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1. SI MATERIALS AND METHODS 

 

WGCNA PREPROCESSING 

We included probes in the categories human constitutive exonic (i.e., probes tagging exons common 

to multiple isoforms), human alternative exonic (i.e., probes tagging isoform-specific exons), and 

human mRNA (i.e., tagging untranslated regions of gene-coding mRNA). When genes were 

represented by multiple probes highly correlated with each other (Bonferroni-corrected α < .01, i.e. 

Pearson’s r = .36), we selected the ones with the greatest variance, following previous work (1). We 

factored out the effects of confounding variables from each gene’s expression using a stepwise 

linear model, selected via the Akaike Information Criterion and applied a rank-based inverse normal 

transformation to reduce the impact of outliers and deviations from normality (2). Thus, we 

obtained a 199 × 23,636 matrix of expression residuals reflecting for each subject transcription 

levels of all genes relative to the entire sample considered. These variables were used for the 

identification of an unsigned co-expression network (3). WGCNA detected non-overlapping sets of 

co-expressed probes, called modules, based on the analysis of gene-gene Pearson’s correlation 

indices. The correlation matrix was raised to an exponent β selected to guarantee scale invariance 

(3, 4). Scale invariance is reckoned as an important property of biological networks. A scale 

invariant network includes key genes, called hubs, with many connections, and more peripheral 

genes with selective connections. Importantly, a scale invariant network can be examined at 

different granularities, i.e., one can focus on larger or smaller groups of genes (called modules) 

based on the parameters used to identify the network. For the network at hand, β = 4 guaranteed 

scale invariance (R2 = .86; see (3)); minimum gene set size was 40 genes and minimum height for 

merging gene sets was .05.  
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PARCELING PROCEDURE 

DRD1 clustered within a module including 2452 probes, a large number difficult to study as a 

single unit. This module could not be parceled even when lowering cut height down to .01 (note 

that WGCNA default is .15). Since the WGCNA network has, by definition, a nested structure with 

highly connected hub genes and a modular organization, it should be possible to parcel a module 

into smaller gene sets like the transcriptome is parceled into modules by WGCNA. Larger gene sets 

will include also genes with weak relationships, while smaller sets will eventually yield a loss of 

information. Parceling a gene co-expression module requires the definition of a target variable for 

optimizing the outcome. Therefore, we focused on information content associated with the module, 

as indexed by entropy. Entropy H is intrinsically related to the information content provided by a 

certain partition, as information I is, by definition:  

I = H_max – H 

where H_max is the maximum entropy of a system with the same number of elements. For a 

weighted complex network: 

H_max = W log2 W 

with W being the total amount of the network weights. Given the above definition, entropy and 

information are inversely proportional up to an additive constant which is the maximum entropy of 

the observed system. Thus, we iteratively parceled the module until we identified the DRD1 gene 

set characterized by the maximum information content indexed in terms of entropy of the nodes at 

multiple parceling steps. At each parceling step, we used betweenness-based thresholding - i.e., a 

centrality measure of a given gene based on how many of the connections in each module are 

mediated by that gene (5) - to cluster genes into sets, and then we iterated the procedure on the gene 

set that included DRD1. The parceling procedure allowed us to identify the DRD1 gene set, within 

the original WGCNA module, with the maximum average betweenness.  
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The optimization aims to obtain a trade-off between two opposite trends: if an optimal partition 

exists, it should be outlined by the presence of a local maximum which identifies a stronger and 

more stable network of genes around DRD1; however, as the cardinality of selected genes decreases 

when iteratively parceling the DRD1 gene set, the informative content should decrease, as a smaller 

number of genes belong to the set. Thus, the iterative parceling of the DRD1 set is expected on the 

one hand to outline a cluster of genes which carry the maximum information, and on the other hand 

to show that further partitions cannot yield any substantial improvement.  

 

STATISTICAL ANALYSES ON THE DRD1 GENE SET  

To understand how DRD1 expression was related with gene set expression, we computed the 

Pearson's correlation of DRD1 expression with the first principal component of gene set expression 

(gene set eigengene, GSE). The GSE was not significantly associated with any of the confounders 

considered in the preprocessing (age, sex, ethnicity, RIN, pH, post-mortem interval; all p > .05), 

suggesting successful noise removal. Additionally, we tested whether the expressions of DRD1 and 

DRD2 were correlated in Braincloud using Spearman’s ρ.  

In BrainEAC, we selected high quality observations with RIN ≥ 6 (N = 26; note that all Braincloud 

and CMC samples had RIN ≥ 7). The CMC sample included 179 healthy subjects of Caucasian or 

African American ancestry, RNA integrity number (RIN) ≥ 7 (see Fromer et al. (6) for details on 

sample collection and characteristics). We filtered out transcripts with median Reads Per Kilobase 

per Million mapped reads (RPKMs) ≤ 0.1 and 107 of the 126 genes in the DRD1 gene set survived. 

We used the R package RUVcorr to remove noise from the replication gene expression datasets. 

RUV (removal of unwanted variation) derives estimates of systematic noise directly from the data 



5 

 

and is ideally suited for gene co-expression analyses. In BrainEAC and in CMC, we used RUV to 

extract five latent confounding variables and marginalized gene expression values for them.  

We investigated whether gene expression covariation in both replication datasets had the same 

direction observed in Braincloud. To this aim, we plotted gene by gene the factor loadings obtained 

via Principal Component Analysis in the discovery and replication datasets. When a gene had a 

positive or negative loading in both datasets was defined as ‘concordant in sign’ while in the other 

cases ‘discordant in sign’. We used two-sided binomial exact tests to assess whether genes 

‘concordant in sign’ outnumbered genes ‘discordant in sign’ (p-value < .05).  

 

SNP ASSOCIATION STUDY  

We used SNPs & Variation Suite (SVS, GoldenHelix, Bozeman, Montana) to select SNPs 

associated with the gene set eigengene (GSE). We restricted our analyses to SNPs whose genotypes 

were available both in Braincloud and in the samples recruited for the behavioral and fMRI studies 

(546.308 SNPs in common out of 654.333 Braincloud SNPs). SNPs significantly deviating from 

Hardy-Weinberg equilibrium (α = .003; (7)) or with a Minor Allele Frequency (MAF) ≤ .1 were 

excluded (3) because the sample size was too limited to investigate rare variants. Furthermore, we 

reasoned that a SNP associated with co-expression, but not associated with the expression of any 

single gene, would possibly be a spurious result. Thus, we aimed to increase the biological 

plausibility of the findings by filtering out SNPs that were not statistically associated with any of 

the genes in the set at nominal p-value (α = .05).  

To associate SNPs with the GSE, we used ANOVAs with jackknife resampling in a leave one-out 

framework. In other words, we used 199 samples including 198 subjects by leaving out one  



6 

 

subject per run; for each of the 199 samples, we computed one ANOVA per SNP. Then, we 

repeated the procedure for each SNP and each sample and obtained 199 p-values of the GSE 

association with each SNP. Finally, we computed the median p-value per SNP and ranked SNPs by 

this p-value. The present procedure is more robust compared to our previous report (3) because we 

performed additional resampling to reduce the influence of extreme expression values. Moreover, 

we asked whether these SNPs were associated with gene expression in their own locus and with 

DRD1 expression. To this aim, we computed ANOVAs using the selected SNP genotypes as 

independent factors and the expression of the closest gene of the set as the dependent variable. We 

also assessed the biological significance of the SNP set identified by interrogating the software 

Haploreg  (http://archive.broadinstitute.org/mammals/haploreg). Haploreg is a dataset of genetic 

regulatory elements, including cis- and trans-eQTL hits across multiple tissues according to 

previous genomic studies (8-10).  

After SNP selection, we computed the Polygenic Co-expression Index (PCI). This step is needed to 

translate the knowledge we gained via data mining on post-mortem samples into brain activity 

prediction in living subjects. In other words, we used genetic variants to compute a proxy of 

individual DRD1 gene set co-expression which we called DRD1-PCI. For each SNP, we used the 

major allele homozygote (MH) as the reference group. We computed a distance measure for the 

heterozygous and the minor homozygous samples relative to the MH group (7). After having 

defined the effect of each genotypic population within individual SNPs, we defined the PCI of each 

participant as the arithmetic mean of genotypic effects. We used a slightly modified computation of 

the genetic index compared to previous works, i.e., we used the A’ index instead of the d’ because 

A’ can be computed without assuming a normal distribution of the variables (11, 12).  

We tested whether the PCI was associated with any of the confounders considered in the 

preprocessing (age, sex, ethnicity, RIN, pH, post-mortem interval) by means of Pearson’s 
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correlations and independent samples t-tests. To assess the predictive power of the PCI, we used 

cross-validation. We were aware that 10-fold cross-validation is the popular framework for model 

selection (13, 14). Nonetheless, leave-one-out cross-validation tends to yield unbiased estimations 

(at a cost of high variance) and with the current sample size it could be preferred with a limited risk 

of overfitting. In particular, (i) at each cycle of the cross-validation, we computed the leave-one-out 

GSE in 198 out of 199 subjects;  (ii) we ranked SNPs based on the p-value of their association with 

the GSE; (iii) we retained the top 13 SNPs, i.e., the same number of SNPs included in our PCI. We 

chose this method because imposing a p-value threshold would vary, for each iteration, the amount 

of information (i.e., the number of SNPs) and the range of the polygenic score (polygenic scores 

with more SNPs tend to have smaller ranges), ultimately adding noise to the procedure; (iv) we 

computed SNP weights and used them to compute the DRD1-PCI in the left-out subject; (v) we 

computed Pearson's correlation of the cross-validated DRD1-PCI in the test set (i.e., the ensemble 

of left-out subjects) with the GSE as well as with DRD1 expression (Supplementary Figure 2). We 

used a meta-analytic approach to compare the effect size of the GSE prediction in the three datasets 

employed. We computed a fixed effect meta-analysis over Braincloud, BrainEAC, and CMC using 

the metafor R package. For the discovery set, Braincloud, we used leave-one out cross-validation 

(LOOCV) to estimate unbiased effect size. Cochran’s Q-test for heterogeneity served to assess the 

combinability of studies. Finally, we used the cross-validated data also to assess the effect of 

ethnicity on the relationship between the DRD1-PCI and the GSE by means of an ANCOVA. 

 

IMAGING AND BEHAVIORAL STUDY 

Inclusion criteria and socio-demographic assessment 

All participants were assessed for IQ (WAIS-R) (13), handedness (Edinburgh Inventory) (14), and 

socio-economic status (Hollingshead Four Factor Index of Social Status) (15). All individuals were 
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evaluated with the Structured Clinical Interview (16) for the Diagnostic and Statistical Manual of 

Mental Disorders to rule out current or past psychiatric disorder. Other exclusion criteria were first-

degree familiarity for major psychiatric disorders, history of drug or alcohol abuse, active drug use 

in the past year, brain alterations or illness as evaluated by a board- certified neuroradiologist (TP), 

head trauma with loss of consciousness, and any relevant medical condition. Only participants 

whose behavioral accuracy was significantly above chance were included in the study, as detailed 

by Pergola et al. (3). In particular, given the number of trials in each session, we derived a 95% 

confidence interval for chance level performance (asymptotic threshold: accuracy = 38% for the 3-

back fMRI study, which we applied to all WM conditions). Accuracy ≥ 38% could be statistically 

discriminated from chance level and was an inclusion criterion for the study. Additionally, only 

individuals whose scans were not affected by scanning artifacts or excessive movement were 

included in the study.  

 

Working memory task 

The term “N-Back” refers to the number of items - back in the sequence of stimuli - 

participants were required to maintain to perform the task. The stimuli consisted of numbers shown 

in random sequence and displayed at the points of a diamond-shaped box. There was a non-memory 

control condition (0-Back) that simply required subjects to identify the stimulus currently seen. In 

the WM condition, the task required the recollection of a number seen one (1-Back), two (2-Back) 

or three stimuli (3-Back) before, while continuing to encode additionally incoming stimuli.  The 

stimuli were arranged in 30 s blocks including 2 s of instructions and 14 task trials lasting 2 s each 

(stimulus presentation: 500 ms, inter-stimulus interval of 1500 ms). During fMRI, we used a block 

design, consisting of four blocks of the control condition alternating with four blocks of each WM 

condition. Participants did not exit the scanner during the breaks. Stimuli were shown via a back-
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projection system and behavioral responses were recorded through a fiber-optic four-button MRI-

compatible pad within the scanner. Participants responded with their right hand with a four-button 

MRI-compatible pad within the scanner. 

In the behavioral studies, stimuli were presented on a computer monitor and participants 

responded with their right hand on the numeric keypad of a standard computer keyboard.  

 

fMRI data acquisition and analysis 

Blood oxygen level-dependent (BOLD) signal was recorded by a GE Signa 3T scanner (General 

Electric, Milwaukee, WI), using a gradient-echo planar imaging sequence (repetition time, 2000 ms; 

echo time, 28 ms; 20 interleaved axial slices; thickness, 4 mm; gap, 1 mm; voxel size, 3.75 × 3.75 × 

5 mm; flip angle, 90°; field of view, 24 cm; matrix, 64 × 64). The first four scans were discarded to 

allow for equilibration effect. Imaging data quality was ascertained as detailed elsewhere (3). 

We realigned the images to correct for motion artifacts using the Realign and Unwarp function 

(SPM12). Movement parameters were extracted to exclude data affected by excessive head motion 

(2.5 mm of translation or 2.5° of rotation). Realigned images were resliced to a 3.75 mm 

isotropic voxel size, spatially normalized into a standard space (Montreal Neurological Institute) by 

using a 12-parameter affine model, and smoothed with a 10 mm full-width at half-maximum 

isotropic kernel. Thus, 24 regressors of movement were added in the statistical model using the 

Friston24 model (17). Furthermore, a binary regressor of no-interest, indicating volumes with 

excessive movement (scan-to-scan motion > 1mm) was included in the model. After spatial pre- 

processing, we estimated one boxcar model convolved with the hemodynamic response function per 

condition. Then, effects of condition at individual level were evaluated producing a t statistical map 

for the contrasts of interest (1-back versus 0-back, 2-back versus 0-back and 3-back versus 0-back). 

These individual contrast images were used for group-level analyses. 

In the fMRI discovery sample, we tested the association of the DRD1-PCI with brain 
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activation using a general linear model (within-subject factor: load [1-back, 2-back, 3-back]; 

between-subject factor: gender; continuous predictors: linear and quadratic terms of the DRD1-PCI 

and of the DRD2-PCI; covariates: age and socio-economic status, -which was associated with the 

PCI- ). In the fMRI replication sample, we computed an ANCOVA on the 2-Back > 0-Back 

contrast (between-subject factor: gender; continuous predictors: linear and quadratic terms of the 

DRD1-PCI; covariates: age and socio-economic status; whole brain FWE corrected p<.05; cluster 

extent threshold=5). 

 

Behavioral analyses 

In the behavioral discovery sample, we computed the differential accuracy between 2-Back and 1-

Back (Δ2-1) and between 3-Back and 2-Back (Δ3-2) (18). Thus, we computed a repeated measures 

general linear model (within-subject factor: load [Δ2-1, Δ3-2]; between-subject factor: gender; 

continuous predictors: linear and quadratic terms of the DRD1-PCI; covariates: age, and socio-

economic status; α=.05, two tailed). For the behavioral replication sample, we computed a general 

linear model with Δ2-1 as the dependent variable, gender as the between-subject factor, the linear 

and quadratic terms of the DRD1-PCI and of the DRD2-PCI as continuous predictors, as well as age 

and socio-economic status as covariates (α=.05, one tailed).  

 

Assessment of the relationship between the DRD1-PCI and socio-demographics 

After genotyping, the DRD1-PCI was computed for all subjects. We included age and gender as 

nuisance covariates in all analyses to account for demographic variability within and between 

samples. We assessed the associations between the DRD1-PCI and possible confounding variables 

(socio-economic status, handedness and IQ; α=.1) in all of the samples using Pearson’s correlation 

analyses. Variables correlated with the DRD1-PCI in either of the samples were included in all 
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statistical models in the behavioral and imaging investigations to prevent misattributing the effect of 

confounding variables to the DRD1-PCI.  

 

MEDIATION ANALYSIS ON WM PHENOTYPES 

We designed a mediation model to assess whether the ΔWM-DRD1-PCI relationship was direct or 

mediated by brain activity; a separate mediation/moderation model assessed whether the DRD2-PCI 

moderated that relationship. Both models are reported in Supplementary Figure 5, which also 

reports the weights obtained in the discovery sample. We used the SPSS toolbox PROCESS (19) to 

run the mediation analyses. Brain activity was indexed by voxels in which activity was associated 

with both PCIs (negative for the DRD1-PCI, positive for the DRD2-PCI; null conjunction, p<.05). 

We identified a left and a right prefrontal clusters (x, y, z: 38, 53, 20; x, y, z: - 37, 49, 20) from 

which we extracted BOLD signal change using MarsBaR (http:\\marsbar.sourceforge.net). We 

averaged the signal change in these two ROIs because we did not hypothesize different mediation 

paths for the left and right hemisphere. The linear term of the DRD1-PCI was the independent 

variable, mean ΔWM across loads was the dependent variable, PFC BOLD signal change was the 

mediator (first model). In the second model, both linear and quadratic DRD2-PCI were moderators 

of the relationship between the DRD1-PCI and brain/behavioral phenotypes. Age, gender, socio-

economic status and the quadratic term of the DRD1-PCI were entered as nuisance covariates.  

We replicated the effects found significant in the discovery set in additional mediation/moderation 

models computed in the fMRI replication set. Also in this dataset, we indexed brain activity using a 

cluster associated with both PCIs (null conjunction, p<.05; x, y, z: - 33, 30, 46). In both samples, 

data were standardized before being entered in the model. We used bootstrap estimates of the 

confidence intervals (5000 resamplings) to confirm the significance of the results.  
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2. SI RESULTS 

 

PARCELING 

The iterative procedure we employed reached a plateau of maximum information content 

after four runs. More in detail, we observed that the information content reached a plateau, meaning 

that further parceling could not yield any increment of the informative content of the selected 

community. Besides, as information depends on the cardinality of the community, we also 

normalized entropy with the number of nodes and observed that average entropy reached a sound 

plateau (Supplementary Figure 1). 

 

SNP ASSOCIATION STUDY AND CO-EXPRESSION POLYGENIC INDEX 

COMPUTATION 

 A set of 3717 SNPs within 100 kbp from the genes included in the DRD1 gene set that we 

identified had genotypes available in Braincloud, BrainEAC and in the GWAS dataset of our 

volunteers. Of these SNPs, 3079 were associated with the expression of at least one gene of the set 

(p < .05). After jackknife resampling, we obtained a set of 13 independent SNPs associated with the 

GSE with median resampled p < .005. None of these SNPs have been previously reported in 

association with imaging or cognitive phenotypes. Cross-validation and replication datasets 

supported the reliability of the prediction (Supplementary Figure 2). The estimated meta-analytical 

effect size was r = -0.156 (95% confidence intervals: -0.25 – -0.06; p = 0.0016). The three studies 

were not significantly heterogeneous (Cochran’s Q = 1.13, p-value = 0.57). Supplementary Figure 3 

shows that the effects in the cross-validated Braincloud data were not driven by one of the 

ethnicities, but were uniform across both. 
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SOCIODEMOGRAPHIC AND BEHAVIORAL DATA 

 Correlation analyses revealed marginally significant associations between socio-economic 

status and both the linear (R = .15, p = .074) and quadratic (R = -.14, p = .086) terms of the DRD1-

PCI only in the fMRI/behavioral discovery sample. Therefore, socio-economic status was included 

in all tests as a nuisance variable. All other tests yielded no significant results (all p>.1). In addition 

to the effect of the DRD1-PCI, the behavioral analysis on the discovery sample revealed main 

effects of age (F1,144 = 5.6; p = .018; partial η2 = .038), and gender (F1,144 = 4.6; p = .033; partial η2 

= .031) on ΔWM. Higher age and female gender were associated with lower ΔWM scores. 

 

MEDIATION ANALYSIS 

Supplementary Figure 5 illustrates the models used and the results of the discovery sample. 

The total effect (direct and indirect) of the DRD1-PCI on ΔWM was significant (standardized 

coefficient = .21; p = .014). The relationship between DRD1-PCI and ΔWM was largely mediated by 

prefrontal activity: while the direct effect was marginally significant (standardized coefficient = .16; 

p = .063; 95% confidence interval [-.0083; .32]; bootstrap interval [.0022; .34]), the indirect effect 

was significantly different from zero (standardized coefficient = .051; 95% confidence interval 

[.0038; .11]; bootstrap interval [.0022; .14]). However, none of these effects were significant in the 

fMRI replication sample (all p > .05). 

When taking into account moderation effects by the DRD2-PCI, the indirect effect of the 

DRD1-PCI remained significant but was not significantly moderated (Supplementary Figure 5); the 

direct effect of the DRD1-PCI was significant and was moderated by the quadratic DRD2-PCI. Also 

in this case, the effects were not significant in the replication sample (all p > .05). 
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Supplementary Table1. Genes in the DRD1gene set. The expression of genes in bold font is 

negatively correlated with the gene set eigengene. All gene-eigengene correlations are significant (p 

≤ 1.6 ×10-7). 

 

Gene ID 

Braincloud 

ID 

BrainEAC 

Chr Stran

d 

Start Stop Correlatio

n with 

gene set 

eigengene 

(Pearson’s 

r) 

ARAP1 hHC017995 t3381241 chr11 - 72395373 72463414 0.66 

ATF5 hHC020747 t3839103 chr19 + 50431393 50437188 0.68 

ATL2 hHC023382 t2548776 chr2 - 38521117 38662637 -0.75 

BCL7C hHR022997 t3688038 chr16 - 30845382 30905613 0.75 

CAPZA1 hHR026867 t2352228 chr1 + 113144301 113214213 -0.69 

CCDC81 hHC017139 t3343293 chr11 + 86085803 86134148 0.64 

CCNY hHC025213 t3242425 chr10 + 35535804 35860851 0.66 

CCNYL1 hHC029004 t2525182 chr2 + 208576254 208626563 -0.64 

CCPG1 hHA033972 t3625326 chr15 - 55632255 55700706 -0.59 

CHD4 hHC022301 t3442054 chr12 - 6679260 6716806 0.75 

CHD8 hHR011006 t3528078 chr14 + 21853383 21853961 0.76 

CHIC1 hHR002375 t3981609 chrX + 72782993 72906935 -0.78 

CHTF8 hHR027714 t3696454 chr16 - 69151920 69166482 0.71 

CPT1B hHC016042 t3966057 chr22 - 51007298 51021504 0.61 

CRKL hHC019229 t3937787 chr22 + 21271699 21308024 0.43 

CRLS1 hHA034867 t3875242 chr20 + 5986743 6020695 -0.72 

CTRL hHC020947 t3695983 chr16 - 67962417 67965755 0.56 

CUL4B hHR004728 t4019900 chrX - 119658474 119751514 -0.87 

CUL9 hHC019676 t2907754 chr6 + 43149932 43192318 0.69 
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DMBX1 hHC018003 t2334847 chr1 + 46964435 46981890 0.47 

DNAJB2 hHC022495 t2528426 chr2 + 220144061 220152056 0.77 

DRD1 hHC010798 t2888010 chr5 - 174867047 174914186 -0.61 

ENGASE hHR015660 t3736666 chr17 + 77068718 77084674 0.55 

ERAF hHC023223 

 

chr16 + 31446686 31447624 0.51 

FAM171A1 hHR009740 t3279154 chr10 - 15212428 15416551 0.36 

FAM69A hHR010901 t2423175 chr1 - 93298463 93427025 -0.83 

FBF1 hHR023754 t3771154 chr17 - 73905660 73905777 0.61 

FBXO11 hHC013818 t2552153 chr2 - 48016104 48134792 -0.83 

GABBR1 hHR013309 t2947889 chr6 - 29556265 29611309 0.68 

GAD1 hHA035071 t2514969 chr2 + 171670391 171717661 -0.87 

GAK hHC015505 t2756673 chr4 - 843110 926149 0.73 

GCN1L1 hHC010736 t3474256 chr12 - 120565014 120632632 0.71 

GFER hHC024889 t3644297 chr16 + 2034155 2037747 0.74 

GLIPR1 hHC003812 t3422855 chr12 + 75874480 75895696 -0.63 

GNASAS hHC012579 t3911644 chr20 - 57393838 57425958 0.51 

GUF1 hHC005703 t2725779 chr4 + 44680454 44706387 -0.81 

HSD3B7 hHC019388 t3656737 chr16 + 30996532 31000455 0.66 

HSF4 hHC022343 t3665215 chr16 + 67193888 67198077 0.78 

IDUA hHC014618 t2714407 chr4 + 966780 1008579 0.76 

INPPL1 hHC021849 t3339423 chr11 + 71934262 71950148 0.47 

IPO4 hHC017939 t3557851 chr14 - 24649263 24658104 0.47 

KIF21A hHA036028 t3450775 chr12 - 39687033 39853696 -0.88 

KLHDC8B hHC020742 t2622006 chr3 + 49207238 49213918 0.41 

KLK3 hHA039893 t3839538 chr19 + 51358171 51365366 0.45 

KRT8 hHR031337 t3455516 chr12 - 52914520 53343645 0.82 

LRBA hHC015424 t2789266 chr4 - 151185606 151936869 0.44 

LYRM7 hHA035681 t2828115 chr5 + 130506483 130538094 -0.86 



18 

 

MAFK hHR018888 t2987199 chr7 + 1550088 1580520 0.37 

MAN2B1 hHC012345 t3851545 chr19 - 12757336 12777828 0.74 

MAP2K3 hHC011325 t3714729 chr17 + 21187988 21218520 0.69 

MAP3K3 hHC019533 t3730806 chr17 + 61699811 61773660 0.79 

MGAT4A hHC020284 t2566414 chr2 - 99233700 99347568 -0.64 

MIA3 hHC031255 t2381865 chr1 + 222840225 222842596 -0.74 

MKS1 hHC020431 t3764199 chr17 - 56282803 56296885 0.75 

MMP15 hHC019951 t3663074 chr16 + 58056585 58145498 0.65 

MNAT1 hHA035592 t3538703 chr14 + 61201460 61435480 -0.39 

MOV10 hHC019728 t2352275 chr1 + 113215783 113245690 0.62 

MYH9 hHR022934 t3959451 chr22 - 36677332 36784036 0.56 

NDST1 hHC026687 t2835531 chr5 + 149865285 149963329 0.50 

NEGR1 hHR003325 t2418078 chr1 - 71868628 72748513 -0.60 

NSD1 hHC017145 t2842951 chr5 + 176545573 176724414 0.73 

NUMA1 hHC019087 t3380901 chr11 - 71712261 71791719 0.78 

OR1Q1 hHR018965 t3188186 chr9 + 125372029 125381771 0.47 

OSBPL8 hHC005823 t3462949 chr12 - 76745119 76953589 -0.45 

PCNX hHC018743 t3542689 chr14 + 71374122 71666427 0.42 

PGPEP1 hHC023256 t3824963 chr19 + 18451431 18477726 0.62 

PHF20L1 hHA035883 t3116535 chr8 + 133787604 133871286 -0.77 

PIK3R1 hHA033950 t2813060 chr5 + 67272645 67597647 -0.82 

PLA2G15 hHC018750 t3666124 chr16 + 68279253 68294958 0.67 

PLEKHA1 hHR003443 t3268274 chr10 + 124134148 124191852 -0.85 

PLOD1 hHC015919 t2320581 chr1 + 11994287 12035587 0.74 

PLSCR3 hHC019988 t3743701 chr17 - 7291950 7298142 0.68 

POU2F2 hHC026303 t3863435 chr19 - 42585012 42636615 0.68 

PPP1CB hHA035365 t2475209 chr2 + 28974624 29025796 -0.86 

PPP4R4 hHA032931 t3549605 chr14 + 94640649 94746072 -0.83 
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PPP4R4 hHA034126 t3549605 chr14 + 93710427 93815825 -0.82 

PSIP1 hHA036176 t3199790 chr9 - 15460303 15576931 -0.88 

PSIP1 hHA034232 t3199790 chr9 - 15454065 15500989 -0.73 

PSIP1 hHA040058 t3199790 chr9 - 15454065 15500989 -0.83 

PSME1 hHA038570 t3529609 chr14 + 24604814 24608139 0.61 

PSME2 hHC032217 

 

chr14 - 23682414 23686270 0.63 

QSOX1 hHC017919 t2369950 chr1 + 180086444 180169860 0.80 

RCC2 hHC031015 t2398894 chr1 - 17733276 17787445 0.68 

RECQL4 hHC026358 t3158767 chr8 - 145736675 145743245 0.66 

ROR2 hHC015909 t3214496 chr9 - 94325383 94712434 0.59 

RPS6KA2 hHR008402 t2984655 chr6 - 166809678 167328112 0.66 

RPS6KB1 hHC031266 t3729294 chr17 + 57970457 58074323 -0.58 

RTN3 hHA034196 t3333942 chr11 + 63448921 63528015 -0.73 

SBDSP hHR027838 

 

chr7 + 71744736 71749236 -0.66 

SCAMP3 hHC015426 t2437307 chr1 - 155225782 155232195 0.69 

SCOC hHA040719 t2744980 chr4 + 141105311 141328721 -0.91 

SCRIB hHA039524 t3157751 chr8 - 144873106 144897533 0.60 

SDCBP hHA033272 t3099750 chr8 + 59442654 59496406 -0.83 

SEC22A hHA034208 t2639309 chr3 + 122920747 122994410 -0.71 

SFI1 hHC025436 t3942998 chr22 + 31891926 32014532 0.70 

SFRS16 hHC024609 t3835983 chr19 + 45542297 45574205 0.79 

SIX5 hHC015139 t3865618 chr19 - 46268046 46272312 0.69 

SLC25A40 hHC003156 t3060245 chr7 - 87462897 87505669 -0.88 

SLC26A6 hHC018185 t2673547 chr3 - 48663166 48672953 0.65 

SLC6A15 hHA035353 t3464276 chr12 - 85253267 85338161 -0.85 

SLC6A8 hHR029029 t3688878 chr16 - 32797028 32896822 0.78 

SMG5 hHC026654 t2438042 chr1 - 156219019 156252630 0.71 

SNX14 hHA035514 t2963313 chr6 - 86215217 86307586 -0.82 
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SPSB1 hHC022973 t2319252 chr1 + 9352942 9429580 0.77 

SPTLC1 hHA035186 t3214582 chr9 - 94765899 94877690 -0.83 

SRRT hHC020421 t3015941 chr7 + 100472608 100486284 0.68 

ST5 hHC009572 t3361971 chr11 - 8713154 8932493 0.68 

TACC3 hHC020076 t2714955 chr4 + 1722818 1746895 0.60 

TIMELESS hHC011418 t3457824 chr12 - 56810167 56843192 0.63 

TM7SF3 hHA034151 t3448481 chr12 - 27124527 27167327 -0.84 

TMCC2 hHC013227 t2376376 chr1 + 205197324 205242465 0.76 

TMEM132E hHC019221 t3718236 chr17 + 32819166 32966327 0.72 

TMEM49 hHA034602 t3764916 chr17 - 57915313 57917744 -0.86 

TMTC3 hHC010424 t3425134 chr12 + 88536101 88593655 -0.82 

TPCN2 hHC022004 t3337918 chr11 + 68816365 68929908 0.53 

UBA2 hHR009662 t3829768 chr19 + 34919277 35003208 -0.87 

UBE2N hHC029873 t3465791 chr12 - 93802088 93861489 -0.65 

UBTD1 hHC024134 t3259888 chr10 + 99258689 99330958 0.67 

XRCC3 hHC022265 t3580832 chr14 - 104158599 104181796 0.64 

ZBTB33 hHC009280 t3989089 chrX + 119378531 119392247 -0.83 

ZDHHC21 hHR005601 t3199431 chr9 - 14546162 14693787 -0.70 

ZKSCAN5 hHC015797 t3014855 chr7 + 99086950 99132313 0.68 

ZMAT3 hHC013459 t2706791 chr3 - 178734260 178789572 -0.88 

ZNF473 hHR013607 t3839142 chr19 + 50528999 50556664 0.59 

ZNF579 hHC014534 t3871557 chr19 - 56075948 56098806 0.79 

ZNF672 hHC021765 t2390489 chr1 + 249132100 249143713 0.74 
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Supplementary Table 2. Weights assigned to each genotype of each SNP when computing the 

PCI.  

 

 

SNP Genotype Weight 

      

rs7487813 GG 0.5 

rs7487813 T-carriers 0.682083353 

      

rs2267844 CC 0.763360813 

rs2267844 CT 0.512798454 

rs2267844 TT 0.5 

      

rs663208 CC 0.765595704 

rs663208 CT 0.613451133 

rs663208 TT 0.5 

      

rs17005918 C-carriers 0.353816908 

rs17005918 TT 0.5 

      

rs13101217 AA 0.466639623 

rs13101217 AG 0.316876696 

rs13101217 GG 0.5 

      

rs1859464 CC 0.5 

rs1859464 T-carriers 0.631121557 

      

rs2278214 CC 0.5 
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rs2278214 CT 0.575577855 

rs2278214 TT 0.782451245 

      

rs7915524 CC 0.719045851 

rs7915524 CT 0.487986131 

rs7915524 TT 0.5 

      

rs12509826 CC 0.234989278 

rs12509826 CT 0.482600588 

rs12509826 TT 0.5 

      

rs10134399 CC 0.5 

rs10134399 CT 0.622919329 

rs10134399 TT 0.698026883 

      

rs10906841 AA 0.706580205 

rs10906841 AG 0.530555236 

rs10906841 GG 0.5 

      

rs2306251 AA 0.5 

rs2306251 AG 0.633938465 

rs2306251 GG 0.61574862 

      

rs11602122 CC 0.5 

rs11602122 CT 0.602444381 

rs11602122 TT 0.331436767 
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Supplementary Table 3. Specification of the single nucleotide polymorphisms (SNPs) included in 

DRD1-PCI calculation. Abbreviations: MAF, minor allele frequency. 

 

 

 

Rank SNP Locus 
Module 

Gene 
Gene name Position MAF 

Type of 

variant 

1 rs7487813 12q22 UBE2N 
Ubiquitin Conjugating 

Enzyme E2 N 

chr12:923117

00 
0.18 Intron variant 

2 rs2267844 3p21.31 SLC26A6 
Solute Carrier Family 26 

Member 6 

chr3:4856650

0 
0.23 

Intron variant 

(PFKFB4) 

3 rs663208 11q14.2 CCDC81 
Coiled-Coil Domain 

Containing 81 

chr11:858709

00 
0.23 

Intron variant 

(ME3) 

4 rs17005918 4q31.1 SCOC Short Coiled-Coil Protein 
chr4:1415840

00 
0.19 

3 prime UTR 

variant 

(RP11-

542P2.1) 

5 rs13101217 3q21.1 SEC22A 
SEC22 Homolog A, Vesicle 

Trafficking Protein 

chr3:1244490

00 
0.35 Intron variant 

6 rs1859464 14q24.2 PCNX1 
Pecanex Homolog 

(Drosophila) 

chr14:703576

00 
0.14 

Intergenic 

variant 

7 rs2278214 2q11.2 
MGAT4

A 

Mannosyl (Alpha-1,3-) - 

Glycoprotein Beta-1,4-N-

Acetylglucosaminyl 

transferase, Isozyme A 

chr2:9850220

0 
0.21 

Non coding 

transcript 

exon variant 

(INPP4A) 

8 rs7915524 10p13 
FAM171

A1 

Family With Sequence 

Similarity 171 Member A1 

chr10:153339

00 
0.19 Intron variant 

9 rs12509826 4q31.1 SCOC Short Coiled-Coil Protein 
chr4:1416010

00 
0.25 

Intron variant 

(RP11-

542P2.1) 

10 rs10134399 14q32.33 XRCC3 
X-Ray Repair Cross 

Complementing 3 

chr14:103153

000 
0.31 

Intron variant 

(RP11-

73M18.2) 

11 rs10906841 10p13 
FAM171

A1 

Family With Sequence 

Similarity 171 Member A1 

chr10:152433

00 
0.34 

Intron variant 

(NMT2) 

12 rs2306251 4p16.3 GAK Cyclin G Associated Kinase chr4:776401 0.25 

Splice region 

variant 

(CPLX1) 

13 rs11602122 11q13.3 TPCN2 
Two Pore Segment Channel 

2 

chr11:685376

00 
0.22 

Intron variant 

(RP11-

554A11.6) 
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Supplementary Figure 1 

Identification of the DRD1 gene community. Panel a) represents the information content of the 

DRD1 gene communities obtained with iterative partitions based on the average betweenness of the 

nodes in Braincloud. Note that information plateaus after three-four cycles. Panel b) shows entropy 

per node variation corresponding to each iteration in Braincloud. The minimum entropy is found 

after four cycles. Panel c) is a histogram of resampled topological overlap matrices based on 

random genes in BrainEAC and the vertical continuous line on the right shows the topological 

overlap of the genes in the DRD1 community obtained following the procedure illustrated in panels 

a) and b). The graph is cut on the x-axis because the overlap is off-scale with respect to random 

resampling. Thus, the overlap is greater than chance in the replication microarray post mortem 

dataset. 
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Supplementary Figure 2 

 

Associations between the DRD1-PCI, the Gene Set Eigengene (GSE), and DRD1 expression. 

Trendlines represent the linear regression fits in panels a-b) and d-e-f). All units in the scatter plots 

represent Z-scores of the variables indicated on the axes. a) This panel illustrates the inverted 

relationship between DRD1 expression and the GSE In Braincloud. It is worth noting that the 

DRD1-PCI was defined in Braincloud as an index negatively correlated to the GSE. b) This panel 

illustrates the relationship between observed DRD1 expression and the leave-one-out cross 

validated PCI (LOOCV DRD1-PCI) in Braincloud. c) Forest plot shows the size of the correlation 

between the DRD1-PCI and the GSE in subjects independent from the training set (the LOOCV 

DRD1-PCI was used for Braincloud). The diamond represents the fixed effect (FE) meta-analysis 

effect size. d) The X-axis depicts the LOOCV DRD1-PCI, whereas the Y-axis reports the observed 

GSE in Braincloud (the training dataset). e) Correlation observed in BrainEAC between the DRD1-
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PCI and the GSE. f) Correlation observed in CommonMind Consortium (CMC) data between the 

DRD1-PCI and the GSE. 

 

 

Supplementary Figure 3 

 

Correlation between the Gene Set Eigengene (GSE) and leave-one-out cross validated PCI 

(LOOCV DRD1-PCI) in Braincloud subjects of Caucasian and African American ancestry. 

The scatterplot illustrates the association of the LOOCV DRD1-PCI with the GSE in both 

ethnicities. 
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Supplementary Figure 4 

 

 

 

Activation maps of WM-related activity. Left: main effect of task (conjunction null(1,2,3 back) > 

baseline) for the discovery sample (p<0.05). Right: main effect of task (WM (2 back) > baseline) 

for the replication sample (p<0.05)  

 

 

Supplementary Figure 5 

 

Mediation analysis models and results. Left: discovery sample, mediation model. Right: 

discovery sample, mediation/moderation model. Statistical significance is represented as follows: 

(*) = p < .1; * = p < .05; ** = p < .01.  
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