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OVERVIEW

This supplement includes methodological details about
the provenance and processing pipelines for each of the
five interareal connectome datasets. It also includes
derivations of the network metrics reported in the main
text and an overview of the process used to define struc-
tural and functional network modules, an explanation of
alternative communication schemes (i.e. communicabil-
ity and navigation routing), and demonstrations that our
results are robust with respect to alternative weight-to-
length mappings and thresholding of weak connections.

MATERIALS AND METHODS

We analyzed mouse, Drosophila, macaque, and hu-
man weighted, interareal network datasets. Each dataset
was distinct in terms of imaging modality, reconstruction
technique, and connection weighting scheme. This vari-
ability in processing strategy was unintentional, though
we exploit this feature in order to demonstrate the uni-
versality of our findings and their robustness to acquisi-
tion and processing schemes. In this section, we describe
the methods used to reconstruct and analyze the net-
works.

Network datasets

Mouse. The mouse connectivity matrix was recon-
structed based on freely available tract-tracing data
from the Allen Institute Mouse Brain Connectivity At-
las (http://connectivity.brain-map.org; see [1] for
more details of tract-tracing experiments). Anterograde
recombinant adeno-associated viral tracer was injected
into target areas in the right hemisphere of mouse brains,
which was extracted three weeks post-injection at which
time viral tracer projection patterns were reconstructed.
Reconstructions were then smoothed and aligned to a
common coordinate space of the Allen Reference Atlas.

∗ rbetzel @ seas.upenn.edu
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Network nodes were defined according to a custom par-
cellation based on the Allen Developing Mouse Brain At-
las [2]. This parcellation contains 65 areas in each hemi-
sphere, 9 of which were removed because they were not
involved in any tract-tracing experiment. The resulting
weighted and directed network contained N = 112 areas
of interest linked by edges corresponding to interareal ax-
onal projections and weighted as normalized connection
densities: the number of connections from unit volume
of a source area to unit volume of a target area (Fig. 1a).
This network has been analyzed elsewhere [2–4].

Drosophila . The connectivity matrix for Drosophila
was reconstructed from the FlyCircuit 1.1 database
(http://www.flycircuit.tw), a repository of images
of 12,995 projections in the female Drosophila brain
[5]. Neurons were labeled with green fluorescent protein
(GFP) using genetic mosaic analysis with a repressible
cell marker. GFP-labeled neurons were delineated from
whole-brain three-dimensional images and co-registered
to a female template brain using a rigid linear trans-
form. Individual neurons were partitioned into N = 49
local processing units (LPUs; network nodes) with dis-
tinct morphological and functional characteristics. LPUs
were defined so as to contain their own population of local
interneurons whose fibers were limited to that LPU. The
result was a weighted and directed network comprised of
projections among LPUs. This network has been ana-
lyzed elsewhere [3, 4, 6, 7] (Fig. 1b).

Macaque. The macaque connectivity matrix was based
on retrograde tract-tracing experiments and originally
reported in [8]. Injections of fluorescent tracers were
made in 28 macaque monkeys. Reconstructed projections
were localized with respect to a parcellation comprised
of N = 91 cortical areas based on histological and atlas-
based landmarks. For each tract-tracing experiment, the
number of labeled neurons in each of the 91 areas was
counted. This number was then expressed relative to the
number of labeled neurons minus the number of neurons
intrinsic to the injection site. The result is a [29×91] ma-
trix of connection weights from each injection site to the
rest of the brain. We focused on the [29 × 29] weighted
and directed connectivity matrix [9] (Fig. 1c).

Human structural networks. Human brain net-
works were reconstructed from diffusion weighted MRI

1720186115

http://connectivity.brain-map.org
mailto:rbetzel @ seas.upenn.edu
mailto:dsb @ seas.upenn.edu
http://www.flycircuit.tw


2

-4

1

lo
g1

0 
w

ei
gh

t
Node

N
od

e
Mouse

0

100
di

st
an

ce

Node

N
od

e
a

0

4

lo
g1

0 
w

ei
gh

t

Node

N
od

e

Drosophila

0

600

di
st

an
ce

Node

N
od

e

b

-6

0

lo
g1

0 
w

ei
gh

t

Node

N
od

e

Macaque

0

60

di
st

an
ce

Node

N
od

e

c

-3

2

lo
g1

0 
w

ei
gh

t

Node

N
od

e

Human (low res)

0

150

di
st

an
ce

Node

N
od

e

d

-3

2

lo
g1

0 
w

ei
gh

t

Node

N
od

e

Human (high res)

0

150

di
st

an
ce

Node

N
od

e

e

FIG. 1. Network matrices. (top row): Matrix representations of connectomes reconstructed from macaque, Drosophila,
mouse, and human imaging data. (bottom row): Euclidean distance matrices for the same species.

using deterministic tractography algorithms. The net-
works we analyzed were group-representative composites
of subject-level networks (30 subjects). This network
construction process entailed acquiring diffusion spec-
trum and T1-weighted anatomical images for each in-
dividual. DSI scans sampled 257 directions using a Q5
half-shell acquisition with a maximum b-value of 5000,
an isotropic voxel size of 2.4 mm, and an axial acqui-
sition with repetition time TR = 5 seconds, echo time
TE = 138 ms, 52 slices, and field of view of [231, 231, 125]
mm. All procedures were approved by the Institutional
Review Board of the University of Pennsylvania and all
participants gave informed consent.

DSI data were reconstructed in DSI Studio (www.
dsi-studio.labsolver.org)), using q-space diffeomor-
phic reconstruction (QSDR) [10]. QSDR reconstructs
diffusion-weighted images in native space, computes the
quantitative anisotropy (QA) of each voxel, warps the
image to a template QA volume in Montreal Neurologi-
cal Institute (MNI) space using the statistical paramet-
ric mapping nonlinear registration algorithm, and recon-
structs spin-density functions with mean diffusion dis-
tance of 1.25 mm with three fiber orientations per voxel.
Fiber tracking was performed using a modified FACT
algorithm with an angular cutoff of 55◦, step size of
1.0 mm, minimum length of 10 mm, spin density func-
tion smoothing of 0.00, maximum length of 400 mm,
and a QA threshold determined by DWI signal in the
colony-stimulating factor. For each individual, the algo-
rithm terminated when 1,000,000 streamlines were recon-
structed.

In parallel, T1 anatomical scans were segmented using
FreeSurfer and parcellated using the Connectome Map-
ping Toolkit (http://www.connectomics.org) accord-
ing to low- and high-resolution atlases (Nlow = 82 and
Nhigh = 1000 areas) [11]. The low-resolution atlas com-

prised 68 cortical areas and 14 subcortical structures.
The high-resolution atlas comprised 1000 cortical areas,
representing subdivisions of cortical areas delineated in
the low-resolution atlas, and 14 subcortical structures.
Note that the upsampling procedure applied to the cor-
tical areas was not applied to the subcortical structures.
As a result, the volumes and surface areas of subcor-
tical structures in the high-resolution atlas were many
times greater than that of the high-resolution cortical
areas. Because large morphometric disparities can in-
duce unwanted biases in network analysis, we elected to
exclude sub-cortical structures from our analysis of net-
works constructed using the high-resolution atlas. Each
parcellation was registered to the B0 volume of subjects’
DSI data, and a B0-to-MNI voxel mapping was used to
map area labels from native space to MNI coordinates.
Streamlines were aggregated by the areas in which their
starting and termination points were located. The con-
nection weight between any pair of areas was defined
as their streamline count normalized by the geometric
means of their volumes.

Group-representative matrices were generated using a
distance-dependent, consistency-based thresholding pro-
cedure. This procedure was applied separately to inter-
and intra-hemispheric connections. The resulting net-
works had a binary density equal to the average across
subjects, approximately the same distribution of inter-
and intra-hemispheric edge lengths, and approximately
the same edge weight distribution as every subject
(Fig. 1d,e). This approach has been described elsewhere
[12, 13] and shown to be superior to distance-agnostic
thresholding procedures [14].

www.dsi-studio.labsolver.org
www.dsi-studio.labsolver.org
http://www.connectomics.org
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Network analysis

Inter-areal networks were represented as weighted con-
nectivity matrices, W ∈ RN×N , where the element wij
denoted the strength of the connection between brain
areas (nodes) i and j. We encoded spatial relation-
ships between nodes with Euclidean distance matrices,
E ∈ RN×N , where the element eij denoted the straight-
line distance between the physical locations of areas i and
j.

Shortest weighted paths. The shortest path between
two areas represents the most direct channel by which
they can communicate, with shorter paths implying en-
hanced communication capacity. One of the challenges
of studying shortest path structure in weighted complex
networks is that in order to compute shortest paths, we
must first map connection weights from a measure of
nodes’ affinities for one another to a measure of length.
In principle, this mapping would be data-driven and, in
the case of neural systems, informed by neurobiology.
Typically, however, the most neurophysiologically accu-
rate mapping for a particular data type, spatial reso-
lution, and organism, is unknown, which motivates the
exploration of different heuristic mappings. A common
choice is to compute length as the reciprocal of weight,
i.e. lij = w−1

ij . While effective, this mapping is pragmatic
and there is no particular motivation for why weights are
raised to a power of −1 as opposed to some other power.

While it is infeasible to explore all possible weight-to-
length mappings, it is essential to test several candidates
in order to increase confidence in the generalizability of
results, and to ensure that our findings are not idiosyn-
crasies of a particular choice for how to map weights to
lengths. Accordingly, we consider a family of parame-
terized weight-to-length mappings: lij = 1

w−α
ij

. As α in-

creases, the weights of the strongest connections become
exponentially greater than the weights of the weakest
connections, and a larger proportion of shortest paths
are funnelled through those (strong) connections. As
α → 0, the ratio grows smaller and shortest paths are
more evenly distributed over connections. Conveniently,
this mapping also allows us to recover, as special cases,
the binary shortest paths (α = 0) and the reciprocal
mapping noted earlier, α = 1. Once weights were trans-
formed into lengths, the network’s shortest path struc-
ture was computed and stored in the distance matrix,
D ∈ RN×N , whose element dst = lsi + lij + . . . + lkt en-
coded the length of the weighted shortest path between
source area s and target area t [15].

Mean weighted path length. Given a network’s short-
est path structure, we calculated a number of useful met-
rics. The simplest was the average length of shortest
paths:

〈L〉 =
2

N(N − 1)

∑
i,j>i

dij . (1)

This measure tells us, on average, the cost of using short-
est paths for communication.

While we focus on the w−αij mapping in the main text,
we also explore an alternative mapping in this supple-
ment. Specifically, we consider a “negative log” map-

ping: Lij = − log
( Wij

maxij(Wij)

)
. Using this mapping, we

find results comparable to those reported in the main
text, namely that shortest paths are composed, mostly,
of strong short-range connections. We show these results
in Fig. 2 and Fig. 3.

Edge betweenness centrality. We also calcu-
lated the contributions made to a network’s shortest
path structure by its connections [16]. Let πs→t =
{{s, i}, {i, j}, . . . , {k, t}} be the sequence of connections
traversed along the shortest path from a source node s
to a target node t. A connections’s betweenness central-
ity, Bij , measures the fraction of all shortest paths that
include the connection {i, j}; its value can be interpreted
as a measure of a connection’s importance for communi-
cation along a network’s shortest paths.

Alternative communication schemes. In the main
text of this paper we consider inter-areal patterns of
communication taking place along the shortest weighted
path between pairs of brain regions. While shortest path
communication is among the most widely studied mech-
anisms [17], there are others that we do not explicitly
consider. In this section we test the effect of short-range
and long-distance connections on two other communica-
tion mechanisms: communicability [18, 19] and naviga-
bility [20–22].

Whereas shortest-paths routing assumes that com-
munication between two regions occurs along a single
path composed of strong connections, communicability
assumes that communication occurs along all paths of
all lengths while exponentially discounting longer, multi-
step paths. Formally, communicability is calculated
as the matrix exponential G = eW, so that Gij =∑∞
k=0

(Wk)ij
k! . Accordingly, communicability can be cal-

culated for all pairs {i, j}, even if those nodes are not di-
rectly connected, and can be thought of intuitively as the
capacity for those nodes to communicate along all path-
ways. In addition to pairwise communicability, we also
computed an average communicability among all pairs of
nodes. Note that to ensure that the matrix exponential
does not “blow up”, we divide all elements of W by W’s
largest eigenvalue, λmax before computing G.

Navigability – or “navigation routing” – refers to an
algorithm in which a message is sent from a source node
i to a target node j. Starting with node i and at each
subsequent step the message is passed along its current
node’s outgoing links to the neighbor nearest its target in
terms of Euclidean distance (note: other distance metrics
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FIG. 2. Change in weighted clustering coefficient and path length after removing short-range and long-distance
connections. (a) Change in weighted clustering coefficient as a result of removing the 5%, 10%, 20%, and 25% shortest and
longest connections. (b) Change in weighted path length as a result of removing the 5%, 10%, 20%, and 25% shortest and
longest connections. Note that shortest paths were computed based on a logarithmic weight-to-length mapping.

can be considered, e.g. those induced after embedding
a network into a hyperbolic space [23]). Unlike short-
est paths routing, navigation routing can fail to pass the
message to its target, e.g. if the message gets stuck in a
cycle. We can compute a number of measures based on
this routing mechanism, including (i) an edge-wise us-
age statistic tabulating the number paths in which each
edge is involved, (ii) the length of each completed path
in number of steps, and (iii) the total number of failures
across all pairs of nodes.

Our comparison of shortest paths routing with commu-
nicability and navigation routing included two distinct
components. First, we aimed to show that measures of
communicability and navigability both exhibit distance
dependencies. Second, we aimed to show that not only
do these communication strategies depend upon distance,
but that weak long-distance connections play either a mi-
nor or complementary role to strong short-range connec-
tions.

To demonstrate that both communicability and nav-
igation routing depend on Euclidean distance, we com-
puted the correlation of Euclidean distance with pair-
wise communicability and edge usage (Fig. 4). In both
cases, we observed robust negative correlations. These
supplementary results indicate that, even under different
routing schemes, the capacity for communication among
distant nodes tends to be weaker than for nodes located
nearer to one another.

Next, we systematically removed long-distance and
short-range connections from the network and computed

what effect their removal had on average pairwise com-
municability in the case of communication by communi-
cability, and on average path length and failure count in
the case of navigability. In line with the main text, we
found that removing strong, short-range connections re-
sulted in greater decreases in communicability compared
to the removal of weak long-distance connections (Fig. 5).
On the other hand, because navigation routing can effi-
ciently take advantage of long-distance pathways to di-
rect a message towards the neighborhood of its target,
we found that removing long connections consistently in-
creased path length (Fig. 6a). However, short-range con-
nections also play a critical role. We observed that re-
moving short-range connections resulted in an increased
number of failures (Fig. 6b).

Collectively, these findings paint a complicated pic-
ture of communication mechanisms. Shortest paths rout-
ing and communicability both depend upon connection
weight; perhaps for this reason results obtained using
these methods are fairly consistent with one another, sug-
gesting that strong short-range connections play an out-
sized role in shaping communication patterns. Navigabil-
ity on the other hand, depends on the spatial embedding
of the brain to facilitate communication, exploiting long-
distance pathways to ensure few processing steps while
depending on short-range connections for endpoint rout-
ing. These communication strategies differ not only in
terms of mechanism, but also in terms of biological real-
ism. Shortest paths routing requires that a message’s tar-
get destination be known ahead of time and assumes com-
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FIG. 3. Shortest path usage using logarithmic weight-to-length mapping. (a,b,c,d,e) Euclidean distance of edges
used in shorest paths for the empirical network (colored) and randomized null model (gray). (f) For each network, we calculated
the fraction of total connections involved in shortest paths (gray) and of those connections, the fraction that were among the
25% longest (colored).

plete knowledge of the network’s topology, which may be
an inaccurate assumption for neural systems. Similarly,
navigation routing requires that a message’s target des-
tination be known ahead of time. However, rather than
requiring global knowledge of all shortest paths, at each
step navigation routing relies only on local information,
i.e. distance to target, to determine the connection along
which a message or signal is propagated. Communica-
bility, finally, takes advantage of all available pathways
simultaneously, which may require a prohibitive amount
of energy and exceed the brain’s metabolic limits [24]. In
any case, these findings extend past work investigating
the brain’s strategies for communication [12, 19, 21, 22]
and motivate future work linking computational and al-
gorithmic approaches to known neurobiology [17].

Interareal similarity. A brain area’s functionality is
derived from its connectivity profile, i.e. its pattern
of incoming and outgoing connections [25, 26]. The
connectivity profile of area i is defined as the vector
wi = [wi1, . . . , wiN ]. Regions with similar connectivity
profiles have the capacity to receive and deliver similar
input and output signals, and are therefore thought to
play roughly equivalent functional roles within the net-
work [27–30]. To measure the functional relatedness of
two areas i and j, we can calculate the similarity of
their connectivity profiles as the cosine of the angle, θij ,
formed by the vectors wi and wj :

Sij = cos(θij) =
wi ·wj

‖wi‖‖wj‖
. (2)

Note that for directed networks, we define an
area’s connectivity profile to include both its in-
coming and outgoing connections. That is, wi =
[wi1, . . . , wiN , w1i, . . . , wNi].

Short- and long-distance connections. While a
brain area’s functionality depends on its own connectiv-
ity profile, it also depends on the connectivity profiles of
its neighbors. An area’s neighbors can have connectivity
profiles dissimilar from its own and therefore can con-
tribute unique inputs to that area or offer novel targets
for that area’s outgoing connections.

We measure the uniqueness of inputs and outputs us-
ing cosine similarity. Specifically, we compare the connec-
tivity profiles of area i’s neighbors linked by short- and
long-distance connections. Let Γi = {j : wij 6= 0} be the
set of i’s neighbors. These neighbors can be subdivided
into short- and long-distance subsets: Γshort

i = {j : wij >

0, eij ≤ τ short
e } and Γlong

i = {j : wij > 0, eij ≥ τ long
e }.

Here, τ
short/long
e represent distance cutoffs below or above

which we consider a neighbor to be short- versus long-
distance with respect to area i’s location.

To demonstrate that area i’s short- versus long-
distance neighbors have dissimilar connectivity profiles
and therefore unique inputs and outputs, we computed
the cosine similarity of their mean connectivity profiles.
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FIG. 5. Effect of removing connections on mean inter-areal communicability. Each panel depicts the percent change
in mean interregional communicability as a result of removing either 5%, 10%, 20%, or 25% of the longest/shortest connections
in the network. Note: all changes in communicability are negative, for the sake of visualization we flipped all signs.

The mean connectivity profile of Γ
short/long
i , is defined as:

w
short/long
i =

∑
j∈Γ

short/long
i

wj . (3)

The similarity of wshort
i and wlong

i , Sishortilong was com-
pared to a randomized null model, in which the network’s
topology was kept fixed, but where nodes’ locations were
randomly permuted. This procedure tests the null hy-
pothesis that the (dis)similarity of connectivity profiles
from short-range and long-distance neighbors could arise
under random spatial embeddings as a result of the net-
work’s topology alone.

Redundancy of long-distance connections. Com-
plex networks are subject to perturbations and their com-
ponents can degrade over time, processes that compro-
mise network function [31]. To counter these processes,
many systems exhibit structural degeneracy in which a
multiplicity of components play the same or similar func-
tional roles [32]. In the event that some of these com-
ponents are damaged, system function is maintained by
the remaining undamaged components. We hypothesized
that if the brain’s long-distance connections were orga-
nized to provide unique and specific inputs and outputs,
then these pathways should exhibit structural degener-
acy. To test this hypothesis, we determined whether ar-
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FIG. 6. Effect of removing connections on navigation routing. (a) Each panel depicts the percent change in mean path
length as a result of removing either 5%, 10%, 20%, or 25% of the longest/shortest connections in the network. Note that mean
path length is only computed over source/target pairs for which navigation routing was successful. (b) Failure rate as a result
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resulted in a failure rate of 0% (all successes). For the high resolution network the failure rates were all less than 0.0007 (seven
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eas’ long-distance connectivity profiles were more similar
to one another than expected in a randomized null model
in which the network’s degree sequence, edge-length dis-
tribution, and edge-weight distribution were maintained
exactly. This object was accomplished by retaining con-
nections and weights whose lengths, eij ≥ τ long

e . Using
this network of long-distance connections only, we com-
puted the cosine similarity for every pair of brain area
connectivity profiles and computed the average similar-
ity across all pairs:

〈Slong〉 =
2

N(N − 1)

∑
i,j>i

Slong
ij . (4)

Larger values of 〈Slong〉 indicate greater levels of struc-
tural degeneracy.

Modularity maximization. Many complex systems,
including brain networks, exhibit rich meso-scale struc-
ture such that their nodes can be meaningfully parti-
tioned into clusters [33]. Modular organization, in which
clusters represent weakly interacting sub-systems called
modules or communities, is a well-described phenomenon
in both structural and functional brain networks [34].
Here, we use modularity maximization to uncover net-
work modules [35]. Modularity maximization seeks to
partition nodes into modules such that the intra-modular

density of connections maximally exceeds that of a null
connectivity model. This is accomplished by heuristically
maximizing the modularity quality function:

Q(γ) =
∑
ij

bijδ(ci, cj). (5)

Here, bij = wij−γ·pij , where wij and pij are the observed
and expected weights of the connection between nodes i
and j. The resolution parameter, γ, scales the relative
importance of pij and determines the number and size
of detected modules. Node i’s module assignment is en-
coded as ci ∈ {1, . . . ,K}. Here, δ(ci, cj) is the Kronecker
delta function and is equal to 1 when ci = cj and zero
otherwise. Effectively, Q is computed as a summation
over node pairs, {i, j}, that fall within modules and is
maximized when these pairs are more strongly connected
than anticipated.

Structural network modules. We applied modu-
larity maximization to each of the five structural net-
work datasets. For structural brain networks, we used a
null connectivity model that preserves nodes’ binary and
weighted degrees but otherwise allowed connections to be
formed at random. For undirected networks we defined a
modularity matrix with elements bij = wij − γpij , where
pij = kikj/2m. For the directed case, we defined, first, an
asymmetric modularity matrix bij = wij − kini koutj /2m.
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Following reference [36] exactly, we then defined a sym-
metric modularity matrix with elements b′ij = bij + bji.
Modularity, Q, was maximized with respect to this sym-
metric matrix.

We used a generalized version of the Louvain algorithm
to maximize Q(γ) [37], varying γ from 0.5 to 4.0 in in-
crements of 0.1. At every value of γ we repeated the
Louvain algorithm 100 times with random initial condi-
tions. We selected the optimal value of γ by computing
the pairwise similarity (z-score of the Rand index [38]) of
partitions and focusing on local maxima of the γ versus
median similarity curve. At local maxima, we generated
a representative consensus partition from the partitions
produced by the Louvain algorithm (see [13] for more
details).

Functional network modules. The focus of this pa-
per was on structural brain networks. However, to fa-
cilitate more direct functional interpretation of results
obtained from analyses of human networks, we sought
estimates of brain areas’ functional system assignments.
To obtain such estimates, we applied modularity max-
imization to correlation matrices constructed from in-
dependently acquired task-free fMRI BOLD data, the
details of which have been described elsewhere [12, 39].
Briefly, this dataset comprised 40 subjects that under-
went 9-minute resting-state scans, following which BOLD
time series were extracted from the same Nlow = 82 and
Nhigh = 1000 areas as described above and subsequently
averaged across subjects. We refer to these group-level
correlation matrices as rlow and rhigh.

Applying modularity maximization to functional brain
networks to obtain system labels requires extra care for
several reasons. First, establishing a consistent set of
system identities across scales is non-trivial because low-
and high-resolution functional network datasets are gen-
erally constructed and clustered independently from one
another. Here, we mitigate this issue using a multi-layer
network model and a generalization of modularity max-
imization to cluster both matrices simultaneously [40].
Specifically, we treated rlow and rhigh as differently-sized
layers inter-linked to one another through the rectangu-
lar correlation matrix, rlow/high, whose elements encoded
the correlation magnitude of activity in low-resolution
areas with that of high-resolution areas. The result-
ing multi-layer network was flattened to have dimensions
r ∈ R1068×1068, where the first 68 nodes represent cortical
areas from the low-resolution functional network and the
final 1000 nodes represent cortical areas from the high-
resolution network.

Second, the null connectivity model must be compat-
ible with whatever measure was used to define func-
tional connection strength (in this case a Pearson cor-
relation coefficient) [41]. As suggested by Bazzi et al.
[42], we defined pij = 1 for all node pairs {i, j}, so
that bij = rij − γ. This expression corresponds to a
null model in which BOLD activity of all nodes is uni-
formly correlated with a magnitude of γ. As before,

the free parameter γ determines the number and size
of communities. We tested γ ∈ [0, 0.3] in increments
of 0.006 for a total of 51 possible values. We used the
same strategy described earlier to identify γ values of
interest and to obtain consensus partitions. This anal-
ysis resulted in nine modules consistent across low- and
high-resolution datasets. Based on spatial topography
and visual inspection, we named these modules: vi-
sual (VIS), temporal + precuneus (T+P), dorsal atten-
tion (DAN), somatomotor (SMN), salience (SAL), de-
fault mode (DMN), frontal (FR), control (CONT), and
limbic networks (LIM) (Fig. 7b).

Participation coefficient. A network’s meso-scale or-
ganization highlights groups of brain areas thought to
perform similar functions. Once those groups were iden-
tified, we further characterized the functional roles of in-
dividual brain areas based on their structural interac-
tions with modules. One popular measure for doing so
is an area’s participation coefficient, which measures the
extent to which an area’s connections are concentrated
within a few modules or are distributed more evenly
across many modules [43].

Pi = 1−
K∑
s=1

(
kis
ki

)2

. (6)

Here ki =
∑
j wij is node i’s weighted degree and kis =∑

j∈s wij is the total weight of node i’s connections to
module s. Participation coefficients range from 0 to 1,
where larger values indicate that connections are evenly
spread over modules. An area’s participation coefficient
can be interpreted as a measure of its diversity of function
[44].

Simulated functional connectivity. The network
analyses described above are based on structural connec-
tomes – network representations of the brain’s physical
and material pathways. These pathways are often in-
terpreted in terms of their theoretical contributions to
network function, e.g. by facilitating signalling between
connected brain areas. This interpretation of brain struc-
ture influencing communication patterns can be made
more explicit by using connectomes to constrain dynam-
ical systems [45]. In this framework brain areas are
associated with internal states that represent their in-
stantaneous level of activity, which evolves over time
as a function of their current state and that of their
connected neighbors. These dynamics induce statisti-
cal inter-dependencies, e.g. covariances or correlations,
among brain areas’ activity over time. These inter-
dependencies are then interpreted as estimates of the
brain’s functional connectivity.

Here, we follow recent work [46, 47] by estimating the
inter-areal covariance matrix, C, based on a linearization
of Wilson-Cowan dynamics for neuronal populations [48].
The element cij ∈ C denotes the covariance of activity
in area i with that of area j (Fig. 8a). In more detail, we
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FIG. 7. Multi-layer modularity maximization for functional systems. (a,left) Flattened multi-layer correlation matrix,
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Similarity of detected partitions as a function of the resolution parameter, γ. Local maxima are shown as black circles. The
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let u(t) = {u1(t), . . . , uN (t)} be the vector of brain areas’
states (activity levels) at time t. Under these dynamics,
brain areas’ states evolve as:

u(t+ ∆t) = Au(t) + ξ(t), (7)

where ξ(t) is uncorrelated Gaussian noise and ∆t is a
single time step. Here, the generalized coupling matrix,
A, is based on the structural connectivity matrix, W,
and was defined as:

A = (1− α∆t)I + W∆t, (8)

where α is a leak variable within each brain area and I
is the identity matrix. As in Honey et al. [47], we fixed
α = 2.

Conveniently, Galán [48] showed that brain areas’ pair-
wise covariances (summarized by the matrix C ∈ RN×N )
can be estimated directly from the spectral properties of
A and the covariance of the noise terms ξ(t). As with co-
variance matrices estimated from recorded time series of
brain activity, we interpret C as an estimate of functional
connectivity. See Galán [48] for more details.

We can use C to estimate each brain areas’ functional
diversity. This entailed defining network modules based

on structural connectivity, and then using those mod-
ules in conjunction with C to calculate each brain area’s
participation coefficient, Pi. Intuitively, Pi is close to 1
when its activity covaries uniformly with other brain ar-
eas in different modules, and is close to 0 when its activ-
ity covaries mostly with brain areas in its own module.
Therefore, the average participation coefficient over all
brain regions, 1

N

∑
i Pi, serves an estimate of functional

diversity in the system.

Space- and topology-preserving null model. An
essential component of network analysis is the contextu-
alization of summary statistics by comparing their ob-
served values against a distribution generated under a
null connectivity model. Of such models, perhaps the
best known is the edge swapping algorithm in which a
network’s edges are randomly rewired while exactly pre-
serving each node’s degree [49]. Effectively, this model
tests the hypothesis that an observed summary statistic
is common in the space of all networks with the same
degree sequence as the observed network. This model,
however, rewires networks without taking into account
nodes’ locations in space and the influence of inter-nodal
distances on network topology.

Because this paper focuses on spatial statistics, we
found it imperative to explore null models that preserve
both topological and spatial characteristics of the ob-
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served network. Accordingly, we developed a novel model
in which we preserve a network’s edge weight distribution
and each node’s degree exactly, while approximately pre-
serving the edge length distribution and the relationship
of edge length and weight. Intuitively, our model worked
by swapping edges as in [49], but restricting pairs of edges
that can be swapped so that the two new edges created
via swapping have approximately the same lengths as
those being replaced. This procedure takes place on a
binary, unweighted network. After rewiring a predefined
number of edges, weights are added back to the network.
Because the rewired network has approximately the same
edge length distribution, the original edges can be added
back using a rank-preserving procedure (i.e. the short-
est connection in the rewired network gets the weight of
the shortest connection in the original network, the sec-
ond shortest connection in the rewired network gets the
weight of the second shortest connection in the original
network, etc.). As a result, the rewired network preserves
a select set of topological and spatial features of the origi-
nal network (Fig. 8). Code for implementing this model is
available at https://www.richardfbetzel.com/code.

In the main text we calculated the distribution of the
lengths of all edges involved in shortest paths. We con-
textualized these results by comparing observed distribu-
tions against those obtained from a null model in which
the network’s connectivity structure was preserved but
where nodes’ spatial locations were randomly permuted.
This model tests the hypothesis that the observed edge
length distribution could arise given the topology of the
network and random spatial embeddings alone. The re-
sults of this test demonstrated that the observed distri-
butions exhibited far more short-range connections than
would be expected under the null model, suggesting that
shortest paths favor strong, short-range connections.

In addition, we tested a more conservative null model
in which we randomly rewired networks while preserving
their degree sequence and edge weight distribution ex-
actly, and while preserving edge length distribution and
the weight-length relationships approximately. For each
random network we recalculated its shortest path struc-
ture and the length distribution of edges involved. We
found that, in general, the median length of shortest path
edges in the observed networks was smaller than that of
the randomly rewired networks (Fig. 9). This result held
for all datasets and for all values of α with the exception
being the macaque dataset with α > 2. Above this α

value, the distribution of edge lengths involved in short-
est paths in the observed network was not distinguishable
from that of the null model. It is important to note, how-
ever, that the macaque dataset is incomplete (no avail-
able tract-tracing data from 64 of the 93 total regions)
and should therefore be approached with greater caution
and skepticism than the other datasets. The convergence
of results using both null models increases confidence that
our findings are robust and not driven by idiosyncrasies
of any single null model.
Thresholding connectomes. Analysis of brain net-
works is complicated by false positives that arise
from inaccurate reconstructions or noise in the
acquisition process. The presence of spurious
connections can alter statistics estimated on a
network, resulting in incorrect or misleading con-
clusions [50, 51]. One strategy for mitigating the
unwanted influence of false positives is to sim-
ply discard all connections whose weight is below
some pre-defined threshold. While this approach
has been shown to improve network analysis [52],
how to best choose this threshold remains an open
question.

Here, we explore the effect of removing weak connec-
tions on our conclusions. In particular, we discarded the
weakest 1%, 2%, 4%, and 8% and reanalyzed the thresh-
olded networks. First, we calculated weighted shortest
paths and edge usage as a function of distance. Be-
cause weak connections rarely factor into shortest paths,
thresholding them from the network had almost no in-
fluence on edge usage in shortest paths. This effect
gets even stronger by the weight-to-length remapping
(Lij = W−αij ), which placed added emphasis on strong
connections compared to weak connections. As a result,
we found that edge usage statistics (Fig. 10) and the
lengths of weighted shortest paths (Fig. 11) remained
dominated by short-range connections, as reported in the
main text. In fact, for many networks the shortest path
structure was entirely unchanged. We also computed the
similarity of areas’ long-distance connectivity profiles and
compared those results to that of a null model (Fig. 12).
Once again, and in agreement with the main text, we
found that our results are unchanged qualitatively af-
ter thresholding away weak connections. These findings
support the hypothesis that the results reported in the
main text are robust to reasonable choices of edge weight
thresholds.
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FIG. 10. Effect of thresholding on lengths of connections involved in shortest paths. Each panel depicts the edge
length distribution of connections included in shortest paths in each of the five network datasets while thresholding away the
1%, 2%, 4%, and 8% weakest connections. Note that because shortest paths seek out the strongest connections (which are
preserved even after thresholding), the shortest path structure and involved edges changed minimally across all datasets.
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FIG. 11. Effect of thresholding on composition of shortest paths. Each panel depicts, in gray, the fraction of all edges
involved in shortest paths. Shown in color are the fraction of those connections that are among the top 25% longest in the
network. Rows depict the effect of thresholding the 1%, 2%, 4%, or 8% weakest connections on length composition of shortest
paths.



16

Discard 1% weakest
MacaqueMouse Drosophila Human (low res) Human (high res)

a

Discard 2% weakest
MacaqueMouse Drosophila Human (low res) Human (high res)

b

Discard 4% weakest
MacaqueMouse Drosophila Human (low res) Human (high res)

c

Discard 8% weakest
MacaqueMouse Drosophila Human (low res) Human (high res)

d

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.05

0.1

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0
0.01
0.02
0.03
0.04
0.05

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.01

0.02

0.03

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.05

0.1

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0
0.01
0.02
0.03
0.04
0.05

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.01

0.02

0.03

0.04

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.05

0.1

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0
0.01
0.02
0.03
0.04
0.05

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.01

0.02

0.03

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.05

0.1

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.02

0.04

0.06

0.08

Prct. long/short
5 10 20 25

M
ea

n 
co

s.
 s

im
.

0

0.01

0.02

0.03

FIG. 12. Effect of thresholding on similarity of long-distance inputs/outputs. Each panel depicts the mean similarity
of nodes’ long-distance connectivity profiles (in color) and what is expected under a conservative null model (gray) in which
nodes degree sequences and edge weight distributions are preserved exactly, and in which edge length distribution and weight-
distance relationships are preserved to an excellent approximation. Each point represents a single random network realized
under this null model. Rows depict the effect of thresholding the 1%, 2%, 4%, or 8% weakest connections on similarity of
long-distance connectivity profiles.


	Supplementary Materials: The specificity and robustness of  long-distance connections in weighted, interareal connectomes
	Overview
	Materials and Methods
	Network datasets
	Network analysis

	References


