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Supplementary info

SI(1): Hepatocyte culture conditions. Hepatocytes were isolated from male Wistar rats by in situ collagenase perfusion method.
The animals were obtained from InVivos, Singapore. Animals were handled in accordance to the IACUC protocol approved by
the IACUC committee of the National University of Singapore. Isolated hepatocytes were cultured in collagen sandwich for 48
hours. These cells were then treated with UDCA (20,40, 60, 80,100 µM) or Blebbistatin(1 µM) and imaged at a intervals of 90
seconds using an inverted wide-field fluorescence microscope (Nikon Biostation IMQ) for 3-4 hours.

SI(2): Justifications for orders of magnitude. In the numerical calculations we have used normalized units nu, such that kBTnu = 1
corresponds to kBT = 4.10−21 joule, Lnu = 1 corresponds to L = 10−5m, and tnu = t/τ such that ΛnuV = 1. This last choice
implies τ values of a few 1011s knowing that typical permeation coefficients are of the order of 10−11m/Pa.s. Straightforward
expressions follow for the normalized units of densities and osmotic pressures δρnu = L3δρ = δπnu. The pressure and surface
tension units follow these rescaling in a simple way:δPnu = L3δP/kBT and σnu = L2σ/kBT . We have investigated reasonable
parameters values. The choice of orders of magnitude of the screening length and the ion transport coefficient require some more
analysis. From Eq.(4) one easily sees that Λ = ΛikBTρcell has the dimension of a velocity. It is not easy to find experimental
values of either Λ or Λi. However one finds easily conductivity values. If one recognizes that the real driving force is not the
electric potential but the electrochemical potential, one can easily infer from conductivity data the values of Λi. One can infer
Λ ' 107ms−1 and hence Λnu ' 109 − 1010. The estimate of ξ2

i = Dw0/2Λ follows immediately.Taking a reasonable value for
an ion diffusion coefficient D ' 10−10m2s−1 and w0 = 40nm one obtains ξi = a few microns and ξnui = a few 10−1. Last
ξ2
V = KV /(2ΛV ); to our knowledge, there have been no measurement of KV up to now. A purely hydrodynamic estimate
would give KV = w3

0/12η in which η is the fluid viscosity in the cleft. The difficulty here is to choose η. If we take hundred
time that of water, which is of the order of the ’ill defined" plasma viscosity,and the already used order of magnitude for Λ one
winds up with a fluid screening length again of the order of a few microns. Note that the uncertainty on the exact values of the
parameters is not as bad as it seems since they come in a square root. As a consequence we have investigated ξnuV in the 10−1

range. SI Appendix Table (S1) sums up the investigated domain range of the relevant parameters.
Now, we justify our approximation of a constant cleft thickness. We rewrite Eq (2) in a slightly different form:

δP

k
= (e− e0)− ξ2

e∇2e , [1]

in which the length ξe =
√

σ̃
k
expresses the length scale over which thickness changes occur under localized solicitations.

Whenever δP is comparable to the cell Laplace pressure, e − e0 is of order σ̃
Lk

. Taking σ̃ = afew10−4nm−1 and k =
afew1012nm−3 and L = 10−5m we find e− e0 = a few 10−11m from which we deduce e−e0

e0
of order 10−3. Thus the thickness

of the cleft is close to the optimal thickness, up to a distance of order ξe from the lumen. This result holds in regions which
are not subjected to localized forces. The same values of σ̃ and k lead to ξe of the order of the cleft thickness. Thus the
approximation of constant thickness breaks down only at a nanoscopic scale, in the region where lumen and cleft merge.

Last we justify the local equilibrium approximation leading to the use of Eqs. (9) and (12) in the dynamical set of
equations. The largest time for reaching local equilibrium ion density is τi = L2

D
. With L ' 10µm and D ' 10−10m2s−1

we obtain τi ' .25s. Similarly, the largest time for reaching local volume flux equilibrium is τV = L2

KV k
; with L ' 10µm,

KV ' 10−22m3Pa−1s−1 one obtains τV ' 1s. Both times are significantly shorter than experimental times which are of the
order of tens of minutes, hence the validity of Eqs. (9) and (12) in which rl is a function of time.

SI(3): Analytical solutions of steady states in cleft. The solution to Eq.(9) reads:

δρ(r) =
I0( r

ξi
)
[
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)
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One can check directly that if the distance from any extremity is large compared to the screening length ξi, the value of the
ion density is simply set by the source, i.e δρ(r) = δρi. The Bessel functions K0 and I0 can be thought of in a loose sense as
generalizations of exponential functions for two dimensional laplacian problems; they do show exponential screening.

The solution to Eq.(12) has a similar structure:

δP (r) =
K0
(
r
ξV

) (
I0
(
L
ξV

) (
ξ2
V (δP − 2kBTδρi)− ξ2
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)
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(
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
[3]

Even though, the expression is more complex than that of the ion density, it shares with it the feature that if the distance to
boundaries is larger than both screening lengths ξi and ξV then the pressure is simply determined by the osmotic pressure
corresponding to the excess ion density δρi. Note that because the source term in Eq.(12) depends on space in a non trivial
way, the two screening lengths play a role in this expression.

SI (4): derivation of the dynamical equations for lumen growth. We derive here the equations for the dynamics of the lumen growth
with the variables R,θ, δρ. For that, we must satisfy as explained in the main text, force balance and conservation laws, in the
lumen and simultaneously in the paracellular domain.

The ion conservation Eq.(4) in the lumen is given by,
dN

dt
= 2πR(t)× Λ(2R(t)(1− cos θ(t))(δρi − δρ(t))

+ ξ2
i ( ∂
∂r
δρ(t))

∣∣
r=rl

) . [4]

where Λ = kBTΛi
ρcell

. The total number of ions in the lumen is related to the lumen ion density by N = V ρ = V (ρcell + δρ). The
geometrical relation rl(t) = R(t) sin θ(t) holds at any given time. In this expression the ion density gradient at the lumen-cleft
interface is deduced directly from the derivative of the expression of δρ given by Eq. SI(2), taken at the value r = rl. Indeed,
according to the estimate given in section SI(2), the time dependent part of the cleft ion conseravtion Eq.(5) is completely
negligible and one can use solutions of Eq.(9) with the slowly moving boundary rl(t).

The volume conservation Eq.(3) can be expressed in a similar way,
dV

dt
= 2πR(t)Λv(2R(t)(1− cos θ(t))(2kBTδρ(t)

− 2σ(t)
R(t) ) + ξ2

V ( ∂
∂r
δP )
∣∣
r=rl

) . [5]

The volume is easily expressed in terms of the lumen radius of curvature R(t) by V = π
3R(t)3(1− cos θ(t))2(2 + cos θ(t)). The

pressure gradient at the lumen-cleft interface is deduced from the derivative of expression Eq. SI(3) taken at r = rl. Indeed as
for the ion density equation, the time derivative part of the volume conservation equation can be safely neglected and Eq.(12)
derived from Eq.(4) holds at all times.

We can then solve Eq. (3), Eq. SI(4) and Eq. SI(5) with the dynamical tension given by Eq.(15), to obtain R(t), δρ(t) and
θ(t) provided we specify the initial conditions R(t = 0), δρ(t = 0) and θ(t = 0).

SI(5): Analytical solutions of dynamical equations in the large lumen limit.. We discuss here the limit of large lumens ( L− rl << ξi,
L − rl << ξV ) with small deviations from steady state values of the variables R, θ, δρ, in which it is possible to derive an
analytical solution . In this regime, the leaks take the simple form ( ∂

∂r
δP )
∣∣
r=rl

≈ − (P−Pext)
L−rl

, and ( ∂
∂r
δρ)
∣∣
r=rl

≈ − (δρ−δρext)
L−rl

,
and the dynamical equations can be linearized. A further simplification is obtained by anticipating that the Laplace pressure is
small compared to the osmotic pressure and thus can be neglected in the water conservation equation. Looking for exponentially
relaxing quantities O(t)−Os = Õ exp st, where O(t) is any of the system variable, the compatibility requirement of the system
of dynamical equations provides a simple second order equation ax2 + bx + c = 0 for the reduced variable x = τcs. The
expressions for a, b, and c can be obtained analytically and read when δρext = 0, δPext = 0:

a ' cos θs
2(1+cos θs)2 ( 1

ΛV
+ kBTρcell

Λ )

+ cos θsξi
2ΛV ξV (1+cos θs)2

√
kδρiL
σ0 sin θs

[6]
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b ' 2−cos θs−cos θ2
s

cos θs ( kBTρcell
Λ(1+cos θs) + ξi

2ΛV ξV sin θ2
s)

√
kBTδρiL
σ0 sin θs )

−( τcL(1−cos θs)(kBTδρi)3/2

(1+cos θs)3 sin θsξiξV (σ0 sin θs/L)1/2 )

[7]

c ' 2τcL tan θs
ξiξV (1+cos θs)3

(kBTδρi)3/2

(σ0 sin θs/L)1/2

[8]

For small enough Λv,Λ, and δρi the three coefficents a, b, c and the discriminant b2−4ac are positive. Furthermore
√
b2 − 4ac

is smaller than b and the two roots of the x equation are negative: the system relaxes monotonously to steady state in the
linear regime. This regime is overdamped. Upon increasing any of the three parameters ΛV ,Λ, and δρi the system gets into a
regime in which the discriminant b2 − 4ac of the equation becomes negative, while a, b, c are still positive. The two roots of the
x equation are complex conjugate with a negative real part. The system relaxes to steady state, with oscillations of decreasing
amplitude as time goes on. This is an underdamped regime. Upon increasing even more λw,λN , or δρi the system reaches a
point where b = 0. At that point the roots are pure imaginary and beyond the real part becomes positive, meaning that any
fluctuation is amplified at the frequency defined by the imaginary part of x.This defines a Hopf bifurcation. The complete
numerical solution confirms this scenario as already observed. Note that the feedback from the cortex viscosity is essential
in obtaining the spontaneous oscillations which are being observed in a physiologically relevant domain of parameter space.
Supplementary Films 2-4 display animations of the lumen dynamics in the different growth scenario. We give on Fig. 1 an
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Fig. 1. Dynamical state diagram of the cell-lumen system in a δρi - Λ plane, as obtained from the analytical estimate of SI (5) for ξV = 0.49, ξi = 0.50, Λv = 1 n.u.,
σ0 = 107 n.u., δρext = −2 × 106 n.u., and ρcell = 109 n.u..

example of phase diagram in a δρi,Λ plane for prescribed ΛV based on the analytical expressions above. One clearly sees the
independence of Λ for large values and the succession of the overdamped, underdamped, oscillatory regimes for increasing δρi.
The agreement of the analytic expression of the Hopf phase boundary and the overdamped-underdamped regimes cross-over
with the numerical calculation is qualitative since, the approximate expression of the leaks does not hold true in general, for
the physically relevant values of δρi where we have presented the full solution of the dynamics using numerical methods.
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Tables

Input parameters Definition Estimated
values

Normalized
units

kBT Boltzmann factor 4.1 pN-nM 1 n.u.
L Lateral size of cell 10 µm range 1 n.u.
R Radius of curvature of lumen 10 µm range ∼ 1 n.u.
rl Position of lumen junction with the cleft in polar co-

ordinates
µm range ∼ 1 n.u.

θ, (θs) Angle, (steady state angle) between the tangent to the
lumen at rl, and the symmetry plane

0 , π/2 range 0 , π/2 range

ΛV Water permeation coefficient ∼ 10−10 −
10−11

m3/(Ns)

∼ 1

Λ Ion permeation coefficient ∼ 10−9 −10−7

m/s

∼ 107 − 1010

δρi Total ion density difference between lumen and cell such
that passive and active fluxes balance as the measure of
secretory efficiency of the membrane.

∼ 0.1 -10 mM ∼ 108 − 1010

δρext Ion density outside the cell minus cell ion density ∼-(0.1 -1) mM ∼ (−107)
σ0 Sum of cortex and membrane tension in the lumen at

steady state
∼ 10−4 N/m ∼ 107

σ̃0 Sum of cortex and membrane tension in the cleft minus
the cell-cell adhesion energy E

∼ 10−4 N/m ∼ 107

ξi Characteristic length scale the ion leak in the cleft µm range ∼ 0.1-0.5
ξV Characteristic length scale the water leak in the cleft µm range ∼ 0.1-0.5
τc Cortex crossover time ∼ 102 − 104 s ∼ 10−8 − 10−9

Table 1. Estimation of the values of Physical parameters for cell-cell interface lumen formation model

δρi ru0 Ru rinil Rini

1.0 × 108 0.248745 0.497489 0.251232 0.502464
1.35 × 108 0.161707 0.323414 0.163324 0.326648
1.38 × 108 0.158089 0.316179 0.159670 0.319340

Table 2. Initial values of rinio , Rini for obtaining numerical solution of dynamical behavior in Fig. 3 and Fig. 4. The values are obtained by
estimating first the value of Ru and ru0 at the unstable branch at the same δρi and then initial values are used as 1% more than the value at
the unstable branch.

Legends for SI movies

The SI movies exemplify the dynamics of lumen growth in the 3 different regimes obtained from our model
Movie 1: Animation of the lumen growth dynamics in the monotonous growth regime.Volume, ion density as well as the lumen
shapes are presented. Note that the concentration of the lumen is coded by different intensity of green color.The simulation
parameters are the same as in the main text.
Movie 2: Animation of the lumen growth dynamics in the sustained oscillation regime.Volume, ion density as well as the lumen
shapes are presented. Note that the concentration of the lumen is coded by different intensity of green color.The simulation
parameters are the same as in the main text.
Movie 3: Animation of the lumen growth dynamics in the damped oscillation regime.Volume, ion density as well as the lumen
shapes are presented. Note that the concentration of the lumen is coded by different intensity of green color. The simulation
parameters are the same as in the main text.
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