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Experimental Results

Details of the mouse experiments of Fig. 3(a):
Four to six week old immune competent Balb/c mice were
injected subcutaneously in the mammary fat pad with 1 ◊ 106

EMT6-HER2 murine mammary carcinoma cells. Mice were
administered (1) vehicle, (2) BETi (PLX 51107) (20 mg/kg
daily), via oral gavage, (3) anti-CTLA-4 antibody from Bio
X Cell (clone 9H10) at 100 µg by twice weekly intraperi-
toneal injection or (4) the combination of BETi and anti-
CTLA-4 antibody. Treatment started once tumor diameters
reached 5 mm (approximately 7-10 days after tumor injec-
tion). Ten to eleven mice were included in each treatment
group. Tumor volumes were measured three times weekly
with digital calipers. Tumor volume was estimated by the
following equation: Tumor volume = 0.5◊[(larger diameter)◊
(smaller diameter)2]. Values are the mean Â± SE of tumor
volumes at each time point.
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Fig. S1. Percentage of MDSC in CD45+
Cells decreases under

the treatment of BETi. (a) Numerical simulation results of BETi treatment
with “B = 1 ◊ 10≠9 g/cm3 · day. (b) EMT6 tumors were generated in Balb/c mice
as described in Fig. S1A above and mice were treated with vehicle control or PLX
51107. Tumors were harvested at day 20, processed into single-cell suspensions and
stained with Alexa 488 anti-GR-1 and APC anti-CD11b antibodies (BD Biosciences) to
measure MDSC. Data were acquired using an LSRII flow cytometer and are expressed
as percent of CD45+ cells.
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Fig. S2. Percentage of MDSC in CD45+
Cells decreases under

the treatment of anti-CTLA-4. Numerical simulation results of anti-CTLA-
4 treatment with “A = 0.9 ◊ 10≠9 g/cm3 · day.

Equation for DCs (D)

By necrotic cancer cells (NC) we mean cancer cells undergoing
the process of necrosis. Necrotic cancer cells release HMGB-
1 (1). We model the dynamics of the necrotic cells (NC) and

HMGB-1 (H) by the following equations:
ˆNC

ˆt
+ Ò · (uNC)¸ ˚˙ ˝

velocity

≠ ”NC
Ò2NC¸ ˚˙ ˝

difusion

= ⁄NC CC
¸ ˚˙ ˝

derived from life cancer cells

≠ dNC
NC¸ ˚˙ ˝

removal

,

ˆH

ˆt
≠ ”HÒ2H¸ ˚˙ ˝

difusion

= ⁄HNC
NC¸ ˚˙ ˝

released from nerotic cancer cells

≠ dHH,¸ ˚˙ ˝
degradation

where ⁄NC C is the rate at which cancer cells become necrotic
and ⁄HNC is the rate at which necrotic cells produce HMGB-
1. We note that although molecules like HMGB-1, or other
proteins, may be a�ected by the velocity u, their di�usion
coe�cients are several order of magnitude larger than the
di�usion coe�cients of cells, hence their velocity term may be
neglected. The degradation of HMGB-1 is fast (≥0.01/day) (2),
and we assume that the process of necrosis is also fast. We may
then approximate the two dynamical equations by the steady
state equations ⁄NC CC ≠dNC NC = 0 and ⁄HNC NC ≠dHH =
0, so that H is proportional to C.

Dendritic cells are activated by HMGB-1 (3, 4). Hence,
the activation rate of immature dendritic cells, with density
D0, is proportional to D0

H
KH +H

, or to D0
C

KC +C
, since H is

proportional to C. Here, the Michaelis-Menten law is used to
account for the limited rate of receptor recycling time which
takes place in the process of DCs activation. Hence, the
dynamics of DCs is given by

ˆD

ˆt
+ Ò · (uD)¸ ˚˙ ˝

velocity

≠ ”DÒ2D¸ ˚˙ ˝
difusion

= ⁄DCD0
C

KC + C¸ ˚˙ ˝
activation by HMGB-1

≠ dDD,¸ ˚˙ ˝
death

where ”D is the di�usion coe�cient and dD is the death rate
of DCs.

Equations for cytokines

Equation for IL-12 (I12). The proinflammatory cytokine IL-
12 is secreted by activated DCs (5, 6) and by M1 macrophages
(7), so that

ˆI12
ˆt

≠ ”I12 Ò2I12 = ⁄I12DD + ⁄I12M1 M1¸ ˚˙ ˝
production by DCs and M1

≠ dI12 I12.¸ ˚˙ ˝
degradation

[S1]

Equation for IL-2 (I2). IL-2 is produced by activated
CD4+ T cells (T1) (6). Hence,

ˆI2
ˆt

≠ ”I2 Ò2I2 = ⁄I2T1 T1¸ ˚˙ ˝
production by T1

≠ dI2 I2.¸ ˚˙ ˝
degradation

[S2]

Equation for TGF-— (T—). TGF-— is produced by
tumor cells (8), Tregs (9) and M2 macrophages (10–12):
ˆT—

ˆt
≠ ”T—

Ò2T— = ⁄T—CC + ⁄T—Tr Tr + ⁄T—M2 M2¸ ˚˙ ˝
production by cancer, Tregs and M2

≠ dT—
T—¸ ˚˙ ˝

degradation

.

[S3]
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Equation for IL-10 (I10). IL-10 is produced by cancer
cells and by M2 macrophages (8). Hence I10 satisfies the
following equation:
ˆI10
ˆt

≠ ”I10 Ò2I10 = ⁄I10CC + ⁄I10M2 M2¸ ˚˙ ˝
production by cancer and M2

≠ dI10 I10.¸ ˚˙ ˝
degradation

[S4]

Equation for TNF-– (T–). TNF-– is produced by pri-
marily M1 macrophages and BETi reduces the production of
TNF-– by the macrophages (13). TNF-– is also produced by
Th1 cells (14, 15). Hence

ˆT–

ˆt
≠ ”T– Ò2T– = ⁄T–M1 M1¸ ˚˙ ˝

production by M1

·
1

1 + B/KT–B¸ ˚˙ ˝
inhibited by BETi

+ ⁄T–T1 T1¸ ˚˙ ˝
production by Th1

≠ dT– T–.¸ ˚˙ ˝
degradation

[S5]

Equation for NO (N). NO is produced by M2
macrophages (16, 17), so that

ˆN

ˆt
≠ ”N Ò2N = ⁄NM2 M2¸ ˚˙ ˝

production by M2

≠ dN N.¸ ˚˙ ˝
degradation

[S6]

Equation for oxygen (W ). Oxygen is infused through
blood (18, 19). We identify the blood concentration with the
density of endothelial cells. Accordingly,

ˆW

ˆt
≠ ”W Ò2W = ⁄W EE¸ ˚˙ ˝

source from blood

≠ dW W,¸ ˚˙ ˝
consumed by cells

[S7]

where dW W represents the take-up rate of oxygen by all the
cells.

Equation for VEGF (G). VEGF is produced by cancer
cells (18, 19) and M2 macrophages (7, 19). BETi treatment
down-regulates the hypoxic transcriptome response of cancer
cells including VEGF-A (20, 21). Hence the equation for G is
given by
ˆG

ˆt
≠ ”GÒ2G = ⁄GCC

1
1 + B/KGB¸ ˚˙ ˝

inhibited by BETi

+ ⁄GM2 M2¸ ˚˙ ˝
production by M2

≠ dGG.¸˚˙˝
degradation

[S8]

Equation for M-CSF (MC). M-CSF is produced by
cancer cells (22), so that

ˆMC

ˆt
≠ ”MC

Ò2MC = ⁄MC CC
¸ ˚˙ ˝

production by cancer

≠ dMC
MC .

¸ ˚˙ ˝
degradation

[S9]

Equation for MCP-1 (MP ). MCP-1 is produced by
cancer cells and by M2 macrophages under inducement by
M-CSF (11, 22), so that
ˆMP

ˆt
≠ ”MP

Ò2MP = ⁄MP CC + ⁄MP M2 M2
MC

KMC +MC¸ ˚˙ ˝
production by cancer and M2

≠ dMP
MP .

¸ ˚˙ ˝
degradation

[S10]

Equation for CTLA-4 (P ), B7 (L) and CTLA-4-B7
(Q).

CTLA-4 is a ligand expressed on CD4+ T cells and CD8+

T cells; its receptor B7 is on dendritic cells. The complex
CTLA-4-B7 blocks the activity of T cells. We assume that the
number of CTLA-4 per cell is the same for T1 and T8 cells. If
we denote by flP the ratio between the mass of one CTLA-4
protein to the mass of one T cell, then

P = flP (T1 + T8), flP = constant,

we conclude that P satisfies the equation
ˆP

ˆt
+ Ò · (uP ) ≠ ”T Ò2P = flP

Ë
ˆ(T1 + T8)

ˆt
+ Ò · (u(T1 + T8))

≠”T Ò2(T1 + T8)
$

,

or,
ˆP

ˆt
+ Ò · (uP ) ≠ ”T Ò2P

= P

T1 + T8

5
(⁄T1I12 T10 + ⁄T8I12 T80)I12

(KI12 + I12)(1 + I10/KT I10 )(1 + Tr/KT Tr )

+(⁄T1I2 T1 + ⁄T8I2 T8) I2
KI2 + I2

6
◊

1 + ÁT B

1 + Q/KT Q

≠ flP (dT1 T1 + dT8 T8),

where Q is the density of the complex CTLA-4-B7, and
flP = P

T1+T8
. When anti-CTLA-4 drug (A) is applied, CTLA-

4 is depleted by A. Hence,

ˆP

ˆt
+ Ò · (uP ) ≠ ”T Ò2P

= P

T1 + T8

5
(⁄T1I12 T10 + ⁄T8I12 T80)I12

(KI12 + I12)(1 + I10/KT I10 )(1 + Tr/KT Tr )

+(⁄T1I2 T1 + ⁄T8I2 T8) I2

KI2 + I2

6
◊ 1 + ÁT B

1 + Q/KT Q

≠ P

T1 + T8
(dT1 T1 + dT8 T8) ≠ µP AP.¸ ˚˙ ˝

depletion by anti-CTLA-4

[S11]

The ligand B7 is expressed on dendritic cells, and we take

L = flLD, flL = constant. [S12]

CTLA-4 and B7 form the complex CTLA-4-B7 (Q) with
association and disassociation rates –P L and dQ, respectively:

P + L
–P L⌦
dQ

Q. [S13]

We assume that the half-life of Q is very short (23, 24), so that
the dynamics in Eq. (S13) is in a quasi-steady state. Hence
–P LP L = dQQ, or

Q = ‡P L, [S14]

where ‡ = –P L/dQ.

Equation for cells velocity (u). We assume that the
densities of cell in the growing tumor tend to steady state,
and take the density of cancer cells in steady state to be
0.4g/cm3. We also assume that most of the macrophages are
“tumor associated macrophages" (TAM), which we identify as
M2 macrophages. We accordingly take, in steady state, the
density of M2 and M1 macrophages to be M2 = 3.2 ◊ 10≠3

g/cm3 and M1 = 10≠4 g/cm3.
We take the steady state density of endothelial cells to be

E = 2.5◊10≠3 g/cm3 (25), and as estimated in the parameter
estimation section, the steady state densities of the immune
cells D, T1, T8 and Tr to be (in unit of g/cm3)

D = 4 ◊ 10≠4, T1 = 2 ◊ 10≠3, T8 = 1 ◊ 10≠3,

Tr = 5 ◊ 10≠4, M1 = 1 ◊ 10≠3, M2 = 3.2 ◊ 10≠3,
[S15]

respectively. We assume that all cells have approximately the
same volume and surface area, so that the di�usion coe�cients
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of all the cells are the same. Adding the equations of all the
cells, we get

0.4097 ◊ Ò · u =
9ÿ

j=2

[right-hand side of Eq. j] , [S16]

where the constant 0.4097 follows from Eq. 1.

Boundary conditions We assume that the naive CD4+

T cells and inactive CD8+ T cells that migrated from the
lymph nodes into the tumor microenvironment have constant
densities T̂1 and T̂8 at the tumor boundary, and that T1 and
T8 are activated by IL-12 upon entering the tumor. We then
have the following flux conditions at the tumor boundary:

ˆT1
ˆr

+ ‡T (I12)(T1 ≠ T̂1) = 0,
ˆT8
ˆr

+ ‡T (I12)(T8 ≠ T̂8) = 0,

ˆTr

ˆr
+ ‡Tr (T—)(Tr ≠ T̂r) = 0, at r = R(t),

[S17]

where we take ‡T (I12) = ‡0
I12

I12+KI12
and ‡Tr (T—) =

‡0
T—

T—+KT—
.

We impose a no-flux boundary condition for all the remain-
ing variables:

No-flux for D, M1, M2, E, C, I12, I2, T— , I10, T–,

N, W, G, MC , MP , L, A, and B at r = R(t).
[S18]

It is tacitly assumed here that the receptors PD-1 and ligands
PD-L1 become active only after the T cells are already inside
the tumor.

Parameter estimation

Half-saturation. In an expression of the form Y X
KX +X

where Y
is activated by X, the half-saturation parameter KX is taken
to be the approximate steady state concentration of species
X.

Diffusion coefficients. By (26), we have the following relation
for estimating the di�usion coe�cients of a protein p:

”p = M
1/3
G

M
1/3
p

”G,

where MG and ”G are respectively the molecular weight and
di�usion coe�cient of VEGF, Mp is the molecular weight of
p, and MG = 24kDa (27) and ”G = 8.64 ◊ 10≠2 cm2 day≠1

(28). Since, MI2 = 17.6kDa (29), MI12 = 70kDa (30), MT— =
25kDa (31), MI10 = 20.5kDa (32), MT– = 25.6kDa (33),
MMC = 60.2kDa (34), MMP = 11kDa (35), MA = 146.3kDa
(Durvalumab) (36) and MB = 457Da (JQ1) (37), we get
”I2 = 9.58 ◊ 10≠2 cm2 day≠1, ”I12 = 6.05 ◊ 10≠2 cm2 day≠1,
”T— = 8.52 ◊ 10≠2 cm2 day≠1, ”I10 = 9.11 ◊ 10≠2 cm2 day≠1,
”T– = 8.46 ◊ 10≠2 cm2 day≠1, ”MC = 6.36 ◊ 10≠2 cm2 day≠1,
”MP = 1.12 ◊ 10≠1 cm2 day≠1, ”A = 4.73 ◊ 10≠2 cm2 day≠1

and ”B = 3.24 ◊ 10≠1 cm2 day≠1.

Eq. 2. The number of DCs in various organs (heart, kidney,
pancreas and liver) in mouse varies from 1.1 ◊ 106 cells/cm3

to 6.6 ◊ 106 cells/cm3 (38). In the dermal tissue, the number
of DCs is larger (600-1500 cells/mm2) (39, 40), but we do
not specify where the melanoma cancer is located; it may

be at its initial dermal tissue or in another organ where it
metastasized. Mature DCs are approximately 10 to 15 µm in
diameter (41). Accordingly, we estimate the steady state of
DCs to be KD = 4 ◊ 10≠4 g/cm3. We assume that there are
always immature dendritic cells, some coming from the blood
as tumor infiltrating dendritic cells (TID) (5, 6, 42). We also
assume that the density of immature DCs to be smaller than
the density of active DCs, and take D0 = 1

20 KD = 2 ◊ 10≠5

g/cm3.
If we use, as the steady state equation of Eq. 2, the relation

⁄DCD0
C

KC +C
= dDD, where, dD = 0.1/day (43), C = KC =

0.4 g/cm3, D = KD = 4 ◊ 10≠4 g/cm3, D0 = 2 ◊ 10≠5 g/cm3,
we get ⁄DC = 2dDD/D0 = 4/day. We note however that
in estimating ⁄DC , we ignored the contribution of Ò · (uD),
whose integral over the tumor {r < R(t)} is

s
r=R(t)

dR(t)
dt

· D,
which is a positive quantity. Hence, ˆD

ˆt
is actually decreased

when we equate to zero the right-hand side (RHS) of Eq. 2;
we therefore need to increase ⁄DC ; we take ⁄DC = 10/day.

Eqs. 3 and 4. The number of lymphocytes is approximately
twice the number of DCs (38). T cells are approximately 5 to
10 µm in diameter. Assuming that the number of Th1 cells
is 1/4 the number of lymphocytes, we estimate steady state
density of Th1 cells to be KT1 = 2 ◊ 10≠3 g/cm3. We assume
that the density of naive CD4+ T cells to be less than the
density of Th1, and take T10 = 1

5 KT = 4 ◊ 10≠4 g/cm3. We
choose KT Tr to be half of the half-saturation of Tr, that is,
KT Tr = KTr /2 = 2.5◊10≠4 g/cm3, and KT I10 to be half of the
half-saturation of I10, namely, KT I10 = KI10 /2 = 4.375◊10≠11

g/cm3. We assume that in steady state, Q/KT Q = 2 (the
value of KT Q is derived in the estimates of Eqs. 20-22.

From the steady state of Eq. 2 (more precisely, by setting
to zero the RHS of Eq. 2 without BETi, we get

1
⁄T1I12 T10 · 1

2 · 1
3 · 1

3 + ⁄T1I2 T1 · 1
2

2
· 1

3 ≠ dT1 T1 = 0,

where ⁄T1I2 = 0.25/day (43), dT1 = 0.197/day (43), T10 =
4 ◊ 10≠4 g/cm3 and T1 = KT1 = 2 ◊ 10≠3 g/cm3. Hence
⁄T1I12 = 27.96/day.

The CD4/CD8 ratio in the blood is 2:1. We assume a
similar ratio in tissue, and take T80 = 1

2 T10 = 2 ◊ 10≠4 g/cm3.
We also take steady state of T8 to be the half of steady state
of T1, i.e., KT8 = 1

2 KT1 = 1 ◊ 10≠3 g/cm3.
From the steady state of Eq. 4 (more precisely, by setting

to zero the RHS of Eq. 4, we get
1

⁄T8I12 T80 · 1
2 · 1

3 · 1
3 + ⁄T1I2 T8 · 1

2

2
· 1

3 ≠ dT8 T8 = 0

where ⁄T8I2 = 0.25/day (43), dT8 = 0.18/day (43), T80 =
2 ◊ 10≠4 g/cm3, T8 = KT8 = 1 ◊ 10≠3 g/cm3. Hence ⁄T8I12 =
24.90/day.

As in the case of Eq.2, we actually need to consider the
contribution of Ò · (uT1) to the steady state assumption, and
also the contribution of the flux of T cells at the tumor bound-
ary. Since the flux of T cells is positive on the boundary, we
actually get two contributions from the left-hand side (LHS)
of Eq. 28, a positive term from Ò · (uT1) and a negative term
from the flux of T1. We assume they cancel each other, and
retain the above value of ⁄T1I12 . The same applies to the cases
of T8 .
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Eq. 5. From the steady state of Eq. 5 without BETi, we
get, ⁄TrT— · 1

2 T10 ≠ dTr Tr = 0, where T10 = 4 ◊ 10≠4 g/cm3,
Tr = KTr = 5 ◊ 10≠4 g/cm3 (43), and dTr = 0.2/day (43).
Hence ⁄TrT— = 0.5/day. As in the case of Eq. 2, we increase
⁄TrT— to ⁄TrT— = 1.5/day.

Eqs. 6 and 7. In breast cancer, most of the macrophages are M2
macrophages (7, 44). Accordingly we take KM2 = 3.2 ◊ 10≠3

g/cm3 and KM1 = 10≠4 g/cm3 at half-saturation of M2 and
M1, and M20 = 1.2M2 = 3.84 ◊ 10≠3 g/cm3 and M10 =
1.2M1 = 1.2 ◊ 10≠4 g/cm3. From steady state of Eqs. 6 and
7 (setting the right hands sides to zero), we get,

1
2⁄M1 (M10 ≠ M1) + —M2 M2 ≠ —M1 M1 = dM1 M1,

and

1
2⁄M2 (M20 ≠ M2) + —M1 M1 ≠ —M2 M2 = dM2 M2.

where dM1 = dM2 = 0.015/day (25, 45). We assume that
more M1 macrophages convert to M2 macrophages, and
that —M1 M1 = 2—M2 M2 and —M1M1 = 10dM1 M1 in steady
state. Hence —M1 = 0.15, —M2 = 2.34 ◊ 10≠3, ⁄M1 =
2(dM1 M1 ≠ —M2 M2 + —M1 M1)/(M10 ≠ M1) = 0.90/day, and
⁄M2 = 2(dM2 M2 +—M2 M2 ≠—M1 M1)/(M20 ≠M2) = 0.13/day,
in steady state. As in the case of Eq. 2, in the steady state
we need to take into account the advection terms Ò · (uM1)
and Ò · (uM2) and thus increase both ⁄M1 and ⁄M1 . Further-
more, since cancer cells are proliferating, the tumor associ-
ated macrophages will also increase, which means additional
increase of ⁄M2 and ⁄M1 . We take ⁄M2 = 1.01/day and
⁄M1 = 1.35/day.

Eq. 8. Setting to zero the RHS of Eq.8 we get, ⁄EE(1 ≠
E/EM )(G ≠ G0) ≠ dEE = 0, where dE = 0.69/day EM =
5 ◊ 10≠3 g/cm3, E = KE = 2.5 ◊ 10≠3 g/cm3, G = KG =
7 ◊ 10≠8 g/cm3(see Eq. S8) and G0 = 3.65 ◊ 10≠10 g/cm3.
Hence, ⁄E = 2dE/(KG ≠ G0) = 1.98 ◊ 107 cm3/g · day. As in
the case of Eq. 2, because of the positive contribution of the
average of Ò · (uE) in the steady state, we need to increase
⁄E , and we take ⁄E = 2.38 ◊ 107/day.

Eq. 9. We take dC = 0.17 day≠1, CM = 0.8 g/cm3 (43) and
⁄C = 1.6/day (46). In the steady state of the control case (no
anti-tumor drugs), We assume that C is approximately 0.4
g/cm3, and W = KW = 4.65 ◊ 10≠4 and N = KN = 2 ◊ 10≠6

g/cm3 (see the estimates of Eqs. S7 and S6) (ignoring the
advection term). In the the control case, from the steady state
of Eq. 9, we have

⁄C · 1
2 · 1

2 ≠ (÷1T1 + ÷8T8) · 1
2 ≠ dC = 0.

Noting that T8 cells kill cancer cells more e�ectively than T1
cells, we take ÷8 = 5÷1, so that (with T1 = KT1 = 2 ◊ 10≠3

g/cm3 and T8 = KT8 = 1 ◊ 10≠3 g/cm3), ÷1 = 2(⁄C/4 ≠
dC)/(T1+5T8) = 65.71 cm3/g·day and ÷8 = 328.55 cm3/g·day.
In the control case, including the e�ect of the advection term
and the fact that the tumor grows, we need to increase the
growth rate of cancer cells; we take ⁄C = 1.92/day. When
BETi drug is applied, we take KCB = 10KB = 8.02 ◊ 10≠10

g/cm3, by the estimation of KB (in Eq. 11).

Eqs. S1. The serum level of IL-12 in melanoma patients varies
from 7.5 ◊ 10≠11 ≠ 9.6 ◊ 10≠11 g/cm3 (47, 48). We assume
that the IL-12 level in tissue is higher, and take I12 = KI12 =
8◊10≠10 g/cm3. We assume that the production rate of IL-12
is the same for DCs and M1 macrophages, so that ⁄I12DD =
⁄I12M1 M1. From steady state of Eq. (S1), we get ⁄I12DD +
⁄I12M1 M1 ≠ dI12 I12 = 0, where dI12 = 1.38/day (43), D =
KD = 4 ◊ 10≠4 g/cm3, M1 = KM1 = 10≠4 g/cm3, and I12 =
KI12 = 8 ◊ 10≠10 g/cm3. Hence, ⁄I12D = dI12 I12/(2D) =
1.38 ◊ 10≠6/day, ⁄I12M1 = 5.52 ◊ 10≠6/day.

Eq. S3. The half-life of TGF-— is about 2 min (49), that is,
t1/2 = 0.0014 day, so that dT— = ln2/t1/2 = 499.07 day≠1. The
concentration of serum TGF-— in melanoma is 2.68 ◊ 10≠14

g/cm3 (50). We assume that the concentration of TGF-— in
tissue is higher than in serum, and take T— = 2.68 ◊ 10≠13

g/cm3. From the steady state of Eq. S3 we have, ⁄T—CC +
⁄T—M2 M2 + ⁄T—Tr Tr = dT— T— , where dT— = 499.07 day≠1,
T— = KT— = 2.68 ◊ 10≠13 g/cm3, Tr = KTr = 5 ◊ 10≠4 g/cm3

by Eq. 1, C = KC = 0.4 g/cm3, M2 = 3.2 ◊ 10≠3 g/cm3 .
According to (8, 12), tumor cells secrete more TGF-— than
M2 macrophages, and we assume that ⁄T—CC = 5⁄T—M2 M2
and ⁄T—Tr Tr = 5⁄T—CC. Thus ⁄T—C = dT— T—/(6.2C) =
5.39 ◊ 10≠11 /day, ⁄T—M2 = ⁄T—CC/(5M2) = 1.35 ◊ 10≠9/day,
and ⁄T—Tr = 5⁄T—CC/Tr = 2.16 ◊ 10≠7/day.

Eq. S4. The half-life of IL-10 ranges from 1.1 to 2.6 hours
(51); we take it to be 2 hours, that is, t1/2 = 0.08 day, so
that dI10 = 8.32 day≠1. The concentration of serum IL-10
in tumor is 8.75 ◊ 10≠12 g/cm3 (52). We assumed that the
concentration of I10 in tissue is higher, and take I12 = KI10 =
8.75 ◊ 10≠11 g/cm3 . From the steady state of Eq. (S4) we
have, ⁄I10CC + ⁄I10M2 M2 ≠ dI10 I10 = 0, where dI10 = 8.32
day≠1. Tumor cells secrete more I10 than macrophages (53);
accordingly, we take ⁄I10C = 10⁄I10M2 . Hence, in steady
state, ⁄I10M2 = dI10 I10/(11M2) = 2.07 ◊ 10≠8/day, ⁄I10C =
10⁄I10M2 M2/C = 1.65 ◊ 10≠9/day.

Eq. S5. The half-life of TNF-– is 18.2min (54), that is,
t1/2 = 0.0126 day, so that dT– = ln2/t1/2 = 55.01 day≠1.
From steady state of Eq. S5, without BETi, we get ⁄T–M1 M1 +
⁄T–T1 T1 ≠ dT– T– = 0, where M1 = KM1 = 10≠4 g/cm3,
T1 = KT1 = 2◊10≠3 g/cm3 and T– = KT– = 3◊10≠11 g/cm3

(55). TNF-– is produced primarily by macrophages (13, 15),
and accordingly we assume that ⁄T–M1 M1 = 5⁄T–T1 T1. Hence,
⁄T–T1 = dT– T–/(6T1) = 1.36 ◊ 10≠7/day, and ⁄T–M1 =
5⁄T–T1 /M1 = 1.36 ◊ 10≠6/day. When BETi drug is applied,
we take KT aB = 10KB = 8.02 ◊ 10≠10 g/cm3.

Eq. S6. From steady state of Eq. S6, we get ⁄NM2 M2 ≠dN N =
0, where dN = 198/day (56), N = KN = 2 ◊ 10≠6 g/cm3 (56)
and M2 = 3.2 ◊ 10≠3 g/cm3. Hence, ⁄NM2 = dN N/M2 =
0.12/day.

Eq. S7. From steady state of Eq. S7, we get ⁄W EE≠dW W = 0,
where ⁄W E = 7 ◊ 10≠2/day (25), W = KW = 4.65 ◊ 10≠4

g/cm3 (25), E = KE = 2.5 ◊ 10≠3 g/cm3 (57). Hence, dW =
⁄W EE/W = 3.76 ◊ 10≠1/day.

Eq. S8. From steady state of Eq. S8 without BETi, we get
(⁄GCC + ⁄GM2 M2) ≠ dGG = 0, where dG = 12.6/day (25),
G = KG = 7 ◊ 10≠8 g/cm3 (25), C = KC = 0.4 g/cm3,
M2 = KM2 = 3.2 ◊ 10≠3 g/cm3. VEGF is mainly produced
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by cancer cells, and we accordingly take ⁄GCC = 10⁄GM2 M2.
Hence, ⁄GM2 = dGG/(11M2) = 2.5 ◊ 10≠5/day and ⁄GC =
10⁄GM2 M2/C = 2.0 ◊ 10≠6/day. When BETi drug is applied,
we take KGB = 10KB = 8.02 ◊ 10≠10 g/cm3.

Eq. S9. From steady state of Eq.S9, we get ⁄MC CC≠dMC MC =
0, where dMC = 4.8/day (25), MC = KMC = 10≠9 g/cm3 (25)
and C = KC = 0.4 g/cm3. Hence, ⁄MC C = dMC MC/C =
1.2 ◊ 10≠8/day.

Eq. S10. From steady state of Eq. S10, we get ⁄MP M2 M2 ·
1
2 + ⁄MP CC ≠ dMP MP = 0, where dMP = 1.73/day (25),
MP = KMP = 2 ◊ 10≠7 g/cm3 (25), M2 = KM2 = 3.2 ◊
10≠3 g/cm3 and C = KC = 0.4 g/cm3. MCP-1 is produced
primarily by cancer cells and take ⁄MP C = 10⁄MP M2 . Hence,
⁄MP M2 = dMP MP /(10.5M2) = 1.2 ◊ 10≠8/day, and ⁄MP C =
10⁄MpM2 /C = 8.24 ◊ 10≠7/day.

Eqs. S11-S14. In order to estimate the parameters KT Q (in Eq.
2), we need to determine the steady state concentrations of P
and L in the control case (no drugs). To do that, we begin by
estimating flP and flL.

By (58), the mass of one CTLA-4 is mCL = 25 kDa=4.15◊
10≠20 g, and, by (59), the mass of one B7 is mB = 52.5
kDa=8.12 ◊ 10≠20 g. We assume that the mass of one T cell
(or dendritic cell) is mT = mD = 10≠9 g. There are 6000
CTLA-4 proteins on one T cell (T1 or T8) (60) and 4000 B7
proteins on one dendritic cell (24). Hence flP = 6000◊ mCL

mT
=

6000◊(4.15◊10≠20)
10≠9 = 2.49 ◊ 10≠7, and flL = 4000 ◊ mB

mD
=

4000◊(8.12◊10≠20)
10≠9 = 3.25 ◊ 10≠7. Taking T1 = KT1 = 2 ◊ 10≠3

g/cm3 and T8 = KT8 = 1◊10≠3 g/cm3 (61), we get, in steady
state of CL,

KP = P =flP (T1 + T8)
=(2.49 ◊ 10≠7) ◊ [2 ◊ 10≠3 + 1 ◊ 10≠3]
=7.47 ◊ 10≠10g/cm3.

We assume that in a steady state D = 4 ◊ 10≠4 g/cm3 (61).
From Eq. (S12) we then get, in steady state of B,

KL = L =flLD = (3.25 ◊ 10≠7) ◊ (4 ◊ 10≠4)
=1.3 ◊ 10≠10g/cm3.

In steady state with P = KP , L = KL and Q = KQ, we
have, by Eq. (S14), KQ = ‡KP KL. We take KT Q = 1

2 KQ =
1
2 ‡KP KL. Hence, Q/KT Q = P L/( 1

2 KP KL) with variables P
and L, and

1
1 + Q/KT Q

= 1
1 + P L/( 1

2 KP KL)
= 1

1 + P L/KÕ
T Q

where KÕ
T Q = 1

2 KP KL = 1
2 ◊ (7.47 ◊ 10≠10) ◊ (1.3 ◊ 10≠10) =

4.86 ◊ 10≠20 g2/cm6.

Eqs. 10-11. By (62), the half-life of anti-CTLA-4 (ipilimumab)
is 14.7 days, so that dA = ln2

14.7 = 0.047 day≠1. We assume that
10% of A is used in blocking CTLA-4, while the remaining
90% degrades naturally. Hence, µCLACLA/10% = dAA/90%,
so that

µP A = dA

9P
= 0.047

9 ◊ (7.47 ◊ 10≠10) = 6.99 ◊ 106 cm3/g · day.

The half-life of BET inhibitor (JQ1) is in the range of
0.1-1.4 hours (63, 64); we take it to be 1.2 hours, so that

dB = ln2
1.2/24 = 13.86 day≠1. We assume that 10% of B is

absorbed by cancer cells, while the remaining 90% degrades
naturally, so that (µBCC+µBM1 M1) B

KB+B
/10% = dBB/90%,

or µBCC + µBM1 M1 = 2dBB/9, where C = KC = 0.4 g/cm3,
M1 = KM1 = 10≠4 g/cm3. From Eq. 11, we get B Ø “B/dB ,
and we assume that

B ≥ 10
9 · “B

dB
,

where dB = 13.86/day.
In mice experiment with BETi and PD-1, BETi was given

daily and CTLA-4 inhibitor was given 3 times/week. For
simplicity, we take Â(t) = “A and B̂(t) = “B as constants.
It is di�cult to compare the amount of administering dose
of BETi to the actual parameter “B which appears in Eq.11,
because no information is available on the PK/PD of the
drug. We arbitrarily take “B to be order of magnitude 10≠9

g/cm3 ·day in the simulations. Hence, B = KB = 8.02◊10≠11

g/cm3 in steady state.
We assume that the absorption rates of BETi by cancer

cells and M1 macrophages are the same, i.e., µBC = µBM1 , so
that µBC = µBM1 = 2dBB

9(C+M1) = 6.17 ◊ 10≠10/day.
By taking “B = 0.15◊10≠9 g/cm3 ·day and “A = 1.5◊10≠9

g/cm3 · day, we find that the tumor volume growth agrees
qualitatively with the our experimental results when we apply
just one drug or a combination of drug. We shall accordingly
take “B to vary in the range 0 ≠ 0.32 ◊ 10≠9 g/cm3 · day and
“A to vary in the range 0 ≠ 1.5 ◊ 10≠9 g/cm3 · day. We choose
ÁB = 20/KB = 2 ◊ 1010 cm3/g in Eqs. 3 and 4.

Sensitivity analysis. We performed sensitivity analysis with
respect to the tumor volume at day 30 for two sets of pa-
rameters. The first set consists of production parameters for
cells, including ⁄DC , ⁄T1I12 , ⁄T8I12 , ⁄TrT— , ⁄M1 , ⁄M2 , ⁄E ,
⁄CW , ⁄T–M1 , ⁄T–T1 . Following the method of (65), we per-
formed Latin hypercube sampling and generated 5000 samples
to calculate the partial rank correlation coe�cients (PRCC)
and the p-values with respect to the tumor volume at day
30. In sampling all the parameters, we took the range of each
parameter from 1/2 to twice its value in Table S2. The results
are shown in Fig. S3. Fig. S3 shows that if the production
parameters of T1, T8 and (to lesser extend) M1 and D increase
then tumor volume will increase, whereas if the production
parameters of Treg, endothelial cells and M2 increase then the
tumor volume will increase.
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Fig. S3. Statistically significant PRCC values (p-value< 0.01) for R(t) at day 30.
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The second set of parameters in the sensitivity analysis
are —M1 , —M2 , ÷8, ÷1, KT Q, ‘T B, KTrB, KCB, KT–B, KGB,
which play important roles in the dynamics of tumor cells.
Here again we sampled all the parameters by taking the range
of each parameter for 1/2 to twice its value in Tables S2
and S3. The results are shown in Fig. S4. Fig. S4 shows
that the tumor volume decreases when the killing rates by T1
and T8 increase and when the inhibition of Q (represented
by 1/KCB) decreases, whereas the tumor volume increases
when inhibitions of Tr and C by BETi (represented by 1/KT Q)
decrease.

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

PR
C

C

-M
1

-M
2

28 21 KTQ 0TB KT
r
B KCB KT

,
 B KGB

Fig. S4. Statistically significant PRCC values (p-value< 0.01) for R(t) at day 30.

We also note that the switching parameters from —M1 (from
M2 to M1) and —M2 (from M1 to M2) increase tumor volume
as —M1 increases and —M2 decreases, but the e�ect of —M2 is
more significant.

Combination of BETi and anti-PD-L1

PD-1 is an immunoinhibitory receptor predominantly ex-
pressed on activated T cells (59, 66). Its ligand PD-L1 is
upregulated on the same activated T cells, and is also ex-
pressed by myeloid-derived suppressor cells (MDSCs) (66–68)
and in some human cancer cells (66, 67). Both PD-1 and
PD-L1 are immune checkpoints: the complex PD-1-PD-L1
inhibits T cell function against cancer (59). It was recently
shown that combining anti-PD-1 antibody with BETi (JQ1) is
synergistic and leads to higher anti-tumor responses compared
to each drug given alone (69). In the following we consider
the combination of BETi (e.g. JQ1) and anti-PD-L1 (e.g. dur-
valumab). The model is similar to the model for combination
of BETi and anti-CTLA-4, with some changes given below.

Equation for activated Tregs (Tr). The complex PD-
1-PD-L1 enhances the expression of PTEN, which results in
upregulation of Fox3+ in naive T cells, inducing them to
di�erentiate into Tregs (Tr) (70). The production of Tr is also
enhanced by TGF-— (T—) (9, 11). Hence,
ˆTr

ˆt
+ Ò · (uTr) ≠ ”T Ò2Tr

= T10

3
⁄TrT—

T—

KT—
+ T—¸ ˚˙ ˝

TGF-— induced proliferation

+ ⁄TrQ̃

Q̃

KQ̃ + Q̃

4

¸ ˚˙ ˝
promotion by PD-1-PD-L1

≠ dTr Tr¸ ˚˙ ˝
death

.

[S19]

Equation for PD-1 (P̃ ), PD-L1 (L̃) and PD-1-PD-
L1 (Q̃). PD-1 is expressed on the surface of activated CD4+

T cells, activated CD8+ T cells and Tregs (59, 66). We assume

that the number of PD-1 per cell is the same for T1 and T8
cells, but is smaller, by a factor ÁT , for Tr cells. If we denote
by flP̃ the ratio between the mass of one PD-1 protein to the
mass of one T cell, then

P̃ = flP̃ (T1 + T8 + ÁT Tr). [S20]

PD-L1 is expressed on the surface of activated CD4+ T
cells, activated CD8+ T cells (66), Tregs (71), M2 macrophages
(66, 67) , and cancer cells (66, 67). We assume that the number
of PD-L1 per cell is the same for T1 and T8 cells, and denote
the ratio between the mass of one PD-L1 protein to the mass
of one cell by flL̃. Then

L̃ = flL̃(T1 + T8 + ÁT Tr + ÁM M2 + ÁCC),

where ÁC and ÁM depend on the specific type of tumor.
The coe�cient flL̃ is constant when no anti-PD-L1 drug is

administered. And in this case, L̃ satisfies the equation
ˆL̃

ˆt
+ Ò · (uL̃) ≠ ”T Ò2L̃ = flL̃

Ë
ˆ(T1 + T8 + ÁT Tr + ÁM M2 + ÁCC)

ˆt

+Ò · (u(T1 + T8 + ÁT Tr + ÁM M2 + ÁCC))

≠”T Ò2(T1 + T8 + ÁT Tr + ÁM M2 + ÁCC)
$

.

Recalling the equations of cells, we get
ˆL̃

ˆt
+ Ò · (uL̃) ≠ ”T Ò2L̃ = flL̃ [RHS of Eq. 3 + RHS of Eq. 4+

ÁT ◊ RHS of Eq. S19 + ÁM ◊ RHS of Eq. 7 + ÁC ◊ RHS of Eq. 9]

with Q replaced by Q̃ in Eqs. 3 and 4.
When anti-PD-L1 drug (Ã) is applied, PD-L1 is depleted (or

blocked) by Ã. In this case, the ratio L̃
T1+T8+ÁT Tr+ÁM M2+ÁC C

may change. In order to include in the model both cases of
with and without anti-PD-L1, we replace flL̃ in the previous
equation by L̃

T1+T8+ÁT Tr+ÁM M2+ÁC C
. Hence,

ˆL̃

ˆt
+ Ò · (uL̃) ≠ ”T Ò2L̃ = L̃

T1 + T8 + ÁT Tr + ÁM M2 + ÁCC

◊ [RHS of Eq. 3 + RHS of Eq. 4 + ÁT ◊ RHS of Eq. S19+
ÁM ◊ RHS of Eq. 7 + ÁC ◊ RHS of Eq. 9] ≠ µL̃ÃL̃Ã,¸ ˚˙ ˝

depletion by anti-PD-L1

where µL̃Ã is the depletion rate of PD-L1 by anti-PD-L1.
When BETi is applied, the expression of PD-L1 by cancer

cells is suppressed (69, 72), so that

L̃ = flL̃

3
T1 + T8 + ÁT Tr + ÁM M2 + ÁCC

1
1 + B/KL̃B

4
.

When the two drugs are combined, the equation for L takes
the form

ˆL̃

ˆt
+ Ò · (uL̃) ≠ ”T Ò2L̃

= L̃

T1 + T8 + ÁT Tr + ÁM M2 + ÁCC/(1 + B/KL̃B)
◊ [RHS of Eq. 3 + RHS of Eq. 4
+ ÁT ◊ RHS of Eq. S19 + ÁM ◊ RHS of Eq. 7

+ÁC
1

1 + B/KLB
◊ RHS of Eq. 9

È

≠ µL̃ÃL̃Ã.¸ ˚˙ ˝
depletion by anti-PD-L1

[S21]

Note that in this equation we did not include the derivative
of 1

1+B/KB
since, in equation of B (Eq. 11), dB is large (see

the estimates of Eq. 11) and hence dB
dt

is very small.
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PD-L1 from T cells, M2 macrophages or cancer cells com-
bines with PD-1 on the plasma membrane of T cells, to form
a complex PD-1-PD-L1 (Q̃) on the T cells (66, 67). Denoting
the association and disassociation rates of Q by –P̃ L̃ and dQ̃,
respectively, we can write

P̃ + L̃
–P̃ L̃⌦
dQ̃

Q̃.

The half-life of Q̃ is less then 1 second (i.e. 1.16 ◊ 10≠5 day)
(23), so that dQ̃ is very large. Hence we may approximate
the dynamical equation for Q̃ by the steady state equation,
–P̃ L̃P̃ L̃ = dQ̃Q̃, or

Q̃ = ‡̃P̃ L̃, [S22]
where ‡̃ = –P̃ L̃/dQ̃.

Parameter estimation for the anti-PD-L1 model.

Diffusion coefficients. MÃ = 146.3kDa (Durvalumab) (36) ,
hence ”Ã = 4.73 ◊ 10≠2 cm2 day≠1.

Eq. S19. We assume that TGF-— activates Tregs more than
PD-1-PD-L1 does, and take ⁄TrT— = 5⁄TrQ̃. From the steady
state of Eq. 5, we get, (⁄TrT— · 1

2 + ⁄TrQ̃ · 1
2 )T10 ≠ dTr Tr = 0,

where T10 = 1 ◊ 10≠3 g/cm3, Tr = KTr = 5 ◊ 10≠4 g/cm3

(43), and dTr = 0.2/day (43). Hence ⁄TrQ̃ = 0.083/day and
⁄TrT— = 0.415/day.

Eqs. S20-S22. In order to estimate the parameters KT Q̃ (in Eqs.
3 and 4 and KQ̃ (in Eq. 5 with Q replaced by Q̃), we need to
determine the steady state concentrations of P̃ and L̃ in the
control case (no drugs). To do that, we begin by estimating
flP̃ and flL̃.

By (58), the mass of one PD-1 is mP̃ = 8.3◊10≠8 pg=8.3◊
10≠20 g, and by (59) the mass of one PD-L1 is mL̃ = 5.8◊10≠8

pg=5.8 ◊ 10≠20 g. We assume that the mass of one T cell
is mT = 10≠9 g. By (24), there are 3000 PD-1 proteins
and 9000 PD-L1 proteins on one T cell (T1 or T8). Since
flP̃ T is the density of PD-1 (without anti-PD-1 drug), we
get flP̃ = 3000 ◊ mP̃

mT
= 3000◊(8.3◊10≠20)

10≠9 = 2.49 ◊ 10≠7, and
flL = 9000 ◊ mL̃

mT
= 9000◊(5.8◊10≠20)

10≠9 = 5.22 ◊ 10≠7. PD-1 is
expressed by Tregs at higher or lower level than in T1 and T8
cells depending on the type of the cancer (73); we assume that
ÁT = 0.8. Hence, in steady state,

P̃ = flP̃ (T1 + T8 + ÁT Tr)
= (2.49 ◊ 10≠7) ◊ [2 ◊ 10≠3 + 1 ◊ 10≠3 + 0.8 ◊ (5 ◊ 10≠4)]
= 8.46 ◊ 10≠10g/cm3.

The parameter ÁC in Eq. S21 depends on the type of cancer.
We take ÁC = 0.01 (74), and ÁM = 0.005. Then, by Eq. S21,
we get
KL̃ = L̃ = flL̃(T1 + T8 + ÁM M + ÁCC)

= (5.22 ◊ 10≠7) ◊ [3 ◊ 10≠3 + 0.005 ◊ 0.4 + 0.01 ◊ 0.4]
= 4.7 ◊ 10≠9g/cm3.

In steady state with P̃ = KP̃ , L̃ = KL̃ and Q̃ = KQ̃, we
have, by Eq. S22, KQ̃ = ‡KP̃ KL̃. We take KT Q̃ = 1

2 KQ̃ =
1
2 ‡KP̃ KL̃. Hence, Q̃/KT Q̃ = P̃ L̃/( 1

2 KP̃ KL̃) and we then have
in Eqs. 3 and 4,

1
1 + Q̃/KT Q̃

= 1
1 + P̃ L̃/( 1

2 KP̃ KL̃)
= 1

1 + P̃ L̃/KÕ
T Q̃

,

where KÕ
T Q̃

= 1
2 KP̃ KL̃ = 1

2 ◊ (8.46 ◊ 10≠10) ◊ (4.7 ◊ 10≠9) =
1.99 ◊ 10≠18 g2/cm6. Similarly, we have in Eq. S19,

Q̃

KQ̃ + Q̃
= 1

1 + KQ̃/Q̃
= 1

1 + KP̃ KL̃/P̃ L̃
= 1

1 + KÕ
Q̃

/P̃ L̃
.

where KÕ
Q̃

= KP̃ KL̃ = 3.98 ◊ 10≠18 g2/cm6. Similarly, when
BETi drug is applied, it reduces the expression of PD-L1
on cancer cells by a factor 1/(1 + B/KL̃B) where we take
KL̃B = 2KB = 1.64 ◊ 10≠10 g/cm3.

Eqs. 10-11. By (75), the half-life of anti-PD-L1 is 15 days, so
that dA = ln2

15 = 0.046 day≠1. We assume that 10% of A is
used in blocking PD-L1, while the remaining 90% degrades
naturally. Hence, µLALA/10% = dAA/90%, so that

µLA = dA

9L
= 0.046

9 ◊ (4.7 ◊ 10≠9) = 1.09 ◊ 106 cm3/g · day.

By taking “A = 5 ◊ 10≠9 g/cm3 · day and “B = 0.2 ◊ 10≠9

g/cm3 · day, we find that the tumor volume growth agrees
qualitatively with the experimental results in (76, 77) when
we apply just one drug or a combination of drug. We shall
accordingly take “B to vary in the range 0≠5◊10≠9 g/cm3 ·day
and “A to vary in the range 0 ≠ 8 ◊ 10≠9 g/cm3 · day.

Results. Figure S5-(A) shows that BETi, and anti-PD-L1 as
single agents reduce tumor volume, and in combination the
reduction by more than 75% at day 30.
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Fig. S5. The growth of tumor volume during the administration

of anti-PD-L1 drug and BETi. Numerical simulation result with anti-PD-L1
is administered at rate “Ã = 5 ◊ 10≠9 g/cm3 · day and BETi is administered at
rate “B = 0.6 ◊ 10≠9 g/cm3 · day. All other parameter values are the same as
in Tables S2, S3 and S4.

Fig. S6 is the e�cacy map of the combined therapy, with
“B in the range of 0 ≠ 0.2 ◊ 10≠9 g/cm3 · day and “Ã in the
range of 0≠1.8◊10≠9 g/cm3 ·day. The color column shows the
e�cacy for any pair of (“B , “A); the maximum e�cacy is 0.98
(98%). We see that the two drugs are positively correlated in
the sense that tumor volume decreases as each of the drugs is
increased. Fig. S7 shows the average concentration of TNF-–,
T –30(“B , “Ã), at day 30 under combined therapy with anti-
PD-L1 (“A) and BETi (“B). We conclue, as in the case of
anti-CTLA-4, that in order to achieve a largest tumor volume
reduction with minimum TNF-– we should take a pair (“B , “A)
with the smallest “B .

Since BETi suppresses PD-L1 expression by tumor cells
(72), but may not suppress CTLA-4 expression, we carried
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Fig. S6. Drug e�cacy map. The color column shows the efficacy E(“B , “A)
when “B varies between 0 ≠ 0.2 ◊ 10≠9 g/cm3 · day and “A varies between
0 ≠ 1.8 ◊ 10≠9 g/cm3 · day. All other parameter values are the same as in Tables
S2, S3 and S4.

Fig. S7. Average density of TNF-–. The color column shows the ‘adverse
effect’ function AE(“B , “A) when “B varies between 0≠0.2◊10≠9 g/cm3 ·day
and “A varies between 0 ≠ 1.8 ◊ 10≠9 g/cm3 · day. All other parameter values
are the same as in Tables S2, S3 and S4.

out murine study with combination of BETi and anti-CTLA-4
only.

The above model with small modifications applies extends
to combination therapy with BETi and anti-PD-1.

Computational method

We employ moving mesh method (78) to numerically solve the
free boundary problem for the tumor proliferation model. To
illustrate this method, we take Eq. 2 as example and rewrite
it as the following form:

ˆD(r, t)
ˆt

= ”D�D(r, t) ≠ div(uD) + F, [S23]

where F represents the term in the right hand side of Eq.
2. Let rk

i and Dk
i denote numerical approximations of i-th

grid point and D(rk
i , n·), respectively, where · is the size of

time-step. The discretization of Eq. S23 is derived by the

fully implicit finite di�erence scheme:

Dk+1
i ≠ Dk

i

·
= ”D

3
Drr + 2

rk
i

Dr

4

≠
3

2
rk+1

i

uk+1
i + ur

4
Dk+1

i ≠ uk+1
i Dr + F k+1

i ,

[S24]

where Dr =
h2

≠1Dk+1
i+1 ≠h2

1Dk+1
i≠1 ≠(h2

1≠h2
≠1)Dk+1

i

h1(h2
≠1≠h1h≠1) , Drr =

2
h≠1Dk+1

i+1 ≠h1Dk+1
i≠1 +(h1≠h≠1)Dk+1

i

h1(h1h≠1≠h2
≠1) ,

ur =
h2

≠1uk+1
i+1 ≠h2

1uk+1
i≠1 ≠(h2

1≠h2
≠1)uk+1

i

h1(h2
≠1≠h1h≠1) , h≠1 = rk+1

i≠1 ≠ rk+1
i and

h1 = rk+1
i+1 ≠ rk+1

i . The mesh moves by rk+1
i = rk

i + uk+1
i · ,

where uk+1
i is solved by the velocity equation.
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Table S1. List of variables (in units of g/cm3
).

Notation Description Notation Description

D density of DCs T– TNF-– concentration
T1 density of activated CD4+ T cells N NO concentration
T8 density of activated CD8+ T cells W Oxygen density
Tr density of activated Treg cells G VEGF concentration
M1 density of M1 MC M-CSF concentration
M2 density of M2 MP MCP-1 concentration
E density of Endothelial cells P PD-1 concentration
C density of cancer cells L PD-L1 concentration
I12 IL-12 concentration Q PD-1-PD-L1 concentration
I2 IL-2 concentration A anti-PD-L1 concentration
T— TGF-— concentration B BET inhibitor concentration
I10 IL-10 concentration
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Table S2. Summary of parameter values

Notation Description Value used References

”D diffusion coefficient of DCs 8.64 ◊ 10≠7 cm2 day≠1 (43)
”T diffusion coefficient of T cells 8.64 ◊ 10≠7 cm2 day≠1 (43)
”M diffusion coefficient of macrophages 8.64 ◊ 10≠7 cm2 day≠1 (43)
”E diffusion coefficient of endothelial cells 8.64 ◊ 10≠7 cm2 day≠1 (43)
”C diffusion coefficient of tumor cells 8.64 ◊ 10≠7 cm2 day≠1 (43)
”I12 diffusion coefficient of IL-12 6.05 ◊ 10≠2 cm2 day≠1 estimated
”I2 diffusion coefficient of IL-2 9.58 ◊ 10≠2 cm2 day≠1 estimated
”T—

diffusion coefficient of TGF-— 8.52 ◊ 10≠2 cm2 day≠1 estimated
”I10 diffusion coefficient of IL-10 9.11 ◊ 10≠2 cm2 day≠1 estimated
”T–

diffusion coefficient of TNF-– 8.46 ◊ 10≠2 cm2 day≠1 estimated
”W diffusion coefficient of oxygen 1.728 cm2 day≠1 (46)
”N diffusion coefficient of NO 1.728 cm2 day≠1 (46)
”G diffusion coefficient of VEGF 8.64 ◊ 10≠2 cm2 day≠1 (28)
”MC

diffusion coefficient of M-CSF 6.36 ◊ 10≠2 cm2 day≠1 estimated
”MP

diffusion coefficient of MCP-1 1.12 ◊ 10≠1 cm2 day≠1 estimated
”A diffusion coefficient of anti-PD-L1 4.73 ◊ 10≠2 cm2 day≠1 estimated
”B diffusion coefficient of BETi 3.24 ◊ 10≠1 cm2 day≠1 estimated
‡0 flux rate of T1 and T8 cells at the boundary 1 cm≠1 (43)
‰M chemoattraction coefficient of MCP-1 10 cm5/g · day (79, 80)
‰G chemoattraction coefficient of VEGF 10 cm5/g · day (79, 80)
⁄DC activation rate of DCs by tumor cells 7.4 g/cm3 · day estimated
⁄T1I12 activation rate of CD4+ T cells by IL-12 27.96 day≠1 estimated
⁄T1I2 activation rate of CD4+ T cells by IL-2 0.25 day≠1 (43)
⁄T8I12 activation rate of CD8+ T cells by IL-12 24.90 day≠1 estimated
⁄T8I2 activation rate of CD8+ T cells by IL-2 0.25 day≠1 (43)
⁄Tr T—

activation rate of Tregs by TGF-— 1.5day≠1 estimated
⁄M1 activation rate of M1 macrophages 1.35 day≠1 estimated
⁄M2 activation rate of M2 macrophages 1.01 day≠1 estimated
—M1 phenotype change rate of M1 to M2 macrophages 0.15 day≠1 estimated
—M2 phenotype change rate of M2 to M1 macrophages 2.34 ◊ 10≠3 day≠1 estimated
⁄E activation rate of endothelial cells 2.38 ◊ 107 day≠1 estimated
⁄C growth rate of cancer cells 1.92 day≠1 estimated
⁄I12D production rate of IL-12 by DCs 1.38 ◊ 10≠6 day≠1 estimated
⁄I12M1 production rate of IL-12 by M1 macrophages 5.52 ◊ 10≠6 day≠1 estimated
⁄I2T1 production rate of IL-2 by CD4+ T cells 2.82 ◊ 10≠8 day≠1 (43)
⁄T— C production rate of TGF-— by cancer cells 5.39 ◊ 10≠11 day≠1 estimated
⁄T— Tr

production rate of TGF-— by Tregs 2.16 ◊ 10≠7 day≠1 (55)
⁄T— M2 production rate of TGF-— by M2 macrophages 1.35 ◊ 10≠9 day≠1 estimated
⁄I10C production rate of IL-10 by cancer cells 2.07 ◊ 10≠8 day≠1 estimated
⁄I10M2 production rate of IL-10 by M2 macrophages 1.65 ◊ 10≠9 day≠1 estimated
⁄T–M1 production rate of TNF-– by M1 macrophages 1.36 ◊ 10≠5 day≠1 estimated
⁄T–T1 production rate of TNF-– by Th1 cells 1.36 ◊ 10≠7 day≠1 estimated
⁄NM2 production rate of NO by M2 macrophages 0.12/day estimated
⁄W E production rate of oxygen by endothelial cells 7 ◊ 10≠2/day (25)
⁄GC production rate of VEGF by cancer cells 2 ◊ 10≠6 day≠1 (25)
⁄GM2 production rate of VEGF by M2 macrophages 2.5 ◊ 10≠5 day≠1 estimated
⁄MC C production rate of M-CSF by cancer cells 1.2 ◊ 10≠8 day≠1 estimated
⁄MP M2 production rate of MCP-1 by M2 macrophages 1.2 ◊ 10≠8 day≠1 estimated
⁄MP C production rate of MCP-1 by cancer cells 8.24 ◊ 10≠7 day≠1 estimated
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Table S3. Summary of parameter values

Notation Description Value used References

dD death rate of DCs 0.1 day≠1 (43)
dT1 death rate of CD4+ T cells 0.197 day≠1 (43)
dT8 death rate of CD8+ T cells 0.18 day≠1 (43)
dTr

death rate of Tregs 0.2 day≠1 (55)
dM1 death rate of M1 macrophage 0.015 day≠1 (81)
dM2 death rate of M2 macrophage 0.015 day≠1 (81)
dE death rate of endothelial cells 0.69 day≠1 (43)
dC death rate of tumor cells 0.17 day≠1 (43)
dI12 degradation rate of IL-12 1.38 day≠1 (43)
dI2 degradation rate of IL-2 2.376 day≠1 (43)
dT—

degradation rate of TGF-— 499.066 day≠1 estimated
dI10 degradation rate of IL-10 8.3178 day≠1 estimated
dT–

degradation rate of TGF-– 55.01 day≠1 estimated
dN degradation rate of NO 198 day≠1 (56)
dW take-up rate of oxygen by cells 3.76 ◊ 10≠1 day≠1 (25)
dG degradation rate of VEGF 12.6 day≠1 (25)
dMC

degradation rate of M-CSF 4.8/day (25)
dMP

degradation rate of MCP-1 55.01 day≠1 (25)
dA degradation rate of anti-PD-L1 0.047 day≠1 estimated
dB degradation rate of BETi 13.86 day≠1 estimated
KD half-saturation of CD4+ T cells 4 ◊ 10≠4 g/cm3 estimated
KT1 half-saturation of CD4+ T cells 2 ◊ 10≠3 g/cm3 estimated
KT8 half-saturation of CD8+ T cells 1 ◊ 10≠3 g/cm3 estimated
KTr

half-saturation of Tregs 5 ◊ 10≠4 g/cm3 (43)
KM1 half-saturation of M1 macrophages 10≠4 g/cm3 estimated
KM2 half-saturation of M2 macrophages 3.2 ◊ 10≠3 g/cm3 estimated
KE half-saturation of endothelial cells 2.5 ◊ 10≠3 g/cm3 (25)
KC half-saturation of tumor cells 0.4 g/cm3 (43)
KI12 half-saturation of IL-12 8 ◊ 10≠10 g/cm3 estimated
KI2 half-saturation of IL-2 2.37 ◊ 10≠11 g/cm3 (43)
KT—

half-saturation of TGF-— 2.68 ◊ 10≠13 g/cm3 estimated
KI10 half-saturation of IL-10 8.75 ◊ 10≠11 g/cm3 estimated
KT–

half-saturation of – 3 ◊ 10≠11 g/cm3 (82)
KN half-saturation of NO 2 ◊ 10≠6 g/cm3 (56)
KW half-saturation of oxygen 4.65 ◊ 10≠4 g/cm3 (25)
KG half-saturation of VGEF 7 ◊ 10≠8 g/cm3 (25)
KMC

half-saturation of M-CSF 10≠9 g/cm3 (25)
KMP

half-saturation of MCP-1 2 ◊ 10≠7 g/cm3 (25)
KB half-saturation of BETi 8.02 ◊ 10≠11 g/cm3 estimated
KT I10 inhibition of function of T cells by IL-10 4.375 ◊ 10≠11 g/cm3 estimated
KT Tr

inhibition of function of T cells by Tregs 2, 5 ◊ 10≠4 g/cm3 estimated
KT N inhibition of function of T cells by NO 2 ◊ 10≠6 g/cm3 estimated
KÕ

T Q inhibition of function of T cells by PD-1-PD-L1 4.86 ◊ 10≠20 g2/cm6 estimated
KCB inhibition of proliferation of cancer cells by BETi 8.02 ◊ 10≠10 g/cm3 estimated
KT–B inhibition of production of TNF-– by BETi 8.02 ◊ 10≠10 g/cm3 estimated
KGB inhibition of production of VEGF by BETi 8.02 ◊ 10≠10 g/cm3 estimated
KTr B inhibition of Tregs by BETi 8.02 ◊ 10≠10 g/cm3 estimated
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Table S4. Summary of parameter values

Notation Description Value used References

D0 density of inactive DCs 2 ◊ 10≠5 g/cm3 (43)
T10 density of naive CD4+ T cells in tumor 4 ◊ 10≠4 g/cm3 estimated
T80 density of naive CD8+ T cells in tumor 2 ◊ 10≠4 g/cm3 estimated
M10 density of monocytes 1.2 ◊ 10≠4 g/cm3 estimated
M20 density of monocytes 3.84 ◊ 10≠3 g/cm3 estimated
CM carrying capacity of cancer cells 0.8 g/cm3 (43)
T̂1 density of CD4+ T cells from lymph node 4 ◊ 10≠3 g/cm3 estimated
T̂8 density of CD8+ T cells from lymph node 2 ◊ 10≠3 g/cm3 estimated
T̂r density of CD8+ T cells from lymph node 1 ◊ 10≠3 g/cm3 estimated
EM carrying capacity of endothelial cells 5 ◊ 10≠3 g/cm3 (25)
G0 threshold of VEGF concentration 3.65 ◊ 10≠10 g/cm3 (25)
WG threshold of oxygen density 10≠4 g/cm3 (25)
÷1 killing rate of tumor cells by CD4+ T cells 65.71 cm3/g · day estimated
÷8 killing rate of tumor cells by CD8+ T cells 328.55 cm3/g · day estimated
µLA blocking rate of PD-L1 by anti-PD-1 1.09 ◊ 106 cm3/g · day estimated
µBC absorbtion rate of BETi by cancer cells 6.17 ◊ 10≠9 day≠1 estimated
µBM1 absorbtion rate of BETi by M1 macrophages 6.17 ◊ 10≠9 day≠1 estimated
flP expression of PD-1 in T cells 2.49 ◊ 10≠7 estimated
flL expression of PD-L1 in T cells 3.25 ◊ 10≠7 estimated
ÁB Promotion of effector T cells by BETi 2 ◊ 1010 cm3/g estimated
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