Supplementary info for "Physics of Lumen growth"

Sabyasachi Dasgupta^{a,b}, Kapish Gupta^a, Yue Zhang^a, Virgile Viasnoff^{a,c,d,1}, and Jacques Prost^{a,b}

^aMechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; ^bLaboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; ^cCNRS UMI3639, Singapore 117411, Singapore; ^dDepartment of Biological Sciences, National University of Singapore, Singapore 117411, Singapore

Supplementary info

SI(1): Hepatocyte culture conditions. Hepatocytes were isolated from male Wistar rats by in situ collagenase perfusion method. The animals were obtained from InVivos, Singapore. Animals were handled in accordance to the IACUC protocol approved by the IACUC committee of the National University of Singapore. Isolated hepatocytes were cultured in collagen sandwich for 48 hours. These cells were then treated with UDCA (20,40, 60, 80,100 µM) or Blebbistatin(1 µM) and imaged at a intervals of 90 seconds using an inverted wide-field fluorescence microscope (Nikon Biostation IMQ) for 3-4 hours.

SI(2): Justifications for orders of magnitude. In the numerical calculations we have used normalized units nu, such that $k_B T^{nu} = 1$ corresponds to $k_BT = 4.10^{-21}$ joule, $L^{nu} = 1$ corresponds to $L = 10^{-5}m$, and $t^{nu} = t/\tau$ such that $\Lambda_V^{nu} = 1$. This last choice implies τ values of a few $10^{11}s$ knowing that typical permeation coefficients are of the order of 10^{-11} m/Pa.s. Straightforward expressions follow for the normalized units of densities and osmotic pressures $\delta \rho^{nu} = L^3 \delta \rho = \delta \pi^{nu}$. The pressure and surface tension units follow these rescaling in a simple way: $\delta P^{nu} = L^3 \delta P / k_B T$ and $\sigma^{nu} = L^2 \sigma / k_B T$. We have investigated reasonable parameters values. The choice of orders of magnitude of the screening length and the ion transport coefficient require some more analysis. From Eq.(4) one easily sees that $\Lambda = \Lambda_i k_B T \rho_{cell}$ has the dimension of a velocity. It is not easy to find experimental values of either Λ or Λ_i . However one finds easily conductivity values. If one recognizes that the real driving force is not the electric potential but the electrochemical potential, one can easily infer from conductivity data the values of Λ_i . One can infer $\Lambda \simeq 10^7 m s^{-1}$ and hence $\Lambda^{nu} \simeq 10^9 - 10^{10}$. The estimate of $\xi_i^2 = Dw_0/2\Lambda$ follows immediately. Taking a reasonable value for an ion diffusion coefficient $D \simeq 10^{-10} m^2 s^{-1}$ and $w_0 = 40$ nm one obtains $\xi_i = a$ few microns and $\xi_i^{nu} = a$ few 10^{-1} . Last $\xi_V^2 = K_V/(2\Lambda_V)$; to our knowledge, there have been no measurement of K_V up to now. A purely hydrodynamic estimate would give $K_V = w_0^3/12\eta$ in which η is the fluid viscosity in the cleft. The difficulty here is to choose η . If we take hundred time that of water, which is of the order of the 'ill defined" plasma viscosity, and the already used order of magnitude for Λ one winds up with a fluid screening length again of the order of a few microns. Note that the uncertainty on the exact values of the parameters is not as bad as it seems since they come in a square root. As a consequence we have investigated ξ_{v}^{nu} in the 10⁻¹ range. SI Appendix Table (S1) sums up the investigated domain range of the relevant parameters.

Now, we justify our approximation of a constant cleft thickness. We rewrite Eq (2) in a slightly different form:

$$\frac{\delta P}{k} = (e - e_0) - \xi_e^2 \nabla^2 e \,, \tag{1}$$

in which the length $\xi_e = \sqrt{\frac{\tilde{\sigma}}{k}}$ expresses the length scale over which thickness changes occur under localized solicitations. Whenever δP is comparable to the cell Laplace pressure, $e - e_0$ is of order $\frac{\tilde{\sigma}}{Lk}$. Taking $\tilde{\sigma} = afew 10^{-4} nm^{-1}$ and $k = afew 10^{12} nm^{-3}$ and $L = 10^{-5}m$ we find $e - e_0 = a$ few $10^{-11}m$ from which we deduce $\frac{e-e_0}{e_0}$ of order 10^{-3} . Thus the thickness of the cleft is close to the optimal thickness, up to a distance of order ξ_e from the lumen. This result holds in regions which are not subjected to localized forces. The same values of $\tilde{\sigma}$ and k lead to ξ_e of the order of the cleft thickness. Thus the approximation of constant thickness breaks down only at a nanoscopic scale, in the region where lumen and cleft merge.

Last we justify the local equilibrium approximation leading to the use of Eqs. (9) and (12) in the dynamical set of equations. The largest time for reaching local equilibrium ion density is $\tau_i = \frac{L^2}{D}$. With $L \simeq 10 \mu m$ and $D \simeq 10^{-10} m^2 s^{-1}$ we obtain $\tau_i \simeq .25s$. Similarly, the largest time for reaching local volume flux equilibrium is $\tau_V = \frac{L^2}{K_V k}$; with $L \simeq 10 \mu m$, $K_V \simeq 10^{-22} m^3 P a^{-1} s^{-1}$ one obtains $\tau_V \simeq 1s$. Both times are significantly shorter than experimental times which are of the order of tens of minutes, hence the validity of Eqs. (9) and (12) in which r_l is a function of time.

SI(3): Analytical solutions of steady states in cleft. The solution to Eq.(9) reads:

> $I_{0}\left(\frac{r}{\epsilon_{i}}\right)\left[\left(\delta\rho_{i}-\delta\rho_{ext}\right)K_{0}\left(\frac{r_{l}}{\epsilon_{i}}\right)+\left(\delta\rho_{lum}-\delta\rho_{i}\right)K_{0}\left(\frac{L}{\epsilon_{i}}\right)\right]$

$$\delta\rho(r) = \frac{\zeta_i \left[K_0(\frac{L}{\xi_i})I_0(\frac{r_l}{\xi_i}) - I_0(\frac{L}{\xi_D})K_0(\frac{r_l}{\xi_i}) \right]}{\left[K_0(\frac{L}{\xi_i})I_0(\frac{r_l}{\xi_i}) - I_0(\frac{L}{\xi_D})K_0(\frac{r_l}{\xi_i}) \right]}$$
118

$$+\frac{I_0(\frac{r_l}{\xi_i})\left[(\delta\rho_{ext}-\delta\rho_i)K_0(\frac{r}{\xi_i})+\delta\rho_iK_0(\frac{L}{\xi_i})\right]}{120}$$

$$+ \frac{1}{\left[K_0(\frac{L}{\xi_i})I_0(\frac{r_l}{\xi_i}) - I_0(\frac{L}{\xi_i})K_0(\frac{r_l}{\xi_i})\right]}$$
121
129

$$\begin{array}{c} 60\\ 61\\ 62\\ \end{array} + \frac{I_0(\underline{t}_{\xi_i})\left[(\delta\rho_i - \delta\rho_{lum})K_0(\underline{\tau}_{\xi_i}) - \delta\rho_i K_0(\underline{\tau}_{\xi_i})\right]}{\left[K_0(\underline{t}_{\xi_i})I_0(\underline{\tau}_{\xi_i}) - I_0(\underline{t}_{\xi_i})K_0(\underline{\tau}_{\xi_i})\right]} \,. \tag{2}$$

One can check directly that if the distance from any extremity is large compared to the screening length ξ_i , the value of the 187 ion density is simply set by the source, i.e $\delta \rho(r) = \delta \rho_i$. The Bessel functions K_0 and I_0 can be thought of in a loose sense as generalizations of exponential functions for two dimensional laplacian problems; they do show exponential screening. The solution to Eq.(12) has a similar structure:

$$\delta P(r) = \frac{K_0 \left(\frac{r}{\xi_V}\right) \left(I_0 \left(\frac{L}{\xi_V}\right) \left(\xi_V^2 \left(\delta P - 2k_B T \delta \rho_i\right) - \xi_i^2 \left(\delta P - 2k_B T \delta \rho\right)\right) + I_0 \left(\frac{r_l}{\xi_V}\right) \left(\xi_i^2 \left(\delta P_{ext} - 2k_B T \delta \rho_{ext}\right) - \xi_V^2 \left(\delta P_{ext} - 2k_B T \delta \rho_i\right) \frac{191}{192} }{\left(\xi_i - \xi_V\right) \left(\xi_i + \xi_V\right) \left(K_0 \left(\frac{L}{\xi_V}\right) I_0 \left(\frac{r_l}{\xi_V}\right) - I_0 \left(\frac{L}{\xi_V}\right) K_0 \left(\frac{r_l}{\xi_V}\right)\right) } \right)$$

$$(\xi_i - \xi_V)(\xi_i + \xi_V) \left(K_0\left(\frac{t}{\xi_V}\right) I_0\left(\frac{t}{\xi_V}\right) - I_0\left(\frac{t}{\xi_V}\right) K_0\left(\frac{t}{\xi_V}\right) \right)$$

$$I93$$

$$I_0\left(\frac{r}{\xi_V}\right) \left(K_0\left(\frac{L}{\xi_V}\right) \left(\xi_i^2(\delta P - 2k_B T \delta \rho) - \xi_V^2(\delta P - 2k_B T \delta \rho_i) \right) + K_0\left(\frac{r_i}{\xi_V}\right) \left(\xi_V^2(\delta P_{ext} - 2k_B T \delta \rho_i) - \xi_i^2(\delta P_{ext} - 2k_B T \delta \rho_{ext}) \right)$$

$$\frac{(\xi_i - \xi_V)(\xi_i + \xi_V) \left(K_0 \left(\frac{L}{\xi_V}\right) I_0 \left(\frac{r_l}{\xi_V}\right) - I_0 \left(\frac{L}{\xi_V}\right) K_0 \left(\frac{r_l}{\xi_V}\right)\right)}{196}$$

$$+2k_{B}T\left\{\frac{K_{0}\left(\frac{r}{\xi_{i}}\right)\left((\delta\rho_{i}-\delta\rho)I_{0}\left(\frac{L}{\xi_{i}}\right)+(\delta\rho_{ext}-\delta\rho_{i})I_{0}\left(\frac{r_{l}}{\xi_{i}}\right)\right)+I_{0}\left(\frac{r}{\xi_{i}}\right)\left((\delta\rho-\delta\rho_{i})K_{0}\left(\frac{L}{\xi_{i}}\right)+(\delta\rho_{i}-\delta\rho_{ext})K_{0}\left(\frac{r_{l}}{\xi_{i}}\right)\right)}{\left(1-\frac{\xi_{V}^{2}}{\xi_{i}^{2}}\right)\left(K_{0}\left(\frac{L}{\xi_{i}}\right)I_{0}\left(\frac{r_{l}}{\xi_{i}}\right)-I_{0}\left(\frac{L}{\xi_{i}}\right)K_{0}\left(\frac{r_{l}}{\xi_{i}}\right)\right)}\right)\right\}}$$

[5]

Even though, the expression is more complex than that of the ion density, it shares with it the feature that if the distance to boundaries is larger than both screening lengths ξ_i and ξ_V then the pressure is simply determined by the osmotic pressure corresponding to the excess ion density $\delta \rho_i$. Note that because the source term in Eq.(12) depends on space in a non trivial way, the two screening lengths play a role in this expression.

SI (4): derivation of the dynamical equations for lumen growth. We derive here the equations for the dynamics of the lumen growth 207 with the variables $R, \theta, \delta \rho$. For that, we must satisfy as explained in the main text, force balance and conservation laws, in the lumen and simultaneously in the paracellular domain.

The ion conservation Eq.(4) in the lumen is given by,

$$2\pi R(t) \times \Lambda(2R(t)(1 - \cos\theta(t))(\delta\rho_i - \delta\rho(t)))$$
²¹¹
²¹²

$$+ \xi_i^2(\frac{\partial}{\partial r}\delta\rho(t))\Big|_{r=r_l}.$$
[4] $\frac{213}{214}$

where $\Lambda = \frac{k_B T \Lambda_i}{\rho_{ev}}$. The total number of ions in the lumen is related to the lumen ion density by $N = V \rho = V(\rho_{cell} + \delta \rho)$. The geometrical relation $r_l(t) = R(t) \sin \theta(t)$ holds at any given time. In this expression the ion density gradient at the lumen-cleft interface is deduced directly from the derivative of the expression of $\delta \rho$ given by Eq. SI(2), taken at the value $r = r_l$. Indeed, according to the estimate given in section SI(2), the time dependent part of the cleft ion conservation Eq.(5) is completely negligible and one can use solutions of Eq.(9) with the slowly moving boundary $r_l(t)$.

The volume conservation Eq.(3) can be expressed in a similar way,

$$\frac{dV}{dt} = 2\pi R(t)\Lambda_v (2R(t)(1-\cos\theta(t))(2k_B T\delta\rho(t)) - \frac{2\sigma(t)}{R(t)}) + \xi_V^2 (\frac{\partial}{\partial r}\delta P)\Big|_{r=r_l}).$$
[5]

The volume is easily expressed in terms of the lumen radius of curvature R(t) by $V = \frac{\pi}{3}R(t)^3(1-\cos\theta(t))^2(2+\cos\theta(t))$. The pressure gradient at the lumen-cleft interface is deduced from the derivative of expression Eq. SI(3) taken at $r = r_l$. Indeed as for the ion density equation, the time derivative part of the volume conservation equation can be safely neglected and Eq.(12) derived from Eq.(4) holds at all times.

We can then solve Eq. (3), Eq. SI(4) and Eq. SI(5) with the dynamical tension given by Eq.(15), to obtain R(t), $\delta\rho(t)$ and 230 $\theta(t)$ provided we specify the initial conditions R(t=0), $\delta\rho(t=0)$ and $\theta(t=0)$.

SI(5): Analytical solutions of dynamical equations in the large lumen limit. We discuss here the limit of large lumens ($L - r_l \ll \xi_i$, $L - r_l \ll \xi_V$) with small deviations from steady state values of the variables $R, \theta, \delta\rho$, in which it is possible to derive an analytical solution. In this regime, the leaks take the simple form $\left(\frac{\partial}{\partial r}\delta P\right)\Big|_{r=r_l} \approx -\frac{(P-P_{ext})}{L-r_l}$, and $\left(\frac{\partial}{\partial r}\delta\rho\right)\Big|_{r=r_l} \approx -\frac{(\delta\rho-\delta\rho_{ext})}{L-r_l}$, and the dynamical equations can be linearized. A further simplification is obtained by anticipating that the Laplace pressure is small compared to the osmotic pressure and thus can be neglected in the water conservation equation. Looking for exponentially relaxing quantities $O(t) - O_s = O \exp st$, where O(t) is any of the system variable, the compatibility requirement of the system 238 of dynamical equations provides a simple second order equation $ax^2 + bx + c = 0$ for the reduced variable $x = \tau_c s$. The 239 expressions for a, b, and c can be obtained analytically and read when $\delta \rho_{ext} = 0$, $\delta P_{ext} = 0$:

$$a \simeq \frac{\cos \theta_s}{2(1-\varepsilon)^2} \left(\frac{1}{\varepsilon} + \frac{k_B T \rho_{cell}}{\varepsilon}\right)$$
241

$$u = \frac{2(1+\cos\theta_s)^2(\Lambda_V + \Lambda_v)}{2(1+\cos\theta_s)^2(\Lambda_V + \Lambda_v)}$$
242
243

$$+\frac{\cos\theta_s\zeta_i}{2\Lambda_V\xi_V(1+\cos\theta_s)^2}\sqrt{\frac{\kappa_0\rho_iL}{\sigma_0\sin\theta_s}}$$
243
244

- [6]

2 |

$$b \simeq -\frac{2 - \cos \theta_s - \cos \theta_s^2}{\cos \theta_s} \left(\frac{k_B T \rho_{cell}}{\Lambda (1 + \cos \theta_s)} + \frac{\xi_i}{2 \Lambda_V \xi_V \sin \theta_s^2} \right) \sqrt{\frac{k_B T \delta \rho_i L}{\sigma_0 \sin \theta_s}} \right)$$

$$(\tau_c L(1-\cos\theta_s)(k_B T \delta \rho_i)^{3/2})$$

$$315$$

[7] 316 317

- $256 \\ 257$
- ∠ə7

- $\frac{2\tau_c L \tan \theta_s}{\xi_i \xi_V (1 + \cos \theta_s)^3} \frac{(k_B T \delta_{P_i})^{3/2}}{(\sigma_0 \sin \theta_s / L)^{1/2}}$ 319
 - $\begin{bmatrix} 320 \\ 321 \end{bmatrix}$

For small enough Λ_v, Λ , and $\delta \rho_i$ the three coefficients a, b, c and the discriminant $b^2 - 4ac$ are positive. Furthermore $\sqrt{b^2 - 4ac}$ is smaller than b and the two roots of the x equation are negative: the system relaxes monotonously to steady state in the linear regime. This regime is overdamped. Upon increasing any of the three parameters Λ_V, Λ , and $\delta \rho_i$ the system gets into a regime in which the discriminant $b^2 - 4ac$ of the equation becomes negative, while a, b, c are still positive. The two roots of the x equation are complex conjugate with a negative real part. The system relaxes to steady state, with oscillations of decreasing amplitude as time goes on. This is an underdamped regime. Upon increasing even more λ_{w}, λ_{N} , or $\delta_{\rho_{i}}$ the system reaches a point where b = 0. At that point the roots are pure imaginary and beyond the real part becomes positive, meaning that any fluctuation is amplified at the frequency defined by the imaginary part of x. This defines a Hopf bifurcation. The complete numerical solution confirms this scenario as already observed. Note that the feedback from the cortex viscosity is essential in obtaining the spontaneous oscillations which are being observed in a physiologically relevant domain of parameter space. Supplementary Films 2-4 display animations of the lumen dynamics in the different growth scenario. We give on Fig. 1 an

 $\sigma_0 = 10^7 \text{ n.u.}, \delta \rho_{ext} = -2 \times 10^6 \text{ n.u.}, \text{ and } \rho_{cell} = 10^9 \text{ n.u.}$

example of phase diagram in a $\delta \rho_i$, Λ plane for prescribed Λ_V based on the analytical expressions above. One clearly sees the independence of Λ for large values and the succession of the overdamped, underdamped, oscillatory regimes for increasing $\delta \rho_i$. The agreement of the analytic expression of the Hopf phase boundary and the overdamped-underdamped regimes cross-over with the numerical calculation is qualitative since, the approximate expression of the leaks does not hold true in general, for the physically relevant values of $\delta \rho_i$ where we have presented the full solution of the dynamics using numerical methods.

Input parameters	Definition		Estimated	Normalized	
1 77	Delterre even forster	-	values	units	_
	Boitzmann factor	r	4.1 pN-nM	1 n.u.	-
B	Badius of curvat	ure of lumen	$10 \ \mu m$ range	$\sim 1 n \mu$	-
r_l	Position of lume	en junction with the cleft in polar	μm range	~ 1 n.u.	-
	ordinates				
$ heta, (heta_s)$	Angle, (steady s	tate angle) between the tangent to t	ne 0, $\pi/2$ range	0 , $\pi/2$ range	
A	lumen at r_l , and	the symmetry plane	10-10		-
ΛV	water permeatio	in coencient	$\sim 10^{-11}$ $m^3/(Ns)$	~ 1	
Λ	Ion permeation of	coefficient	$\sim 10^{-9} - 10^{-7}$	$\sim 10^7 - 10^{10}$	
S -	Total ion density	difference between lumon and call ou	m/s	108 1010	_
$o ho_i$	that passive and	total ion density difference between lumen and cell such		$\sim 10^{\circ} - 10^{10}$	
	secretory efficier	ncv of the membrane.			
$\delta \rho_{ext}$	Ion density outsi	de the cell minus cell ion density	~-(0.1 -1) mM	$\sim (-10^7)$	
σ_0	Sum of cortex a	and membrane tension in the lumen	at $\sim 10^{-4}$ N/m	$\sim 10^7$	1
	steady state				
$ ilde{\sigma}_0$	Sum of cortex a	nd membrane tension in the cleft min	us $\sim 10^{-4} \text{ N/m}$	$\sim 10^7$	
Ċ.	the cell-cell adhe	esion energy E		0105	4
Si Exc	Characteristic le	noth scale the water leak in the cleft		$\sim 0.1-0.5$	-
5V T		r time	μm range	~ 10-8 10-9	-
$\delta \rho_i$	r_0^u	R^u r	ini	R^{ini}	
$\frac{\delta \rho_i}{1.0 \times 10^8}$	r ₀ ^u 0.248745	R ^u 7 0.497489	ⁱⁿⁱ .251232	R ⁱⁿⁱ 0.502464	
	r_0^u 0.248745 0.161707	R ^u n 0.497489 0 0.323414 0	ⁱⁿⁱ .251232 .163324	R ⁱⁿⁱ 0.502464 0.326648	
$\frac{\delta \rho_i}{1.0 \times 10^8}$ $\frac{1.35 \times 10^8}{1.38 \times 10^8}$ able 2. Initial values stimating first the value value branch.	$\begin{tabular}{ c c c c c c c }\hline & r_0^u & & \\ \hline & 0.248745 & & \\ \hline & 0.161707 & & \\ \hline & 0.158089 & & \\ \hline & 0.15808 & & \\ \hline & 0.158089 & & \\ \hline & 0.158089 & & \\ \hline & 0.158089 & & \\ \hline & 0.15808 & & \\ \hline $	R ^u n 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ	ini .251232 .163324 .159670 mical behavior in Fi o _i and then initial va	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	ne values are obtained % more than the value
$δρ_i$ 1.0 × 10 ⁸ 1.35 × 10 ⁸ 1.35 × 10 ⁸ 1.38 × 10 ⁸ able 2. Initial values stimating first the value ne unstable branch.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ	p_i^{ini} .251232 .163324 .159670 mical behavior in Fi ρ_i and then initial va	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	ne values are obtained % more than the value
$\frac{\delta \rho_i}{1.0 \times 10^8}$ $\frac{1.0 \times 10^8}{1.35 \times 10^8}$ $\frac{1.35 \times 10^8}{1.38 \times 10^8}$ able 2. Initial values stimating first the vane unstable branch.	r_{0}^{u} 0.248745 0.161707 0.158089 of r_{o}^{ini} , R^{ini} for obta lue of R^{u} and r_{0}^{u} at th Dvies polify the dynamics on of the lumen grow d. Note that the co same as in the main	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone concentration of the lumen is on text.	c_{1}^{ini} .251232 .163324 .159670 mical behavior in Fi o_i and then initial va derent regimes obt us growth regime. oded by different	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	ne values are obtained % more than the value nodel ty as well as the lum n color.The simulation
	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini} , R^{ini} for obta lue of R^u and r_0^u at the Dvies nplify the dynamics on of the lumen grow d. Note that the cc same as in the main of the lumen grow d. Note that the cc	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difference of the same of the lumen is of the lumen is of the sustained oncentration of the lumen is on text. vth dynamics in the sustained oncentration of the lumen is on text. vth dynamics in the sustained oncentration of the lumen is on text.	ini .251232 .163324 .159670 mical behavior in Fi o_i and then initial va erent regimes obt us growth regime. Odd by different oded by different	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	nodel ty as well as the lumin color. The simulation n color. The simulation
	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the public of the lumen grow d. Note that the ccc same as in the main on of the lumen grow d. Note that the ccc same as in the main on of the lumen grow d. Note that the ccc	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped on text. wth dynamics in the damped on text.	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi <i>o_i</i> and then initial va ^c erent regimes obt us growth regime. oded by different oded by different oded by different oded by different	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	ne values are obtained % more than the value % more than the value ty as well as the lum a color.The simulation ity as well as the lum a color.The simulation
	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini} , R^{ini} for obta lue of R^u and r_0^u at the observation of the lumen growed. Note that the constant single of the lumen growed single of the lumen g	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is concentration of the lumen is concentratin on the concentratin on the concentratin on	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	ne values are obtained % more than the value % more than the value hodel ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation
$\frac{\delta \rho_i}{1.0 \times 10^8}$ $\frac{1.0 \times 10^8}{1.35 \times 10^8}$ $\frac{1.35 \times 10^8}{1.38 \times 10^8}$ The second	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the povies no of the lumen grow d. Note that the corsame as in the main on of the lumen grow d. Note that the corsame as in the main on of the lumen grow d. Note that the corsame as in the main on of the lumen grow d. Note that the corsame as in the main	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difference unstable branch at the same δ oncentration of the lumen is on text. wth dynamics in the sustained procentration of the lumen is on text. wth dynamics in the damped on centration of the lumen is on text. wth dynamics in the damped on centration of the lumen is on text.	$\frac{1}{2}$.251232 .163324 .159670 mical behavior in Fi o_i and then initial values of the constraint of the constraint	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	nodel ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation
	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the second state of the lumen grow d. Note that the constant state of the lumen grow d. Note the lumen grow d. Note the lumen grow d. Note that the	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difference of the same δ of under the same δ of lumen growth in the 3 difference of the same δ oncentration of the lumen is of the sustained oncentration of the lumen is of the sustained oncentration of the lumen is of the same δ on text. wth dynamics in the damped oncentration of the lumen is of the sustained oncentration of the lumen is of the same δ oncentration of the lumen is of the same δ oncentration of the lumen is on text. wth dynamics in the damped of the same δ oncentration of the lumen is on text.	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	nodel ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation
	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the second state of the lumen grow d. Note that the constant state of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main on of the lumen grow d. Note that the constant as in the main of the lume	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difference of the same δ of dynamics in the monotone oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is context. wth dynamics in the damped oncentration of the lumen is context.	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	nodel ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- ne unstable branch. Legends for SI me the SI movies exem Movie 1: Animatic hapes are presente arameters are the Movie 2: Animatic hapes are presente arameters are the Movie 3: Animatic hapes are presente arameters are the Movie 3: Animatic hapes are presente arameters are the	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the Dvies nplify the dynamics on of the lumen grow d. Note that the co same as in the main on of the lumen grow d. Note that the co same as in the main on of the lumen grow d. Note that the co same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dyname unstable branch at the same δ of lumen growth in the 3 difference of the same δ oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text.	$\frac{i}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The second seco	nodel ty as well as the lum a color. The simulation ty as well as the lum a color. The simulation ty as well as the lum a color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- ne unstable branch. Legends for SI me the SI movies exem Movie 1: Animatic hapes are presente branchers are the Movie 2: Animatic hapes are presente branchers are the Movie 3: Animatic hapes are presente branchers are the branchers are the	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the Dvies nplify the dynamics on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difference of the same δ oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text.	ini .251232 .163324 .159670 mical behavior in Fi ρ_i and then initial values of the	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	nodel ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- ne unstable branch. egends for SI me the SI movies exem Movie 1: Animatic hapes are presente branchers are the Movie 2: Animatic hapes are presente branchers are the Movie 3: Animatic	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the Dvies nplify the dynamics on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.497489 0 0.323414 0 0.316179 0 ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difference of the same δ oncentration of the lumen is on text. wth dynamics in the sustained oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text. wth dynamics in the damped oncentration of the lumen is on text.	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi o_i and then initial vant of the second secon	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	nodel ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation ty as well as the lum n color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- he unstable branch. Legends for SI me the SI movies exem Movie 1: Animatic hapes are presente barameters are the Movie 2: Animatic hapes are presente barameters are the Movie 3: Animatic	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the povies nplify the dynamics on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.49748900.32341400.3161790ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text.with dynamics in the sustained oncentration of the lumen is on text.with dynamics in the sustained oncentration of the lumen is on text.with dynamics in the damped oncentration of the lumen is on text.with dynamics in the damped oncentration of the lumen is on text.	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi o_i and then initial va diversion of the initial va out the initial va out the initial va diversion of the initial va out the ini	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	nodel ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- ne unstable branch. egends for SI me the SI movies exem Movie 1: Animatic hapes are presente barameters are the Movie 2: Animatic hapes are presente arameters are the Movie 3: Animatic hapes are presente arameters are the Movie 3: Animatic hapes are presente barameters are the Movie 3: Animatic	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the povies nplify the dynamics on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the co same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.49748900.32341400.3161790ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text.wth dynamics in the sustained oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is on text.	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi o_i and then initial va ^c erent regimes obt us growth regime. ^o oded by different oscillation regime. ^o oded by different i	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. The state of the stat	nodel ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation
$δρ_i$ 1.0×10^8 1.35×10^8 1.35×10^8 able 2. Initial values stimating first the va- ne unstable branch. egends for SI me the SI movies exem Movie 1: Animatic hapes are presente barameters are the Movie 2: Animatic hapes are presente barameters are the Movie 3: Animatic	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obtallue of R^u and r_0^u at the provides pulify the dynamics on of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note that the consame as in the main of the lumen grow d. Note th	R^u r 0.49748900.32341400.3161790ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text.wth dynamics in the sustained oncentration of the lumen is on text.wth dynamics in the sustained oncentration of the lumen is on text.wth dynamics in the sustained oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is context.wth dynamics in the damped oncentration of the lumen is context.	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi <i>o_i</i> and then initial vant the second then the second t	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. Transmission ained from our m Volume, ion densi intensity of green Volume, ion densi intensity of green Volume, ion densi ntensity of green	nodel ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation ty as well as the lum- n color. The simulation
$δρ_i$ 1.0 × 10 ⁸ 1.35 × 10 ⁸ 1.35 × 10 ⁸ able 2. Initial values stimating first the va- ne unstable branch. A gends for SI me the SI movies exem A ovie 1: Animatic hapes are presente arameters are the A ovie 2: Animatic hapes are presente arameters are the A ovie 3: Animatic hapes are presente arameters are the A ovie 3: Animatic hapes are presente arameters are the	r_0^u 0.248745 0.161707 0.158089 of r_o^{ini}, R^{ini} for obta lue of R^u and r_0^u at the provides policy policy and r_0^u at the dynamics on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the cc same as in the main on of the lumen grow d. Note that the co same as in the main on of the lumen grow d. Note that the co same as in the main	R^u r 0.49748900.32341400.3161790ining numerical solution of dynate unstable branch at the same δ of lumen growth in the 3 difficult dynamics in the monotone oncentration of the lumen is on text.wth dynamics in the sustained oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is on text.wth dynamics in the damped oncentration of the lumen is concentration of the lumen is co	<i>ini</i> .251232 .163324 .159670 mical behavior in Fi <i>o_i</i> and then initial va	R ⁱⁿⁱ 0.502464 0.326648 0.319340 g. 3 and Fig. 4. Transmission alues are used as 1 alues are used as 1 volume, ion densi intensity of green Volume, ion densi intensity of green Volume, ion densi ntensity of green	nodel ty as well as the lum n color.The simulation ty as well as the lum n color.The simulation ty as well as the lum color.The simulation