IonStar enables high-precision, low-missing-data proteomics quantification in large sample cohorts

#Xiaomeng Shen^{1, 2}, #Shichen Shen^{1, 2}, Jun Li^{1,2}, Qiang Hu³, Lei Nie⁴, Chengjian Tu^{1, 2}, Xue Wang²,

³, David J. Poulsen⁵, Benjamin C. Orsburn^{6*}, Jianmin Wang^{3*}, Jun Qu^{1, 2*}

¹Department of Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY; ²Center of Excellence in Bioinformatics & Life Science, Buffalo, NY; ³Roswell Park Cancer Institute, Buffalo, NY; ⁴Shandong University, China; ⁵Department of neurosurgery, Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, NY; ⁶Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD

SI APPENDIX

Fig. S1 Depiction of feature generation and peptide ID propagation strategies.

Fig. S2 Examples of extracted ion currents.

Fig. S3 Effects of feature quality control measure on quantitative quality.

Fig. S4 Application of GLMM in spike-in sample sets.

Fig. S5 Design of the benchmark spike-in sample set.

Fig. S6 Effects of peptide number per protein on quantification.

Fig. S7 Quantitative results of human proteins in the benchmark dataset.

Fig. S8 Examples of outlier detection and removal.

Fig. S9 FADR calculation using different ratio thresholds.

Fig. S10 Median intra-group CV of quantified proteins in biological groups.

Fig. S11 Pearson correlation of protein ratios in the two brain regions.

Fig. S12 Ingenuity Pathway Analysis results of the TBI proteomics dataset.

File S1 Detailed parameters used for each software.

File S2 User manual for IonStar build 0.1.4.

SUPPLEMENTARY FIGURES

Fig. S1 Depiction of feature generation and peptide identity propagation strategies. "PPB (peak property based) + match by m/z and RT with tolerance"¹ and "DICE (Direct Ion-Current Extraction) + match by scan number" that can be used in MS1-based quantification.

Fig. S2 Examples of extracted ion currents of two E. Coli peptides by IonStar, taken from the benchmark dataset.

Fig. S3 Effects of post-feature generation quality control measure on quantitative quality. *PCOut*² significantly improved accuracy while showed no perceivable impacts on precision.

Fig. S4 Application of Generalized Linear Mixed Model (GLMM) in spike-in sample sets. **(a)** Experimental setup of two types of spike-in samples sets: Technical replicates and Mimic biological replicates; **(b)** Comparison of quantitative accuracy in the two types of sample sets using GLMM and sum intensities. GLMM gave better accuracy in Mimic biological replicate sample set.

Fig. S5 Design of the spike-in sample set for benchmarking different quantitative approaches³. E. Coli protein lysate (true positive) was spiked at low and variable levels into high and constant backgrounds of human cell lysate (true negative). Each of the five spike-in levels has 4 technical replicates (N=20 in total).

Fig. S6 Comparison of protein quantification results with at least 1 or 2 unique peptide(s) per protein, using spike-in level E (9% E. Coli proteins) vs. A (3% E. Coli proteins) as an example. (a) ROC plot comparing quantification of proteins with only 1 peptide and \geq 2 peptides; (b) Quantitative accuracy of proteins under 1-peptide and 2-peptide criterion.

Fig. S7 Quantitative results of human proteins (true negative) in the benchmark dataset from the four MS1-based quantitative approaches, quantitative intensities and ratios are shown in log2 scale. IonStar showed the least deviated distribution, especially for low-abundance proteins.

Fig. S8 Examples to demonstrate the elimination of low-quality peptides by the post-feature generation quality control function. Red lines mark the theoretical true ratio, and shaded rectangles mark the zone in which peptide quantitative data is deemed as "acceptable" by the OutlierPeptideRM function.

Fig. S9 False Altered-protein Discovery Rate (FADR) calculation using different ratio thresholds.

Fig. S10 Median intra-group CV of quantified proteins in biological groups from the 100 rat brain samples.

Fig. S11 Pearson correlation of protein ratios between different experimental groups and vehicle control in the two brain regions. Blue and red colors refer to cortex and hippocampus correspondingly.

Fig. S12 Ingenuity Pathway Analysis⁴ results of the TBI proteomics dataset (left: cortex; right: hippocampus).

File S1 Parameters used in MaxQuant and OpenMS

MaxQuant:

Fixed modifications Carbamidomethyl (C)
Decoy mode revert
Special AAs KR
Include contaminants False
MS/MS tol. (FTMS) 20 ppm
PSM FDR 0.005
Protein FDR 0.01
Site FDR 0.01
Use Normalized Ratios For OccupancyTrue
Min. peptide Length 6
Min. score for unmodified peptides 0
Min. score for modified peptides 0
Min. delta score for unmodified peptides 0
Min. delta score for modified peptides 0
Min. unique peptides 1
Min. razor peptides 2
Min. peptides 2
Use only unmodified peptides and False
Peptides used for protein quantification Razor
Discard unmodified counterpart peptides True
Min. ratio count 2
Re-quantify True

Match between runs True

Matching time window [min] 1

Alignment time window [min]20

Find dependent peptides False

Site tables Oxidation (M)Sites.txt

Decoy mode revert

Special AAs KR

Include contaminants False

RT shift False

Advanced ratios True

OpenMS:

Module	Parameter	Value
PeakPicker	algorithm:signal_to_noise	0
	algorithm:ms1_only	TRUE
FeatureFinder	algorithm:mass_trace:mz_tolerance	0.02
	algorithm:mass_trace:min_spectra	3
	1	
	algorithm:isotopic_pattern:charge_low	2
	algorithm:isotopic_pattern:charge_high	6
	algorithm:isotopic_pattern:mz_tolerance	0.03
	algorithm:seed:min_score	0.1
	algorithm:feature:min_score	0.3
	algorithm:feature:min_isotope_fit	0.1

	algorithm:feature:min_trace_score	0.1
	algorithm:feature:max_rt_span	3
IDMapper	rt_tolerance	10
	mz_tolerance	30
	mz_reference	peptide
	use_centroid_mz	TRUE
MapAligner	algorithm:min_run_occur	2
	algorithm:max_rt_shift	300
FeatureLinker	algorithm:use_identifications	TRUE
	algorithm:distance_RT:max_difference	300
	algorithm:distance_MZ:max_difference	0.02

File S2 User manual for IonStar build 0.1.4

IonStar USER MANUAL

For Build 0.1.4

- Introduction
- Prerequisites
 - Software and dataset availability
 - Installing IonStarStat
 - File location
- Quickstart
 - Step 1: Protein identification
 - Step 2: Generation of quantitative features by SIEVE $^{\rm TM}$
 - Step 3: Data integration and quantification
 - Step 4: Post-quantification data processing
- Contact information

Introduction

IonStar is an MS1-based quantitative method for label-free proteomics experiments, devised to address issues related with quantitative precision, missing data, and false-positive discovery of protein changes in large-cohort analysis.

IonStar comprises of two parts: experimental procedures (left panel) and a proteomics data analysis pipeline (right panel). Details of the experimental procedures can be found in Shen et al. *J Proteome Res.* (2017) and An et al. *Anal Chem.* (2015).

This manual will focus on the data analysis pipeline part of IonStar, aiming at helping IonStar users

Prerequisites

Software and dataset availability

The primary software packages used in IonStar are **SIEVE**TM and **IonStarStat**.

SIEVETM is a commercial software from Thermo Fisher Scientific. The latest version of SIEVETM is v2.2 SP2. Please contact Thermo Fisher Scientific regarding the quote for SIEVETM. To ensure of proper performance of SIEVETM, we recommend running SIEVETM on a PC with at least 16-core processors and at least 192 GB RAM.

R package **IonStarStat** and related scripts (**IonStar_FrameGen.R**, **IonStar_Run.R**) can be downloaded here. All operations in this manual are accomplished under R version 3.4.3 and RStudio ver 1.1.442.

The dataset used in this manual as an example (Multi-level Human background+E.coli spike-in) can be downloaded from **PRIDE Archive** (PRIDE ID: PXD003881).

Installing IonStarStat

IonStarStat package can be installed directly in RStudio by running the following commands in the R Console:

```
#Install dependencies "RSQLite""MCMCglmm""affyPLM""mvoutlier"
source("https://bioconductor.org/biocLite.R")
biocLite("affyPLM")
biocLite("MCMCglmm")
biocLite("RSQLite")
install.packages("mvoutlier")
install.packages("IonStarStat_0.1.4.tar.gz", repos = NULL, type = "source")
```

Upon finishing installation, load IonStarStat into the R environment as follows:

#Load IonStarStat
library("IonStarStat")

File location

To perform using IonStar, it is recommended to put all files under the same working directory, including:

- LC-MS raw files .raw
- Spectrum report .csv, .tsv, or .txt
- SIEVE database file .sdb
- Annotated frame list .csv
- Sample list .csv
- Protein & peptide quantitative results .csv

• IonStar_FrameGen.R and IonStar_Run.R

Use setwd() to locate the files whenever necessary.

Step 1: Protein identification

Protein identification can be performed by any database searching engines and post-search processing tools. The final output is a so-called spectrum report containing PSMs from all sample runs passing the confidence threshold (*e.g.* FDR). The spectrum report can be exported from a number of software packages, *e.g.* **Proteome Discoverer**, **Scaffold**. Key information necessary for data integration include **rawfile name** and **MS2 scan number**. The file format of the spectrum report needs to be .csv.

The currently protein identification workflow used by our group features database searching by MS-GF+, post-search processing by IDPicker, and spectrum report generation by IonStarSPG.R. Detailed instructions can be found here.

Step 2: Generation of quantitative features by SIEVETM

Quantitative feature generation in IonStar is accomplished by SIEVE TM v2.2 SP2 (Thermo Scientific), which integrates ChromAlign for global 3-D chromatographic alignment and a direct ion current extraction (DICE) method for feature extraction.

1. Load rawfiles into SIEVE TM

To start the quantitative feature generation analysis, open SIEVE TM and select **File -> Create new experiment**. On the **Designate Experiment Type** page, select the Experiment Type based on the study. For a case-control experiment, use **Two Sample Differential Analysis**; for multi-condition experiment (3 or more conditions including control), use **Control Compare Trend**.

💫 SIEVE Experiment Definition Wizard		_ 🗆 X
Designate Experiment Type Specify the type of experiment.		A
Domain Proteomics Small Molecule Signal Detection Algorithm Chromatographic Alignment and Framing Component Extraction	Experiment Name UNDEFINED Description (optional)	
Experiment Type Two Sample Differential Analysis C Control Compare Trend Differential Case Study with ROC Analysis Non-differential Single Class Analysis		
		Next >>

Drag all rawfiles into the **Raw File Selection** page.

д SIEVE Experiment Definition Wizard Raw File Selection Select all of the raw files that will be	e part of this	analysis.					
Ready.					Scan Raw Files (Optional)		en Pile plorer
File name	Path	Size	Full scans	MS2 scans	SW Version	Instrument	С ^
B03 02 150304 human ecoli B 3ul	D:\data\l	1493861886					•
B03_03_150304_human_ecoli_C_3ul	D:\data\l	1515178530					
B03_04_150304_human_ecoli_D_3ul	D:\data\l	1501253698					
B03_05_150304_human_ecoli_E_3ul	D:\data\l	1504549786					
B03_06_150304_human_ecoli_E_3ul	D:\data\l	1494186370					
B03_07_150304_human_ecoli_D_3ul	D:\data\l	1501876234					
B03_08_150304_human_ecoli_C_3ul	D:\data\l	1508096986					• E
B03_09_150304_human_ecoli_B_3ul	D:\data\l	1496988622					•
B03_10_150304_human_ecoli_A_3ul	D:\data\l	1497799722					· ·
B03_11_150304_human_ecoli_A_3ul	D:\data\l	1487585854					•
B03_12_150304_human_ecoli_B_3ul	D:\data\l	1472568282					•
B03_13_150304_human_ecoli_C_3ul	D:\data\l	1526287654					•
B03_14_150304_human_ecoli_D_3ul	D:\data\l	1478350694					•
B03_15_150304_human_ecoli_E_3ul	D:\data\l	1476537646					
B03_16_150304_human_ecoli_E_3ul	D:\data\l	1471207126					•
B03_17_150304_human_ecoli_D_3ul	D:\data\l	1481006330	•				•
B03_18_150304_human_ecoli_C_3ul	D:\data\l	1478885942	·	•	•	•	• •
•	III						•
						<< Back	Next >>

2. Assign sample conditions and select reference file

For **Two Sample Differential Analysis**, assign *Condition A* and *Condition B* in the two boxes; For **Control Compare Trend**, put *all conditions* in the upper box and assign *the control condition*

in the lower box.

Two Sample Differential Analysis:

, SIEV	E Experiment Definitior	n Wizard						- • ×
Raw Cha	File Characterizati aracterize the files sele	on ected for this experiment						A
- Raw	File Designation							
8	Differ	ential ratios are calculated as Treatment / Co	ntrol					
<								
	Condition A (Treatme	nt]: Treatment			Sa	mple_	B01.	RAW
	Condition B (Conti	rol): Control			Co	ntrol	A02	. RAW
				Select	ing a condition f automatically ta	that is part ups it in the	of a raw fi table bel	le nw
		*Press TAB to move to the next field		name	a diorriano any io	.go		
			I''			P (
	C R02 02 150204	kaw File Name	Control	ION	Lolor	Ref		Â
	B03_02_150304	human ecoli C 3ul 3um column 95 HCD OT 2h	Control	-	Blue (0)			
	B03 04 150304	human ecoli D 3ul 3um column 95 HCD OT 2h	Control	•	Blue @			=
	B03_05_150304	human_ecoli_E_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @			
	B03_06_150304	_human_ecoli_E_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @			
5	B03_07_150304	_human_ecoli_D_3ul_3um_column_95_HCD_OT_2h	Control		Blue @			
5	B03_08_150304_	_human_ecoli_C_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @			
	B03_09_150304	_human_ecoli_B_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @			
	B03_10_150304	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @			
	B03_11_150304	_human_ecoli_A_3ul_3um_column_95_HCD_OT_2h	Control	-	Blue @	⊻		Ψ.
Raw Cha	E Experiment Definitior File Characterizati aracterize the files sele	n Wizard on ected for this experiment						
Baw	File Designation							
	The Designation							
Len	Courses A	RCDE						
	circups: P	(BCDE			Sa	ample_B	01.RAW	
					Co	ontrol_	402.RA	W
				Type	noun names si	enerated by	/ a enare	(a group
	Ratio group: A	1	•	name	that is part of a	raw file na	me autor	natically
			tags it calcul). Then select t ations.	he group u	sed for ra	itio	
In	ic 🛛	Raw File Name	Subje	ct	Trend Point	Col	or	Ref 🔺
V	B03_05_150304	human_ecoli_E_3ul_3um_column_95_HCD_OT_2h	NONE	-	E	 Fuchsia 	(O	
	B03_06_150304	human_ecoli_E_3ul_3um_column_95_HCD_OT_2h	NONE	-	E	- Fuchsia	0	
	B03_07_150304	human_ecoli_D_3ul_3um_column_95_HCD_OT_2h	NONE	-	D	- Blue	0	
	BU3_08_150304_	numan_ecoli_C_3ul_3um_column_95_HCD_OT_2h	NONE		C B	✓ Lime	0	
	B03_09_150304	_numan_ecoll_s_sul_sum_column_95_HCD_OT_2h	NONE	-	D A	- Ped	(D)	
		human acali & 2ul 2um column OF LICD OT al-	- MOME			-	(0)	
	BU3_10_150304_	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h	NONE		۵.	- Dad		
	B03_10_150304 B03_11_150304 B03_12_150304	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_B_3ul_3um_column_95_HCD_OT_2h	NONE	•	A	 Red Vellow 	0 0	
	B03_10_150304 B03_11_150304 B03_12_150304 B03_13_150304	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_B_3ul_3um_column_95_HCD_OT_2h human_ecoli_C_3ul_3um_column_95_HCD_OT_2h	NONE NONE NONE	•	A B C	 Red Yellow Lime 	0 0	
	B03_10_150304 B03_11_150304 B03_12_150304 B03_13_150304 B03_14_150304	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_B_3ul_3um_column_95_HCD_OT_2h human_ecoli_C_3ul_3um_column_95_HCD_OT_2h human_ecoli_D_3ul_3um_column_95_HCD_OT_2h	NONE NONE NONE NONE NONE	• • • •	A B C D	 Red Yellow Lime Blue 	0 0 0	
	B03_10_150304 B03_11_150304 B03_12_150304 B03_13_150304 B03_14_150304	human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_A_3ul_3um_column_95_HCD_OT_2h human_ecoli_B_3ul_3um_column_95_HCD_OT_2h human_ecoli_C_3ul_3um_column_95_HCD_OT_2h human_ecoli_D_3ul_3um_column_95_HCD_OT_2h	NONE NONE NONE NONE NONE	•	A B C D	 Red Yellow Lime Blue 		

A reference file also needs to be selected. In general, the reference file should provide the highest

alignment scores for all sample runs.In most cases, it is recommended to start with a file in the middle of the LC-MS sequence as the reference.

3. Modify method parameters

The parameters that needs to be modified include **Frame Time Width (min)** and **M/Z Width (ppm)**. The current setting is based on **a 3-hr nano RPLC gradient** with **a Thermo Orbitrap instrument under 120K MS1 resolution**. Manual optimization based on the LC-MS method may help to improve the performance of feature generation. All other parameters follow the default settings.

Check Generate all frames based upon all MS2 scan's retention times and precursor M/Zs to maximize the number of quantitative features. Alternatively, users can assign Maximum Number of Frames and Peak Intensity Threshold.

Alter setting the method, mush the wizard and save the ...sdb 1

4. Perform ChromAlign and DICE procedures

For IonStar, users do not need to run the **Identify** process. In the **SIEVE Parameters** window, **MaxThreads** should be changed according to the configuration of the computer used for SIEVE TM. For example, 6~8 threads are recommended for a PC with 16-core processors and 192 GB RAM. Occasionally, **PCAProcess** can also be disabled to alleviate computational burden. Click the **Update** button to save the settings. Run **Align** (ChromAlign) first.

😥 SIEVEx64: E1DatalKevinlionStar_PRIDElionStarPRIDE_database.sdb			_ = ×
File Workspace Tools Help			
Home Process Alignment Analyze			
Align		SIEVE Parameters	
	Run		
Press Run to start Alignment.		0. Global Settings	▲
		Algorithm	FRAME
		ExperimentTarget	PROTEOMICS
		ExperimentType	NORMALIZED_TREND
		MaxThreads	8
		MZStart	400
Frame		Name	IonStarPBIDE_database
Tane	Dun	PCAProcess	DISABLE
	PAUL	Rawfiles	(Collection)
		ReferenceFile	B03_13_150304_human_ecoli_C_3ul_3um_colum
		BTStop	160
		ScanFilter	FTMS + p NSI Full ms [400.0000-1500.001
		1. Alignment Parameters	
		AlignmentBypass	False
		CorrelationBinWidth	1
		MaxRTShift	0.2
Identify		TileSize	300
	Run	2. Frame Parameters	
		ControlGroup	A
		FrameSeedFile	▼
		Rawfiles A collection of raw files in this experiment	Expand this option to see details for each raw file.
Workflow Starting Point		Computer Resource Mo	nitor
		CPU Load (%):	0%
o 🕨 o 🎽 O	Run As Workflow	Disk Load (%):	0%
Align Frame Identify		CPU cores (virtual real): 28	Available Memory(MB): 138767

Upon finishing, alignment scores for all sample runs will be shown in the **Alignment** tab. Ideally, the majority of sample runs should have an alignment score of >0.8 to ensure the quality of quantitative feature generation. Change the reference file and rerun the ChromAlign process if the alignment scores are subpar (*e.g.* <0.7) for a large portion of the files.

To change the reference file, click the "…" button in the **Rawfiles** line. Change the reference file by checking a new rawfile. Rerun **Align** and check the alignment scores again. When finished, run **Frame** to perform the DICE process.

🖳 RavvFileEdit	torForm					_ 🗆 X		
	Raw File Editor							
INC	REF	NAME	COLOR	٤	TRENDPOINT	▲		
>		B03_02_150304_human_ecoli_B_3ul_3um_column_95_H	Yellow	@	В	E:\Data'		
✓		B03_03_150304_human_ecoli_C_3ul_3um_column_95_H	Lime	@	С	E:\Data'		
✓		B03_04_150304_human_ecoli_D_3ul_3um_column_95_H	Blue	@	D	E:\Data'		
✓		B03_05_150304_human_ecoli_E_3ul_3um_column_95_H	DarkViolet	@	E	E:\Data'		
¥		B03_06_150304_human_ecoli_E_3ul_3um_column_95_H	DarkViolet	@	E	E:\Data'		
V		B03_07_150304_human_ecoli_D_3ul_3um_column_95_H	Blue	@	D	E:\Data'		
V		B03_08_150304_human_ecoli_C_3ul_3um_column_95_H	Lime	@	С	E:\Data'		
V		B03_09_150304_human_ecoli_B_3ul_3um_column_95_H	Yellow	@	В	E:\Data'		
✓		B03_10_150304_human_ecoli_A_3ul_3um_column_95_H	Red	0	A	E:\Data'		
✓		B03_11_150304_human_ecoli_A_3ul_3um_column_95_H	Red	0	A	E:\Data'		
✓		B03_12_150304_human_ecoli_B_3ul_3um_column_95_H	Yellow	0	В	E:\Data'		
✓	✓	B03_13_150304_human_ecoli_C_3ul_3um_column_95_H	Lime	0	С	E:\Data'		
✓		B03_14_150304_human_ecoli_D_3ul_3um_column_95_H	Blue	0	D	E:\Data'		
✓		B03_15_150304_human_ecoli_E_3ul_3um_column_95_H	DarkViolet	0	E	E:\Data'		
✓		B03_16_150304_human_ecoli_E_3ul_3um_column_95_H	DarkViolet	0	E	E:\Data'		
✓		B03_17_150304_human_ecoli_D_3ul_3um_column_95_H	Blue	0	D	E:\Data'		
✓		B03_18_150304_human_ecoli_C_3ul_3um_column_95_H	Lime	@	С	E:\Data' 🖕		
•			i n		-	· · · · · · · · · · · · · · · · · · ·		
		Remove R	low Ad	dd Ro	w Cla	ose		

After feature generation, the .sdb file will contain all quantitative features (*i.e.* frames) generated. For more detailed information about the use of SIEVE, please refer to SIEVE User Guide.

Step 3: Data integration and quantification

After protein identification and quantitative feature generation, the R package **IonStarStat** will be utlized to integrate the spectrum report with the quantitative feature list and generate the final quantitative results. Procedures in this step include:

- Generation of the annotated frame list
- Removal of redundant quantitative features
- Frame-to-peptide aggregation & data normalization
- Multivariate mean variation-based outlier detection
- Shared peptide removal (optional)
- Peptide-to-protein aggregation

The codes for this step are enclosed in IonStar_Run.R.

1. Generate the annotated frame list

In the spectrum report, the **rawfile name** column (<code>sp_col[1]</code>) should only contain the file name with no extension (*e.g.*

II_B03_21_150304_human_ecoli_A_3ul_3um_column_95_HCD_OT_2hrs_30B_9B), and the **MS2 scan number** should be numeric (*e.g.* 58143).

Use the following codes to generate **the annotated frame list** and **the sample list**, which are both required for subsequent protein quantification. Make sure that the following packages are installed by running install.packages(c("XLConnect", "RSQLite")).

```
##Generate the annotated frame list
db <- "IonStarPRIDE_database.sdb" ##File name of the SIEVE database
sp <- "IonStarPRIDE_spectrum report.csv" ##File name of the spectrum report
col_filename <- 4 ##Column number for rawfile name
col_scannum <- 17 ##Column number for MS2 scan number
col_framelist <- c(6,18) ##Column numbers for Protein accession number and Pe
ptide sequence
framelist <- "IonStarPRIDE_frame.csv" ##File name of the annotated frame list
(output1)
sampleid <-"IonStarPRIDE_sampleid.csv" ##File name of the sample list (output
2)
source ("IonStar_FrameGen.R")
```

The annotated frame list .csv generated consists of **Protein accession number**, **Peptide sequence**, **Frame ID**, and **corresponding quantitative values in each sample**, shown as below.

##		ProteinAC	P	PepSeq F	rameID	A1	B1
##	1	Q96I51:WBS16_HUMAN	EAAEAEAEVPVVQ)YVGER	35199	5452494	475886.4
##	2	POC8J6:GATY_ECOLI	INV	/ATELK	11407	216541745	262224407.0
##	3	POC8J6:GATY_ECOLI	NYLTEHPE	EATDPR	6302	50365797	52927424.6
##	4	POC8J6:GATY_ECOLI	QWVNLPLVLHGAS	GLSTK	47084	13635817	18975922.8
##		POC8J6:GATY_ECOLI	QWVNLPLVLHGAS	GGLSTK	85743	158317760	128711136.1
##	6	POC8J6:GATY_ECOLI	SVMIDASHLPFA	QNISR	41490	47259460	47781835.2
##		C1 D1	E1	E2		D2	C2 B2
##	1	1391912 2289193	3 1302592	1146268	1645	5735 1093	1675 2789563
##	2	342242173 411246895	5 481214021 45	51974788	394233	3403 304898	8893 251107764
##	3	60233419 74382575	5 92162468 9	94188976	75480	174 50618	8895 41996791
##	4	21041386 31074728	3 39476379 3	37953565	28216	572 2219	8631 13746699
##		113131881 116859175	5 113338204 10	07014155	112368	3481 11458	4694 118152103
##	6	55798367 69234723	83597655 8	86098121	61897	136 5393	4485 40421413
##		A2	A3 B3		C3	D3	E3 E4
# # # #	1	A2 660561.7 15838	A3 B3 313 5148398	19237	C3 03 38	D3 342454 42	E3 E4 221733 3554227
# # # # # #	1 2	A2 660561.7 15838 175357014.9 207088	A3B33135148398734254629839	19237 3300405	C3 03 38 90 3915	D3 342454 42 575868 4948	E3 E4 221733 3554227 867018 491473921
# # # # # # # #	1 2 3	A2 660561.7 15838 175357014.9 207088 28891661.5 528178	A3B3313514839873425462983934576774606	19237 3300405 625425	C3 03 38 90 3915 01 1319	D3 342454 42 575868 494 93194 166	E3 E4 221733 3554227 867018 491473921 741064 171442525
# # # # # # # # # #	1 2 3 4	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643	A3B331351483987342546298393457677460638229358146	19237 3300405 625425 211849	C3 03 38 90 3915 01 1319 39 507	D3 342454 42 575868 4943 993194 166 291891 66	E3E4221733355422786701849147392174106417144252539381063215742
# # # # # # # # # # # #	1 2 3 4 5	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394	A3B331351483987342546298393457677460638229358146791156556630	19237 3300405 625425 211849 1157491	C3 03 38 90 3915 01 1319 39 507 02 1446	D3 342454 42 575868 494 993194 166 291891 665 521808 1368	E3E4221733355422786701849147392174106417144252539381063215742891875141464442
## ## ## ## ## ##	1 2 3 4 5 6	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762	A3B33135148398734254629839345767746063822935814679115655663022369299555	19237 3300405 625425 211849 1157491 527081	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 4943 93194 166 291891 66 521808 1368 373607 142	E3E4221733355422786701849147392174106417144252539381063215742891875141464442661980134440236
## ## ## ## ## ## ##	1 2 3 4 5 6	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4	A3B331351483987342546298398457677460682229358146791156556630223692995554B4	19237 3300405 625425 211849 1157491 527081 A4	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 373607 142	E3E4221733355422786701849147392174106417144252539381063215742891875141464442661980134440236
# # # # # # # # # # # #	1 2 3 4 5 6	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4 3582159 4278508	A3B331351483983442546298393457677460638229358146391156556630223692995554B43335723243	19237 3300405 625425 211849 1157491 527081 A4 3780455	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 373607 142	E3 E4 221733 3554227 867018 491473921 741064 171442525 393810 63215742 891875 141464442 661980 134440236
# # # # # # # # # # # #	1 2 3 4 5 6 1 2	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4 3582159 4278508 495393627 38978409	A3 B3 313 5148398 734 254629839 845 76774606 822 29358146 791 156556630 223 69299555 4 B4 5723243 318133056	19237 3300405 625425 211849 1157491 527081 A4 3780455 6134657	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 573607 142	E3E4221733355422786701849147392174106417144252539381063215742891875141464442661980134440236
# # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 1 2 3	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4 3582159 4278508 495393627 38978409 144341093 110284315	A3 B3 313 5148398 34 254629839 345 76774606 382 29358146 791 156556630 223 69299555 4 B4 3 5723243 7 318133056 5 81203507 5	19237 3300405 625425 211849 1157491 527081 A4 3780455 6134657	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 373607 142	E3 E4 221733 3554227 867018 491473921 741064 171442525 393810 63215742 891875 141464442 661980 134440236
# # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 1 2 3 4	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4 3582159 4278508 495393627 38978409 144341093 110284315 48868329 35728182	A3 B3 313 5148398 34 254629839 345 76774606 382 29358146 791 156556630 223 69299555 4 B4 5 5723243 7 318133056 2 22188573	19237 3300405 625425 211849 1157491 527081 A4 3780455 6134657 9372919 3603490	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 373607 142	E3 E4 221733 3554227 867018 491473921 741064 171442525 393810 63215742 891875 141464442 661980 134440236
# # # # # # # # # # # # # # # # # # #	1 2 3 4 5 6 1 2 3 4 5	A2 660561.7 15838 175357014.9 207088 28891661.5 528178 8390298.0 124643 121447044.0 155394 28736591.6 481762 D4 C4 3582159 4278508 495393627 38978409 144341093 110284318 48868329 35728182 140116613 143775988	A3 B3 313 5148398 34 254629839 345 76774606 382 29358146 791 156556630 223 69299555 4 B4 3 5723243 7 318133056 2 22188573 2 150280000	19237 3300405 625425 211849 1157491 527081 A4 3780455 6134657 9372919 3603490	C3 03 38 90 3915 01 1319 39 507 02 1446 39 1168	D3 342454 42 575868 494 93194 166 291891 66 521808 136 373607 142	E3 E4 221733 3554227 867018 491473921 741064 171442525 393810 63215742 891875 141464442 661980 134440236

2. Perform protein quantification

Before running the R codes, modify **the sample list** so that each sample is assigned a **GroupID**. **GroupID** can be any combinations of alphabetic and numeric symbols, *e.g. A*, *Group1*, *088714*.

##								Ra	wFil	es
## 1 I	I_B03_21_150304_	_human_ecoli	_A_3ul_	_3um_	_column_	95	HCD_OT	_2hrs_	30B_	9B
## 2 I	I_B03_02_150304_	_human_ecoli	_B_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 3 I	I_B03_03_150304_	_human_ecoli	_C_3ul_	_3um_	_column_	95	HCD_OT	_2hrs_	30B_	9B
## 4 I	I_B03_04_150304_	_human_ecoli	_D_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 5 I	I_B03_05_150304_	_human_ecoli	_E_3ul_	_3um_	_column_	95	HCD_OT	_2hrs_	30B_	9B
## 6 I	I_B03_06_150304_	_human_ecoli	_E_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 7 I	I_B03_07_150304_	_human_ecoli	_D_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 8 I	I_B03_08_150304_	_human_ecoli	_C_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 9 I	I_B03_09_150304_	_human_ecoli	_B_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 10 I	I_B03_10_150304_	_human_ecoli	_A_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 11 I	I_B03_11_150304_	_human_ecoli	_A_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 12 I	I_B03_12_150304_	_human_ecoli	_B_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 13 I	I_B03_13_150304_	_human_ecoli	_C_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 14 I	I_B03_14_150304_	_human_ecoli	_D_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 15 I	I_B03_15_150304_	_human_ecoli	_E_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 16 I	I_B03_16_150304_	_human_ecoli	_E_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 17 I	I_B03_17_150304_	_human_ecoli	_D_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 18 I	I_B03_18_150304_	_human_ecoli	_C_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 19 I	I_B03_19_150304_	_human_ecoli	_B_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## 20 I	I_B03_20_150304_	_human_ecoli	_A_3ul_	_3um_	_column_	95_	HCD_OT	_2hrs_	30B_	9B
## G	roupID									
## 1	A									
## 2	В									
## 3										
## 4	D									
## 5	E									
## 6	E									
## /	D									
## 8	C									
## 9 ## 10	В									
## 10 ## 11	A									
## 10	A									
## 12										
## ⊥⊃ ## 17										
## 15	L F									
ππ ±J ## 16	E F									
$\pi\pi \pm 0$ $\pm \pm 17$	D									
"" ± ′ ## 18	C									
## 19	B									
## 20	A									
	7.7									

Make sure to load IonStarStat by library("IonStarstat"). Read the annotated frame list and the grouped sample list into R environment.

```
rawfile <- "IonStarPRIDE_Frame.csv"
condfile <- "IonStarPRIDE_Groups.csv"
raw <- read.csv(rawfile)
cond <- read.csv(condfile)
condition <- cond[match(colnames(raw)[-c(1:3)], cond[,1]),2]
condition</pre>
```

[1] A B C D E E D C B A A B C D E E D C B A ## Levels: A B C D E

Use newProDataSet to remove redundant frames (*i.e.* frames assigned to multiple peptide sequences), which causes ambiguity in quantification.

pdata <- newProDataSet(proData=raw, condition=condition)</pre>

The number of proteins before and after removal, as well as the number of redundant frames removed will be reported in the console.

```
## Input 3886 proteins.
```

```
## 6489 duplicated frames founded.
```

```
## 3873 proteins left after filtering.
```

Use pnormalize to perform inter-sample normalization of quantitative intensities. Aggregation of frame data to peptide data can be done by summarize=TRUE. Normalization can be based on either total ion intensities (method="TIC") or quantiles (method="quantiles") in each sample. Use method=NULL to skip normalization.

```
ndata <- pnormalize(pdata, summarize=TRUE, method="TIC")</pre>
```

Boxplots of peptide quantitative data before (left) and after (normalization) are shown as follows.

Use OutlierPeptideRM to perform outlier peptide detection. IonStar uses **Principal Component-based Outlier Detection** (*PCOut*) for outlier detection, which is tailored for multicondition comparison (at least 3 conditions including control).

Parameter variance (0.7~0.9) can be adjusted according to the stringency needed for outlier detection. The higher the value the more outliers will be rejected.

6049 outliers were removed; 21937 peptides left after outlier removal.

For **case-control comparison**, set parameter <code>ratio=FALSE</code>. Alternatively, **Grubb's test** can be used for outlier rejection, which will be available in the next build of IonStarStat.

Use SharedPeptideRM to remove shared peptides (*i.e.* peptides inferred to multiple unique protein groups, *a.k.a.* degenerate peptides). This step is optional as many highly abundance proteins share a large proportion of homologous sequence domains. Removal of these peptides could be counterproductive for quantification. However, in specific cases, such as quantification of mixed-species samples, removal of shared peptides with species ambiguity is necessary to obtain species-specific quantitative results.

```
#Opional removal of shared peptides
cdata<-SharedPeptideRM(cdata)</pre>
```

Use ProteinQuan to aggregate peptide-level quantitative data to protein level. Both sum intensities (method="sum") and General Linear Mixed Model (method="fit") can be used for peptide-to-protein aggregation.

##		PepNum	A1	B1	C1	D1	E1
##	A0AVT1:UBA6_HUMAN	4 2	6.62118 20	5.70643 2	6.70311 2	26.55632 2	6.56956
##	A0FGR8:ESYT2_HUMAN	12 2	9.14639 29	9.14287 2	9.19418 2	29.11159 2	9.07409
##	A0MZ66:SHOT1_HUMAN	8 2	7.38884 2	7.12556 2	7.21083 2	27.11330 2	7.08704
##	A1L0T0:ILVBL_HUMAN	4 2	4.82774 2	5.34471 2	5.23324 2	25.22633 2	5.29648
##	A1X283:SPD2B_HUMAN	4 25	5.91957 2	5.89851 2	5.98069 2	25.75741 2	5.62000
##	A2RRP1:NBAS_HUMAN	2 23	3.21671 23	3.42673 2	3.27803 2	23.06164 2	2.72570
##		E2	D2	C2	B2	2 A2	A3
##	A0AVT1:UBA6_HUMAN	26.50505	26.59699	26.71673	26.65676	5 26.77142	26.80597
##	A0FGR8:ESYT2_HUMAN	29.04383	29.11444	29.18659	29.18904	1 29.28187	29.19237
##	A0MZ66:SHOT1_HUMAN	26.95478	27.11314	27.28457	27.07045	5 27.16919	27.32022
##	A1L0T0:ILVBL_HUMAN	25.25879	25.39263	25.29545	25.22623	8 25.41492	25.25910
##	A1X283:SPD2B_HUMAN	25.52778	25.70657	25.94787	25.87455	5 25.82754	26.14511
##	A2RRP1:NBAS_HUMAN	22.98854	22.89805	23.27723	23.18188	3 23.39038	23.13157
##		В3	С3	D3	ES	B E4	D4
##	A0AVT1:UBA6_HUMAN	26.63028	26.64539	26.37873	26.50122	26.37168	26.58727
##	A0FGR8:ESYT2_HUMAN	29.11881	29.20611	28.87648	28.95956	5 28.84509	28.92555
##	A0MZ66:SHOT1_HUMAN	27.35312	27.22668	27.28598	27.35093	3 27.21666	27.19223
##	A1L0T0:ILVBL_HUMAN	24.90396	25.21406	24.71122	24.80994	1 24.84718	24.86370
##	A1X283:SPD2B_HUMAN	25.99702	25.71892	25.62937	25.82062	25.72596	25.88044
##	A2RRP1:NBAS_HUMAN	23.36878	23.10810	23.13342	22.86591	22.97998	23.19907
##		C4	B4	A4			
##	A0AVT1:UBA6_HUMAN	26.50536	26.60836	26.72253			
##	A0FGR8:ESYT2_HUMAN	28.92343	29.11381	29.17440			
##	A0MZ66:SHOT1_HUMAN	27.25682	27.33590	27.39389			
##	A1L0T0:ILVBL_HUMAN	24.78118	24.96034	25.14340			
##	A1X283:SPD2B_HUMAN	25.80138	25.88904	26.01037			
##	A2RRP1:NBAS_HUMAN	22.89899	23.26405	23.07043			

Users can export both peptide and protein quantitative results by write.csv.

write.csv(quan,"IonStarPRIDE_protein_quan.csv")
write.csv(exprs(cdata),"IonStarPRIDE_peptide_quan.csv")

Step 4: Post-quantification data processing

StarGazer, a Shiny-based interactive web app, will be made available in the next build of IonStar for post-quantification data processing. Fundamental functions of StarGazer include:

- Data cleanup and formatting
- Case-control protein ratio calculation

- Statistical testing
- Basic data mining (*e.g.* PCA, hierarchical clustering, fuzzy c-means clustering)
- Graphic depiction of quantitative data

Contact information

For questions, suggestions, and other topics about IonStarStat, feel feel to contact us:

Shichen Shen: shichens@buffalo.edu

Xue Wang: xwang79@buffalo.edu

Jun Qu: junqu@buffalo.edu

REREFERENCES

1. Smith, R. D.; Anderson, G. A.; Lipton, M. S.; Pasa-Tolic, L.; Shen, Y.; Conrads, T. P.; Veenstra, T. D.; Udseth, H. R., An accurate mass tag strategy for quantitative and high-throughput proteome measurements. *Proteomics* **2002**, *2*, 513-23.

2. Filzmoser, P.; Maronna, R.; Werner, M., Outlier identification in high dimensions. *Computational Statistics & Data Analysis* **2008**, 52, 1694-1711.

3. Shen, X.; Shen, S.; Li, J.; Hu, Q.; Nie, L.; Tu, C.; Wang, X.; Orsburn, B.; Wang, J.; Qu, J., An IonStar Experimental Strategy for MS1 Ion Current-Based Quantification Using Ultrahigh-Field Orbitrap: Reproducible, In-Depth, and Accurate Protein Measurement in Large Cohorts. *Journal of Proteome Research* **2017**, 16, 2445-2456.

4. Kramer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S., Causal analysis approaches in Ingenuity Pathway Analysis. *Bioinformatics* **2014**, 30, 523-30.