory proteins, we use the
Sort-Seq data to generate quantitative models of the sequence-dependent binding energy. Through a
relationship between likelihood and mutual information, Kinney et al.29,35 showed that in the large data
limit it is possible to infer biophysical parameters such as the binding energies that relate the interaction
between proteins and DNA sequence. In this section we describe in detail the approach used to infer
energy matrices from our Sort-Seq data using Markov Chain Monte Carlo (MCMC). A full discussion of
MCMC is beyond the scope of this work, but we point the interested reader to further details regarding
inference using mutual information in work from Kinney et al.29,33,36. We also stress that while we
make extensive use of linear energy matrix models, the inference procedure is in no way limited to such
models and can be extended to allow, for example, epistatic effects through the addition of other
parameters. The simple linear models, however, provide us with a useful starting point to gain insight
and describe the protein-DNA interaction.

We begin with a summary of the procedure used to infer an energy matrix model using MCMC, and
use the RNAP binding site of the relB promoter as an example. The inference was performed using the
MPAthic software37. A general schematic of the procedure is shown in Supplemental Fig. S10. More
specific details are then discussed in the following subsections. First we must initialize a 4xL set of
energy parameters, Θ = {θi,j}, for a binding site of length L and four base pairs (see Supplemental
Fig. S10, part 1). We begin by randomly selecting parameter values for our energy matrix with which to
initialize the MCMC. Here we select values from a normal distribution centered at zero with variance
equal to 1, although this choice does not appear to be too critical and rather, just provides us with a
starting point for our MCMC chain. Using this energy matrix we then estimate the mutual information
between the binned sequences and the associated set of energy model predictions. As shown in
Supplemental Fig. S10, part 2, initially the energy matrix will be of little value in describing the
observed sequence data since it was randomly chosen. This is shown by the almost uniform joint
probability distribution and low mutual information in Supplemental Fig. S10A, and Fig. S10B.

We now begin the MCMC by perturbing the energy matrix parameters using the
Metropolis-Hastings algorithm with the PyMC package in Python38 (within the MPAthic software37).
After each step of the chain, we re-calculate the mutual information between the data and new model
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predictions, which allows us to calculate how well this new set of energy matrix parameters describe the
data. Dependent on whether the new energy matrix parameters lead to an improvement in mutual
information, these new parameters are either retained or discarded and the process is repeated (again,
according to the Metropolis-Hastings algorithm38). As discussed in Supplemental Section H.3.1, we also
renormalize the matrix entries to constrain certain gauge freedoms after each iteration.

After a sufficient number of steps, and assuming that a model exists that can describe the Sort-Seq
data, we will arrive at a model whose joint probability distribution between model predictions and
binned sequences show a clear correlation. This is shown by the joint probability distribution in
Supplemental Fig. S10C, as well as the plateau in the mutual information trace in Supplemental
Fig. S10A, since changes to the energy matrix parameters are unable to increase the mutual information
any further. In this first portion of MCMC we have performed many samplings to reach a high
probability region where the energy matrix will be more representative of the distribution we are
sampling from. This first step is usually referred to as the ‘burn-in’ period38 and allows us to begin
sampling from the distribution, p(Θ|data) (defined in Supplemental H.3.2), that describes the
distribution of energy matrix model parameters.

Finally, now that we are sampling from the desired distribution, we can estimate energy matrix
parameters just by sampling this distribution many times. This brings us to part 3 of Supplemental
Fig. S10. While the mutual information no longer shows a substantial change, the parameters of the
energy matrix are continuing to be perturbed following the Metropolis-Hastings algorithm, and
according to the distribution p(Θ|data). We can now estimate each entry in the energy matrix by taking
the arithmetic mean of the matrix parameters across all the sampling steps. This is shown by a set of
contour plots and marginalized distributions for the binding energy parameters from column five of the
RNAP energy matrix (Fig. S10D). To ensure that multiple energy minima were not present in this
energy landscape, we repeated the inference procedure 20 times and used the average across all
appropriate MCMC chains to estimate the energy matrix parameters. The calculated mutual
information will be indifferent the particular sign of the energy matrix and adjust the energy matrices
such that the wild-type sequence has a negative predicted binding energy and check that energy
predictions from the energy matrices from each MCMC are correlated (keeping energy matrices that
provide a Pearson correlation coefficient of 0.85 or greater across model predictions). Note that for
inference of parameters using thermodynamic models, separate from these energy weight matrices, we
did find the presence of multiple minima and apply a parallel tempering MCMC procedure to properly
sample these distributions (see Supplemental H.3.4 for more detail).

Using the schematic in Supplemental Fig. S10 as our guide, the sub-sections that follow expand on
the details introduced here to perform this inference procedure. In particular, we begin by describing the
linear energy matrix model (Supplemental Section H.3.1). We then outline the Bayesian approach taken
to formally write the posterior distribution, p(Θ|data), that provides us with a relationship between the
energy matrix parameters and observed sequence data (Supplemental Section H.3.2). When sampling
this distribution we need to estimate mutual information at each iteration of the MCMC sampling
procedure, and describe how to calculate it in Supplemental Section H.3.3.

H.3.1 Linear energy matrix models are used to describe DNA-protein interaction.

We begin by outlining the linear energy matrix model shown in Fig. S10A that describes the binding
interaction between the DNA and a DNA-binding protein. We treat each base pair position j along a
binding site as contributing a certain amount to the binding energy, where the total binding energy is
then the sum of the contributions from all base pairs. Mathematically the energy matrix model is
described by a 4xL matrix, Θ, consisting of energy parameters {θij}. Here each column j of matrix
parameters will represent the energies for each nucleotide i = A,C,G, or T (= 1, 2, 3, or 4) associated
with position j of the binding site. For example, θ2,3 represents the energy parameter for nucleotide C
at position 3. To make our computation of binding energies more convenient, we also represent our DNA
sequence as another matrix, S, having identical dimensions, 4xL. This matrix consists of parameters
{sij}, where the ijth entry again corresponds to the the nucleotide identity i and sequence position j.
Each parameter will have a value of 1 if it corresponds to the sequence’s nucleotide identity at position j,
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Figure S10. Schematic of the inference procedure used to determine energy matrices
from Sort-Seq data using Markov Chain Monte Carlo. 1. To begin the inference of a set of 4xL
model parameters, {θij}, are chosen from a normal distribution. (A) Example set of parameters used to
initialize the MCMC sampling. Matrix entries are first normalized such that energy predictions have
mean of zero and standard deviation of one. For plotting energy matrices, each column has been shifted
such that the wild-type sequence has zero energy. The associated sequence logo is shown above the
energy matrix. (B) Estimated joint probability distribution between fluorescence bin and rank order
energy predictions using the energy matrix in (A), using all sequences in the rel promoter data set. The
bottom plot shows, the histogram of rank ordered predictions of only bin four, corresponding to the red
boxed region, which is nearly uniform due to the randomly chosen matrix entries used to predict
energies from each sequence. Since the matrix parameters were randomly chosen, the nearly uniform
distribution results in low mutual information (0.7 mbits, where 1 mbit = 10−3 bits) between
fluorescence bin and rank order energy predictions. (Caption continued on next page)
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Figure S10. (continued from previous page) 2. MCMC sampling of the energy matrix model is
performed using the Sort-Seq data associated with the rel RNAP binding site. (C) The log posterior,
Eq. (S20), is plotted for the first 1000 iterations and corresponds to the ‘burn-in’ period. The log
posterior is proportional to the mutual information between fluorescent bin and rank order energy
predictions (see Appendix H.3.3). During each sampling iteration, the parameters will be retained or
discarded with some probability given by the the Metropolis-Hasting algorithm38. (D) The energy
matrix and sequence logos are shown using the set of parameters at the 1000th iteration. (E) Estimated
joint probability distribution between fluorescence bin and rank order energy predictions using the
energy matrix in (D). The energy matrix provides energy predictions for each sequence that clearly
distributes across the sorted bins and results in much higher mutual information (274 mbits). 3. Finally,
matrix parameters are estimated by continuing to sample the posterior distribution many more times
and determined from a weighted average of these samples. (F) The log posterior is plotted for the entire
set of MCMC iterations. The sampled model parameters during the shaded region are used to
estimation each matrix entry. (G) The mean energy matrix entries from these samples are plotted. (H)
Contour plots and marginalized distributions summarize the sampled values for each of the four
parameters at position five of the RNAP energy matrix. Note that entries in (G) have been shifted such
that the wild-type nucleotide has zero energy.

and a value of 0 otherwise. For example, for a sequence with a C at position j = 4, the entry s2,4 = 1
and si=1,3,4,j=4 = 0. The binding energy, E, of any sequence, S, will then be given by

E =

T∑
i=A

L∑
j=1

θij · sij . (S17)

One aspect we have not considered thus far is the scale of the energy parameter. When considering
binding between between DNA and a DNA-binding protein, a statistical mechanical approach would
suggest that the probability of such an event occurring will be given by the Boltzmann factor,
e−εs/(kBT )16. Here εs is the binding energy that describes this interaction in absolute energy units (e.g.
units of kBT ; 1 kcal/mol = 1.62 kBT at 37◦C), kB is the Boltzmann constant, and T is temperature. In
relation to the binding energy, E, described by our Equation S17 above, εs = A · E +B, where the
constant A scales the energy matrix into absolute energy units, while B provides an additive shift that
depends on the choice of reference energy. Here, the matrix entries that are used to calculate E are
‘gauge fixed’ such that the mean energy in each column is set to zero and the matrix norm (or inner
product) has a value of 1. Note however that when plotting each energy matrix we find it useful to shift
the energy in each column such that the wild-type sequence has zero energy.

When fitting the data to a model of the form e−εs/(kBT ), the fitting procedure is unable to determine
the scale factors A and B noted above. For example, in most instances we report energy values in
arbitrary units. This is consequence of the fitting procedure, where in the absence of a specific
thermodynamic model, there remain some scale parameters that cannot be determined29. This
parameter insensitivity has been termed ‘diffeomorphic modes’ and is discussed at length in other
work36. One especially interesting aspect of this is that when considering biophysical models of
regulation, diffeomorphic modes often disappear and make it possible to infer parameters that were not
accessible by fitting simpler models. For the cases of repression by PurR at the purT promoter, or
activation by CRP at the dgoR promoter, this allowed us to estimate binding energy in absolute energy.
We discuss this further in Supplemental Section H.3.4.

H.3.2 Probability distribution relating energy matrix model parameters to the Sort-Seq
data.

Given our FACS-sorted sequence data, we want to find the set of energy matrix parameters that best
describe the distribution of sequences across our fluorescence bins (i.e. parameters that provide binding
energy predictions that describe the data as shown in Supplemental Fig. S10C). To perform this
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inference we take a Bayesian approach in our analysis, and as mentioned earlier, rely on MCMC to
sample from the complex distribution relating our energy matrix parameters to the sequence data.
While a full discussion of Bayesian analysis is outside the scope of this section, the book, Data Analysis
by Sivia and Skilling39, and online material available from the Caltech course, BE/Bi 103: Data analysis
in the biological sciences, taught by Justin Bois (http://bois.caltech.edu/teaching.html), are excellent
resources.

Formally, we want to find the set of energy matrix parameters that maximize the probability
distribution of our energy predictions (through our energy matrix model) given our Sort-Seq sequence
data, p(E|{S, f}), where {S, f} refers to our array of N sequences S and the bin f where they were
found (referred to as the ‘data’ in the initial summary of the inference procedure). xS is the binding
energy as defined in Equation S17. From Bayes’ theorem, we can re-write this distribution as,

p(E|{S, f}) =
p({S, f}|E)p(E)

p({S, f})
∝ p({S, f}|E)p(E), (S18)

where the term p({S, f}|E) is called the likelihood, and p(E) is known as the prior and encompasses our
prior knowledge on the energy matrix parameters. The denominator p({S, f}) is known as the
marginalized likelihood and acts as a normalization factor, but is unimportant for our inference.

To proceed we follow the approach of Kinney et al.29,35. We assume a uniform prior over the energy
matrix model parameters. In addition, we also assume our sequence measurements are independent.
The second assumption allows us to write p({S, f}|E) as the product of probabilities across all

sequences contained within our data set, p({S, f}|E) =
∏N
s=1 p((Si, fi)|E). This is also referred to as

the error model since by relating the binned sequence data to binding energy, it must also encompass
the additional noise sources from our experiment that actually led to our array of sequence data. Noise
sources that might influence this include the sensitivity of the FACS GFP measurements, and the rate of
mis-sorting events. Expression variability due to stochastic gene expression, differences in cell size, and
plasmid copy number fluctuations are also likely to contribute. However, since these are not known
exactly, Kinney et al. computed the likelihood by averaging over an ensemble of all possible error
models. Using a uniform prior over the possible error models they found,

p({S, f}|E) =

〈
N∏
s=1

p((Si, fi)|E)

〉
all possible p(Si,fi|E)

= C · 2N ·(I(f,E)+∆), (S19)

where N is the total number of sequences considered, I(f,E) is the mutual information between the
observed fluorescence bins and binding energies predicted by the energy matrix for all the sequences,
and C is a constant of integration that will be unimportant to us. Here, ∆ is a small correction that
goes to zero as N goes to infinity35. Inserting Equation S19 into Equation S18, we can write,

p(E|{S, f}) ∝ 2N ·I(f,E). (S20)

Here we have assumed that N is sufficiently large so that the prior (which does not scale with N), as
well as the ∆ term in Equation S19 can be ignored. To reiterate in reference to our MCMC procedure
(shown in Supplemental Fig. S10), this is the probability distribution that we are sampling from to find
the set of energy matrix parameters that describe our sorted sequence data set. The mutual information
values shown in the plots of Fig. S10C, F (mutual information traces in part 2 and 3) are reflected by
our choice of energy matrix parameters. MCMC enables us to sample from the distribution and
essentially find the set of matrix parameters that maximize this mutual information. In the next section
we continue by describing how we estimate mutual information.

H.3.3 Estimating mutual information using the energy model predictions.

In the last section we found that the energy matrix parameters should be related to the data through
Equation S20. By performing many samples from this distribution using MCMC, it is possible to
estimate the most probable energy matrix parameters, θi,j , that make up our energy matrix. Here we
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consider how to estimate the mutual information term in Equation S20 needed for our calculation.
While a non-trivial problem in general, the following approach appears to work well in practice. In this
case the fluorescence bins, f , are discrete variables while our binding energies, E, are continuous, with
the mutual information given by,

I(f,E) =

∫ E=∞

E=−∞
dE
∑
f

p(f,E) log2

p(f,E)

p(E) · p(f)
. (S21)

In our sequence data set, we can easily estimate p(f) by counting the number of sequences in each
fluorescence bin. However, we do not have direct access to the probability distribution p(E) a priori.

To proceed, we further bin our N sequences into 1000 bins, by rank ordering them by their
associated binding energy predictions (using the energy matrix of the current MCMC step). This
provides us with an estimate of the probability distribution in binding energy across our sequences.
Specifically, this is shown for fluorescence bin 4 in Supplemental Fig. S10B and E. While this is not a
direct estimate of p(E), we invoke the fact that the mutual information will be invariant under
monotonic transformations (I(f,E) = I(f, zs))

29. Hence, instead of calculating I(f,E), we instead
calculate I(f, zs), where zs is instead the ranked ordering of the N sequences.

In order to calculate the mutual information we now construct a 2-d histogram (joint distribution) by
binning the rank ordered energy predictions into zs = 1 to 1000 bins across each of the different
fluorescence bins. We define this by the frequency matrix F (f, zs), and from our finite data set, use
kernel density estimation with a kernel width equal to 4% to estimate the joint distribution. This is
what is plotted in Supplemental Fig. S10B, and E, where the mutual information is then calculated as,

I(f, zs)smooth =

1000∑
zs=1

∑
f

F (f, zs) log2

F (f, zs)

F (zs) · F (f)
. (S22)

H.3.4 Inference of thermodynamic model parameters using parallel tempering Markov
chain Monte Carlo (MCMC).

So far, we have applied MCMC using an error-model-averaged likelihood to infer the parameters of an
energy matrix. One limit initially observed by Kinney et al.29 was an inability of the fitting procedure
to constrain certain parameters (due to free diffeomorphic modes, noted earlier). Interestingly however,
it was found that certain diffeomorphic modes often disappear when fitting the Sort-Seq data to
non-linear models. For a thorough discussion of diffeomorphic modes refer to the work of Kinney et al.40.
We applied this strategy in several of our data sets from the purT, dgoR, and xylE, where specific
thermodynamic models appeared appropriate. Here we briefly outline the models used and the main
results from our MCMC analysis.

We begin with the purT promoter. Here we identified an RNAP binding site that is repressed by
PurR, which binds between the -10 and -35 RNAP sites. Given the presence of only these two binding
sites, we modeled the promoter as having a simple repression architecture16. Some additional complexity
arises due to the presence of other PurR binding sites on the genome, and the allosteric dependence of a
purine metabolite for co-repression. Following the approach of Weinert et al.15, this can be
quantitatively described by,

Pbound =
λpe
−βεp

1 + λpe−βεp + λre−βεr
. (S23)

Here λp and λr represent the fugacity, which describes the relative availability of RNAP and PurR,
respectively, to bind their binding sites. These parameters depend on the concentration of each protein
(through their chemical potentials), and for PurR, will also depend on its allosteric state. εp and εr
represent the binding energies of RNAP and PurR to their binding sites, respectively.

As noted in Supplemental Section H.3.1, we can also describe each binding energy through the
gauge-fixed energy matrix prediction (see Section H.3.1), which is multiplied by a scale factor and
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additive shift (e.g. εr = Ar · xr +Br, where Ar is the scale factor, xr is the energy matrix prediction,
and Br is the additive shift). To being fitting to the model described by Equation S23, we first inferred
the energy matrices for RNAP and PurR following the MCMC procedure noted above. We then
performed a second MCMC to fit the remaining thermodynamic parameters. In this second MCMC we
sampled using error-model-averaged likelihood against the posterior p(Pbound|{S, f}). This allowed us to
infer the following parameters: Ar = −11.55+0.2

−0.5kBT , λre
−βBr = e0.64+0.1

−0.3, and Ap = 2.4+0.4
−0.1kBT , where

Ap is the RNAP scale factor. Here the error bars represent the median of their respective distributions,
where the superscripts and subscripts represent the upper and lower bounds of the 95th percentile of the
parameter value distributions. Note that in this second MCMC, we performed parallel tempering
MCMC (using the PTSampler in package emcee,41) to better sample the posterior distributions of our
thermodynamic parameters (see supplemental of Kinney et al, 2010).

Next we consider the dgoR promoter. While we found the promoter to be quite complex, here we use
data from the JK10 strain (see Section G.5) where activation by CRP appeared to dominate
transcription. Here we apply the model used by Kinney et al.29, which consists of a binding site for
RNAP and CRP, but also includes an interaction energy between these two proteins. Again using
fugacity terms to describe the availability of each protein, this will be given by,

Pbound =
λpe
−βεp + λa · λpe−β(εp+εa+εi)

1 + λpe−βεp + λae−βεa + λa · λpe−β(εp+εa+εi)
. (S24)

In this architecture we have the fugacity λa for the activator CRP and its binding energy to the binding
site, εa. In addition, there is an additional energy term εi that describes the interaction between RNAP
and CRP. Again, we can write εp = Ap · xp +Bp. We can also write the CRP binding energy as
εa = Aa · xa +Ba, where similarly, Aa is the scale factor, xa is the gauge-fixed energy prediction, and
Ba is an additive shift. Using parallel tempering MCMC to sample p(Pbound|{S, f}), we obtained the
following values: εi = −7.3+1.9

−1.4kBT , Aa = −13.6+2.6
−2.2kBT , λae

−βBa = e−1.89+0.4
−0.6, and

Ap = −12.7+3.4
−2.8kBT . As with the purT case above, the error bars represent the median of their

respective distributions, where the superscripts and subscripts represent the upper and lower bounds of
the 95th percentile of the parameter value distributions.

Lastly we consider the xylE promoter. This promoter contains two XylR sites which are likely bound
as a dimer42. There is also a CRP site directly upstream of the xylR sites. The binding signature of
CRP is only observed for the right half of the binding site, implying the left half of the protein does not
make as significant DNA contact. Since CRP still has a powerful impact on gene expression, it suggests
that there is a cooperative interaction between xylR and the weak CRP site. The short distance
between the xylR sites and the RNAP also suggests that there is a direct interaction between the xylR
sites and the RNAP. In addition, there is also a spacing between the RNAP polymerase and the CRP
site of 35 bp (approximately three helical turns of the DNA). For this spacer length in the lac promoter
there is a expected to be a significant interaction energy even in the absence of XylR43,44. A
thermodynamic model of RNAP polymerase binding probability for this architecture will be

Pbound =
f(λp, λx, λc, εp, εx, εc, εxi

, εci , εcxi
)

g(λp, λx, λc, εp, εx, εc, εxi
, εci , εcxi

)
, (S25)

where

f(λp, λx, λc, εp, εx, εc, εxi , εci , εcxi) = λpe
−βεp + λpλxe

−β(εp+εx+εxi
)

+λpλce
−β(εp+εc+εci ) + λpλcλxe

−β(εp+εx+εc+εci+εxi
+εcxi

)(S26)

g(λp, λx, λc, εp, εx, εc, εxi , εci , εcxi) = 1 + λxe
−βεx + λce

−βεc + λxλce
−β(εx+εc+εcxi

)

+λpe
−βεp + λpλxe

−β(εp+εx+εxi
)

+λpλce
−β(εp+εc+εci )

+λpλcλxe
−β(εp+εx+εc+εci+εxi

+εcxi
) (S27)
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Here, the λx and εx terms mark the fugacity and binding energy of XylR respectively. The λc and εc
represent the fugacity and binding energy of CRP, and λp and εp do the same for RNAP. The terms εxi

,
εci , and εcxi

are interaction terms between XylR and RNAP, CRP and RNAP, and CRP and XylR,
respectively.

Due to the position of the library windows (with a 60 bp window containing the two XylR binding
sites, but only partial binding sites for CRP and RNAP), we were unable to fit this model to the data.
The fitting procedure requires sequences with mutations throughout the multiple binding sites and
further experimentation will be needed to fit and characterize the proposed model further.

I Extended experimental details

In this section we provide additional details to describe the specifics of the work flow. In general, an
experiment is begun by constructing the mutated promoter libraries for Sort-Seq. Next transform
libraries into cells and use FACS to sort by fluorescence. Using putative regulatory sequences identified
by Sort-seq, we perform DNA affinity chromatography and mass spectrometry, which is necessary to
identify the transcription factors that bind to these putative binding sites.

I.1 E. coli strain construction

Here we describe the approach used to generate these deletion strains. Briefly, an overnight culture of
MG1655 containing the plasmid pSIM6 was diluted 1:100 in 50 ml LB media and grown to an OD600 of
≈ 0.4 at 30◦C. The culture was immediately placed in a water bath shaker at 43◦C for 15 minutes and
then cooled in an ice bath for 10 minutes. Cells were then spun down for 10 minutes (4,000 g, 4◦C) and
resuspended on ice in 50 ml of chilled water. This was repeated three times before resuspending in 200
µL of chilled water to generate competent cells. Homologous primer extension sequences for the
appropriate gene were obtained from Baba et al.45 and used to generate linear DNA containing a
kanamycin resistance gene insert by PCR, which contained homology for the region on the chromosome
to be deleted46. Electroporation of the competent cells was performed using 1 µL purified PCR product
(about 100 ng DNA), mixed with 50 µL cells. Cells were immediately resuspended in 750 µL SOC media
and placed on a shaker at 30◦C for outgrowth, for 90-120 minutes. Cells were then plated on an LB-agar
plate containing kanamycin (30 µg/ml) and grown overnight at 30◦C. The deletions were confirmed by
both colony PCR and sequencing. After confirmation, the deletion was transferred to a clean MG1655
strain through P1 transduction and selection on kanamycin. In the case of the lysine auxotrophic strain,
we also confirmed deletion of lysA by checking that the cells were unable to grow in M9 minimal media
unless lysine was supplemented (40 µg/ml).

To generate strains with different LacI tetramer copy numbers per cell (associated with data in
Fig. S5C), the LacI constructs from Garcia et al.21 were P1 transduced into the ∆lacIZY A strain
(integrated at the ybcN locus).

I.2 Sort-Seq library construction

Mutagenized single-stranded oligonucleotide pools were purchased from Integrated DNA Technologies
(Coralville, IA), with a target mutation rate of 9%. Note that in the case of the lacZ promoter, the
library is identical to that used in the experiments of Razo-Mejia et al.47, and had a mutation rate of
approximately 3%.

Note that to assemble PCR amplified library inserts with the plasmid backbone, we used Gibson
assembly48 (New England Biolabs, MA, USA). Otherwise, we follow the approach of Kinney et al. and
amplify the backbone using a template plasmid containing the toxic gene ccdB (located where the
library was to be inserted). This helped ensure that no template plasmid was propagated into the final
plasmid library (see methods in reference29 for more detail).

For each library construction, 40 ng of insert and 50 ng of backbone were combined in a 20 µL
Gibson assembly reaction. To achieve high transformation efficiency, reaction buffer components from
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the Gibson Assembly reaction were removed by drop dialysis and cells were transformed by
electroporation of freshly prepared cells. Following an initial outgrowth in 1 mL of SOC media, cells
were diluted into 50 mL of LB media and grown overnight under kanamycin selection. Transformation
typically yielded 106 − 107 colonies as assessed by plating 100 µL of cells diluted 1:104 onto an LB plate
containing kanamycin.

I.3 Sort-Seq experiments

Cells were grown to saturation in LB and then diluted 1:10,000 into the appropriate growth media for
the promoter under consideration. For cells grown in 0.23% D-galactonate in M9 minimal media,
D-galactonate appeared to form precipitates, but cells otherwise appeared to grow normally. Upon
reaching an OD600 of about 0.3, the cells were washed two times with chilled PBS by spinning down the
cells at 4000 rpm for 10 minutes at 4◦C. After washing with PBS, they were then diluted twofold with
PBS to an OD of 0.1-0.15. This diluted cell solution was then passed through a 40 µm cell strainer to
eliminate large clumps of cells.

A Beckman Coulter MoFlo XDP cell sorter was used for all Sort-Seq experiments. Prior to sorting,
we would obtain fluorescence histograms using between 200,000 and 500,000 cell events per culture.
These histograms were used to set the four binning gates, which each covered ∼ 15% of the histogram.
During sorting of each library, 500,000 cells were collected into each of the four bins. Finally, sorted cells
were re-grown overnight in 10 ml of LB media, under kanamycin selection.

I.4 Sort-Seq sequencing

The plasmid from cells in each bin were miniprepped following overnight growth (Qiagen, Germany).
PCR was used to amplify the mutated region from each plasmid for Illumina sequencing, adding
Illumina adapter sequences and custom barcode sequences. Sequencing was performed by either the
Millard and Muriel Jacobs Genetics and Genomics Laboratory at Caltech (HiSeq 2500) or NGX Bio
(NextSeq sequencer; San Fransisco, CA). Single-end 100bp or paired-end 150bp flow cells were used,
with a target read count of about 500,000 sequences per library bin. Joining of paired-end reads was
performed with the FLASH tool49. For quality filtering, we collected sequences whose barcodes had a
PHRED score greater than 20 at each position. Some libraries also contained non-mutagenized regions,
and sequences that did not contain the expected sequence were excluded from our analysis. The total
number of useful reads available to produce expression shift plots, energy weight matrices, and sequence
logos from each Sort-Seq experiment generally ranged between 300,000 to 2,000,000 reads. Energy
matrices were inferred using Bayesian parameter estimation with an error-model-averaged likelihood as
previously described29,36, using the MPAthic software37. A more detailed description of the data
analysis procedures is available in Section H.

I.5 DNA affinity chromatography and mass spectrometry

Here we provide additional details on SILAC incorporation, preparation of DNA-tethered magnetic
beads, and the LC-MS/MS method.

I.5.1 Lysate preparation and SILAC incorporation

SILAC labeling50–52 was implemented by growing cells in either the stable isotopic form of lysine
(13C6H14

15N2O2), referred to as the heavy label, or natural lysine, referred to as the light label. By
differentially labeling cell lysates we were able to simultaneously quantify the abundance of protein
between two DNA affinity purification samples (i.e. one using a target binding site sequence and
another as a reference control). This allows us to identify whether any protein shows a preference for the
target binding site sequence. Cell lysates were prepared using MG1655 ∆lysA cells. For each heavy and
light labelled cells, 500 ml M9 minimal media was inoculated 1:5,000 with an overnight LB culture of
∆lysA cells, and grown to an OD600 of ≈ 0.6 (supplemented with the appropriate lysine; 40 µg/ml).
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Cultures were pelleted, and lysed using a Cell Disruptor (CF Range, Constant Systems Ltd., UK) and
concentrated to ∼150 mg/ml using Amicon Ultra-15 centrifugation units (3kDa MWCO, Millipore).

To generate each lysate an overnight starter culture of cells was grown in LB media supplemented
with kanamycin (30 µg/ml). An aliquot was washed twice in M9 minimal media and resuspended to an
OD600 of ≈1.0. For both heavy and light labeling, 500 ml M9 minimal media was then inoculated at
1:5,000 and grown to an OD600 of ≈0.6 (supplemented with the appropriate lysine; 40 µg/ml). Cultures
were pelleted using an ultracentrifuge (8,000 g, 40 minutes) at 4◦C and resuspended in chilled 20 ml
lysis buffer containing 1% (w/v) n-dodecyl-beta-maltoside. The pellets could also be stored at -80◦C for
later use. Cells were then lysed with a Cell Disruptor (CF Range, Constant Systems Ltd., UK) and
following removal of debris by centrifugation, concentrated to ∼150 mg/ml using Amicon Ultra-15
centrifugation units (3kDa MWCO, Millipore). This provided about 600 µl of lysate, suitable for about
six 80 µl DNA affinity purifications. Total protein concentration was assayed using the Bradford reagent
(Sigma-Aldrich, St. Louis, MO). Following adjustment of protein concentration, sheared salmon sperm
competitor DNA was added to the lysates (1 µg/ml; Life Technologies, Carlsbad, CA) and incubated for
10 minutes at 4◦C. Finally, following centrifugation at 14,000 g to remove insoluble matter, the cell
lysates were incubated for 1 hour with washed magnetic beads that contained no tethered DNA (0.5 mg
beads per 100 µl lysate). Lysates were then either placed on ice or stored at 4◦C prior to use.

Before performing affinity chromatography experiments, we also confirmed heavy lysine was being
incorporated. Here, MG1655 ∆lysA::kan cells from an overnight M9 minimal media culture were diluted
1:200 and 1:1,000, and grown in 1 ml M9 minimal media supplemented with 40 µg/ml heavy lysine.
Following approximately 7 and 10 cell divisions, cells were resuspended in lysis buffer (50 mM HEPES
pH 7.5, 70 mM potassium acetate, 5 mM magnesium acetate, 0.2% (w/v) n-dodecyl-beta-D-maltoside,
Roche protease inhibitor cOmplete tablet) and lysed by performing 10 freeze-thaw cycles with dry ice.
Cellular debris was removed by centrifugation at 14000 g at 4◦C on a tabletop centrifuge. Finally
cellular lysates were prepared for mass spectrometry by in-solution digestion with endoproteinase Lys-C
(Promega, Madison, WI). Digestion was performed as described elsewhere53 and labeling of the heavy
isotope was confirmed by mass spectrometry measurement. In addition, we also characterized the
SILAC enrichment ratio measurement by directly combining measurements from heavy and light lysates
over a range from 0.1:1 to 1,000:1 heavy:light (see Section E).

I.5.2 Preparation of DNA-tethered magnetic beads

DNA affinity chromatography was performed by incubating cell lysate with magnetic beads (Dynabeads
MyOne T1, ThermoFisher, Waltham, MA) containing tethered DNA. The DNA was tethered through a
linkage between streptavidin on the beads and biotin on the DNA. Note that single-stranded DNA was
purchased from Integrated DNA Technologies with the biotin modification on the 5’ end of the
oligonucleotide sense strand.

To begin preparation of tethered beads, DNA was suspended in annealing buffer (20 mM Tris-HCl,
10 mM MgCl2, 100 mM KCl) to 50 µM. Complementary strands were annealed by mixing 30 µL of the
sense strand and 40 µL of the complement strand. Excess complement strand ensured all
biotinylated-DNA would be in a double stranded form. Annealing was then performed using a
thermocycler: 90◦C for 5 minutes, gradient from 90◦C to 65◦C @ 0.1C /sec, incubated for 10 minutes at
65◦C and allowed to return to room temperature on the thermocycler. Prior to attaching DNA, 150 µL
beads were washed twice with 600 µL TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA) and then twice
with DW buffer (20 mM Tris-HC pH 8.0, 2 M NaCl, 0.5 mM EDTA18). Approximately 640 pmol of
DNA were then diluted to 600 µL in DW Buffer and incubated with the washed beads overnight at 4◦C
and on a rotatory wheel. Bound DNA was measured by determining the DNA concentration before and
after incubation with beads using a NanoDrop (ThermoFisher, Waltham, MA). Finally, beads were
washed once with 600 µL TE buffer and three washes of 600 µL DW buffer, and resuspended in 150 µL
DW buffer.

S35/S40



DNA affinity chromatography

DNA affinity chromatography was performed by incubating cell lysate with magnetic beads (Dynabeads
MyOne T1, ThermoFisher, Waltham, MA) containing tethered DNA. The DNA was tethered through a
linkage between streptavidin on the beads and biotin on the DNA. Single-stranded DNA was purchased
from Integrated DNA Technologies with the biotin modification on the 5’ end of the oligonucleotide
sense strand. Prior to DNA affinity purification the DNA tethered beads were incubated with blocking
buffer (20 mM Hepes, pH 7.9, 0.05 mg/ml BSA, 0.05 mg/ml glycogen, 0.3 M KCl, 2.5 mM DTT, 5
mg/ml polyvinylpyrrolidone, 0.02% (w/v) n-dodeyl-β-D-maltoside; about 1.3 ml/mg beads18) for one
hour at 4◦C for passivation. Excess blocking buffer was removed by washing the beads twice with 600
µL lysis buffer.

Cell lysates were incubated on a rotating wheel with the DNA tethered beads overnight at 4◦C.
Beads were recovered with a magnet and washed three times using an equivalent volume of lysis buffer.
The beads were then washed once more, but with NEB Buffer 3.1 (New England Biolabs, MA, USA).
Both purifications (with the target DNA and reference control) were combined by resuspending in 50 µL
NEB Buffer 3.1, and 10 µl of the restriction enzyme PstI (100,000 units/ml, New England Biolabs) was
added and incubated for 1.5 hours at 25◦C. PstI cleaves the sequence CTGCAG, which was included
between the biotin label and binding site sequence, allowing the DNA to be released from the magnetic
beads. The beads were then removed and the samples prepared for mass spectrometry by in-gel
digestion with endoproteinase Lys-C.

Note that in general, proteins were purified from a heavy lysate using DNA containing the target
binding site sequence, while devoting the light lysate to a control DNA sequence. However, for our LacI
and RelBE experiments, we also performed the alternative scenario, using the target sequence with the
light lysate, and did not observe notable differences.

In-gel digestion of purified protein samples

Protein samples were diluted with 4x SDS-PAGE sample buffer and incubated for five minutes at 95◦C
and loaded on a SDS-PAGE gel (Any kD Mini-PROTEAN TGX Precast Protein Gels, 10-well , 50 µl;
BioRad, CA, USA). Electrophoresis was performed for 45-55 minutes (200V) to provide 1-D size
separation, and stained using the Colloidal Blue Staining Kit (ThermoFisher Scientific, MA, USA) for
visualization. Destaining was performed with 100 mM ammonium bicarbonate, and the gel was cut into
four sections, each of which was cut into roughly 1 mm pieces for in-gel digestion. The gel pieces were
reduced, alkylated, and digested by endoproteinase Lys-C overnight at 37◦C. This enzymatically cleaves
proteins after lysine residues and is necessary for determining whether detected peptides are from the
light or heavy lysine labeled purification. Digested peptides were then extracted from the gel and
lyophilized. The peptide samples were further purified using StageTips to remove residual salts54 and
re-suspended in 0.2% formic acid.

I.5.3 LC-MS/MS method details

Liquid chromatography tandem-mass spectrometry (LC-MS/MS) experiments were carried out as
previously described55.

The LacI target purification experiments were performed on a nanoflow LC system, EASY-nLC II
coupled to a hybrid linear ion trap Orbitrap Classic mass spectrometer equipped with a Nanospray Flex
Ion Source (Thermo Fisher Scientific). The in-gel digested peptides were directly loaded at a flow rate of
500 nl/min onto a 16-cm analytical HPLC column (75 µm ID) packed in-house with ReproSil-Pur
C18AQ 3 µm resin (120 Å pore size, Dr. Maisch, Ammerbuch, Germany). The column was enclosed in a
column heater operating at 45◦C. After 30 min of loading time, the peptides were separated in a solvent
gradient at a flow rate of 350 nl/min. The gradient was as follows: 0–30% B (80 min), and 100% B (10
min). The solvent A consisted of 97.8% H2O, 2% ACN, and 0.2% formic acid and solvent B consisted of
19.8% H2O, 80% ACN, and 0.2% formic acid. The Orbitrap was operated in data-dependent acquisition
mode to automatically alternate between a full scan (m/z=400–1600) in the Orbitrap (resolution
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100,000) and subsequent 15 CID MS/MS scans (Top 15 method) in the linear ion trap. Collision induced
dissociation (CID) was performed at normalized collision energy of 35% and 30 msec of activation time.

All other measurements were performed on a hybrid ion trap-Orbitrap Elite mass spectrometer
(Thermo Fisher Scientific), which provided greater detection sensitivity and other fragmentation
techniques as described. The Orbitrap was operated in data-dependent acquisition mode to
automatically alternate between a full scan (m/z=400–1,800) in the Orbitrap (resolution 120,000) and
subsequent 5 MS/MS scans also acquired in Orbitrap with 15,000 resolution. The MS/MS spectra were
acquired for the top 5 ions alternating between higher collision dissociation (HCD) and electron transfer
dissociation (ETD) fragmentations that are well suited for higher charge peptides. Higher collision
dissociation was performed at a normalized collision energy of 30% and electron transfer dissociation
reaction time was set to 100 msec. The analytical column for this instrument was a PicoFrit column
(New Objective, Woburn, MA) packed in house with ReproSil-Pur C18AQ 1.9 µm resin (120Å pore size,
Dr. Maisch, Ammerbuch, Germany) and the column was heated to 60◦C. The peptides were separated
either with a 90 or 60 min gradient (0-30% B in 90 min or 0-30% B in 60 min) at a flow rate of 220
nL/min.

I.5.4 Mass spectrometry data processing

Thermo RAW files were processed using MaxQuant (v. 1.5.3.30)56,57. Spectra were searched against the
UniProt E. coli K-12 database (4318 sequences) as well as a contaminant database (256 sequences).
Additional details are provided in the supplemental methods. Precursor ion mass tolerance was 4.5 ppm
after recalibration by MaxQuant. Fragment ion mass tolerance was 20 ppm for high-resolution HCD and
ETD spectra, and 0.5 Da for low-resolution CID spectra. Variable modifications included oxidation of
methionine and protein N-terminal acetylation. Carboxyamidomethylation of cysteine was specified as a
fixed modification. LysC was specified as the digestion enzyme and up to two missed cleavages were
allowed. A decoy database was generated by MaxQuant and used to set a score threshold so that the
false discovery rate was less than 1% at both the peptide and protein level. For all experiments match
between runs and re- quantify were enabled. One evidence ratio per replicate per protein was required
for quantitation.

To calculate the overall protein ratio, the non-normalized protein replicate ratios were log
transformed and then shifted so that the median protein log ratio within each replicate was zero (i.e.,
the median protein ratio was 1:1). The overall experimental log ratio was then calculated from the
average of the replicate ratios. Proteins were considered if they were known to be transcription factors,
or predicted to bind DNA (using gene ontology term GO:0003677, for DNA-binding in BioCyc).
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