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1. SUPPLEMENTARY FIGURES

(e) Rosette (f) Cylindrical

(d) Knotted(c) Hedgehog

(g) Random

(a) Hedgehog scaffold (b) Knotted scaffold

Figure A. Many types of distinctly different initial configurations are used to verify our simulation strategy. In (a) we show
a small section of the central scaffold of the unknotted hedgehog structure and in (c) the corresponding full unknotted con-
figuration. Similarly, in (b), a small portion of the knotted central scaffold is shown and the corresponding full configurations
with the fixed number of knots is shown in (d). In the bottom panel, we show the full configuration of Rosette, Cylindrical
and Random structure in (e),(f), and (g) respectively. The gradient of the color changes along the contour of the polymer
and the big red dot in the middle of the whole configurations, represents the center of mass of the polymer. To construct an
unknotted structure, we start with a helical structure with a much smaller number of monomer N0 << N at the center of the
lattice. Because of the helical basis of N0 beads as the central scaffold, the structure remains unknotted. To construct the
knotted configuration, we started with a knotted configuration of length N0 which contains a fixed number of knots. Around
this knotted configuration we build our whole initial configuration of length N .
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Figure B. The time evolution of the mean squared displacement MSD(t) of the individual monomer g1 (upper curve), and
the MSD(t) of the center of mass g3 (lower curve) for the drosophila case (L/Le = 70, ρ = 0.009bp/nm3) at coarse graining
CG = 10 kbp and Kuhn size of Nk = 23 kbp. We vary the measurement time window ∆t and represented the corresponding
MSDs where each unit of ∆t represents 104 monte carlo steps. At steady state we perfectly recovered the g1 ∼ t0.4 scaling.
The center of mass MSD exhibits g3 ∼ t1 scaling behaviour for any time window.
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Figure C. Comparison between different types of initial configurations for the drosophila case (L/Le = 70, ρ = 0.009bp/nm3)
at coarse-graining of CG = 10 kbp and Kuhn size Nk = 23 kbp. We have tested our simulation scheme with many initial
knotted and unknotted configurations: hedgehog, rosette, cylindrical, knotted, and random. We recovered the t0.4 scaling in
g1 for all configurations except the random initial configuration. For randomly knotted configuration, the polymer is entangled
into itself and exhibits reptile motion with g1 ∼ t0.25. We also observed 〈R2(s)〉 ∼ s1 for average physical distance squared and
Pc ∼ s−1.1 scaling behavior for contact probability.
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Figure D. Comparison between knot-free (hedgehog) and random configurations for the drosophila case (L/Le = 70, ρ =
0.009bp/nm3). In the top panel, we compared the random configuration model with hedgehog configurations at fixed Kuhn
size (Nk = 44 kbp) and coarse-graining (CG=10 kbp). In the bottom panel, we compared physical parameters of different
Nk for random configurations. (a,d) individual MSD g1(t) as a function of time, (b,e) the average physical distance squared
〈R2(s)〉 between any two monomers as a function of genomic distance s, (c,f) average contact probability Pc(s). Simulation
data confirmed that the motion of the chain significantly decreased due to the presence of knots. At small Nk = 44 kbp which
correspond to higher lattice volumic fraction, we observed g1 ∼ t0.25 scaling which is expected from an entangled polymer
exhibiting reptile motion. The contact probability Pc, at short length scale of s < 100 kbp, scales as a self-avoiding random
walk (Pc ∼ s−2.1). At intermediate and large length scale limit, 0.1 Mbp < s < 10 Mbp we observed s−1.1 (f). We conclude
that our simulation strategy is general and worked for both random (knotted) and unknotted configurations.
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Figure E. Comparison between knot-free (hedgehog) and configurations with a fixed number of knots for the drosophila case
(L/Le = 70, ρ = 0.009bp/nm3). In the top panel, we compared the knotted configuration model with hedgehog configurations
at fixed Kuhn size (Nk = 23 kbp) and coarse-graining (CG = 10 kbp). In the bottom panel, we compared physical parameters
of different Nk for knotted configurations. (a,d) individual MSD g1(t) as a function of time, (b,e) the average physical distance
squared 〈R2(s)〉 between any two monomers as a function of genomic distance s, (c,f) average contact probability Pc(s).
From the simulation data, we confirm that the presence of few knots does not change the structural and dynamics properties
significantly. At any Kuhn size, we observed g1 ∼ t0.4 scaling in the intermediate time and initially at short timescale, due to
the lattice effect, we observed ∼ t0.75. The contact probability Pc, at intermediate and large length scale limit, we observed
Pc(s) ∼ s1.1 (f), which is similar to the experimentally observed value. We conclude that our simulation strategy is general
and worked for both knotted and unknotted configurations.
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Figure F. We compared different physical properties between reference model and 10 kbp coarse graining at short time (t =
1 min) for the drosophila case (L/Le = 70, ρ = 0.009bp/nm3). The mean squared distance between any to monomer 〈R2〉(s) is
represented in (a) and the average contact probability Pc(s) is represented in (b). While initial configurations are quite similar
regarding 〈R2〉, they differ strongly at long range for Pc.
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Figure G. The reference model of drosophila chromosome (L/Le = 70, ρ = 0.009bp/nm3). The time evolution of the physical
distance between any two genomic loci 〈R2〉 in (a) and the average contact probability Pc(s) at coarse graining of CG = 0.2
kbp and Nk = 1 kbp. Because of the huge computational time we were able to study just up to 30 min of real time. We
approximately extracted the characteristic scaling behavior of drosophila chromosome: 〈R2〉 ∼ s2/3, Pc ∼ s−1.1.
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Figure H. Physical properties of yeast chromosome (L/Le = 0.8, ρ = 0.005bp/nm3). In the top panel, the exactly same time
evolution of physical properties are observed as we change coarse graining CG = 2, 5 kbp, at fixed Kuhn size of Nk = 20 kbp.
The bottom panel represents, the time evolution of physical properties for different Kuhn size (Nk = 13, 29 kbp) at a fixed
coarse graining of CG = 5 kbp. (a) Mean squared displacement of individual monomers g1 is plotted as the top curve and that
of the center of mass g3 is represented as the bottom curve. (b) Time evolution of the mean squared distance 〈R2(s)〉 between
any pairs of monomers separated by a genomic distance s. (c) Time evolution of averaged contact probability Pc(s). In the
bottom panel, the time evolution of physical properties is represented as we vary Nk = 13, 29 kbp at fixed coarse graining
of CG = 5 kbp. (d) g1(t) (top curves) and g3(t) (bottom curves) after time mapping, (e) 〈R2〉 and (f) Pc(s). At short time
g1 ∼ t0.5 and at steady state we have g1 ∼ g3 ∼ t1, 〈R2〉 ∼ s1 and Pc(s) ∼ s−1.5. For simulations parameters see Table.A.
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Figure I. Physical properties of mammalian chromosomes (L/Le = 200, ρ = 0.015bp/nm3) at coarse graining CG = 10 kbp for
different Kuhn sizes Nk = 33, 42, 62 kbp. (a) Mean squared displacement g1 for various Kuhn sizes. (b) Average end to end
distance 〈R2〉 as a function of genomic distance s. (c) Average contact probability Pc as a function s. 〈R2〉, Pc are calculated
from the configurations collected in the 1 to 10 hrs time window. For simulations parameters see Table.B.
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Figure J. The average second moment (〈σ2〉) of the square of the distance (R2) between any two monomers for the drosophila
case (L/Le = 70, ρ = 0.009bp/nm3). In the top panel, we observed a perfect matching in steady state (a) and time evolution
(b) for 〈σ2〉 at different Nk for the fixed coarse graining of CG = 10 kbp. In the bottom panel, for a fixed Nk we compared the
steady state (c) and dynamic (d) properties of 〈σ2〉 at different coarse graining.
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Figure K. Effect of lattice volumic fraction Φ on physical properties of lattice polymer model for drosophila at CG = 10 kbp.
In the top panel, we vary Φ such a way that the base pair density (ρ) and entanglement regime (L/Le) are conserved. In the
bottom panel, we change Φ arbitrarily, keeping other simulation parameters constant (Nk = 23 kbp, φ = 0.97), as a result, we
did not take into account the preservation of the actual L/Le value. (a,d) MSDs of individual monomer g1, (b,e) the physical
distance between any two genomic loci 〈R2〉 and (c,f) the average contact probability Pc(s). In the top panels, up to Φ = 1
all the physical properties calculated from simulations represent the true nature of the system, same as the reference model.
At Φ > 1, dynamics gets restricted due to very high lattice volumic fraction and 〈R2〉 and Pc start deviating from the actual
results. For example, Pc(s) shows slow decay, close to the initial configuration. In the bottom panel, changing the lattice
volumic fraction influences strongly 〈R2〉 and Pc(s) at all length scales. At extremely low density the chain behaves like a
self-avoiding random walk, and we recover the scaling of Pc(s) ∼ s−2.1 and 〈R2〉 ∼ s1. From this study, we conclude that the
importance of choosing simulation parameter Φ such a way that it preserves the true physical properties of the system. We
also realized that our strategy is not accurate for Φ > 1.
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Figure L. Effect of bending rigidity κ on different physical properties (CG = 10 kbp, Φ = 0.97). We vary κ arbitrarily, keeping
other simulation parameters constant, as a result, we did not take into account the preservation of the actual L/Le value. (a)
The effect of κ is adjusted through time mapping, as different κ correspond to different time mapping. (b,c) show the effect of
κ on 〈R2〉 (b) and on Pc (c). At small length scale the effect of κ is much stronger, where as at large length scale s > 1 mbp,
the effect is negligible when the chain is already decorrelated. At short length scale for stronger κ we have smaller Pc with
faster decay, and we have larger 〈R2〉 corresponding to a bigger overall size of the chain. Stiff bending constant leads to more
rambling configurations.
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Figure M. Effect of simulating subchains instead of the full polymer. (a) Mean squared displacement of individual monomers
g1, center of mass g3, (b) physical distance squared 〈R2〉 between any two monomers separated by a genomic distance s, and
(c) the contact probability Pc, are represented for different chain lengths N . As we decrease chain length, the polymers behave
as an isolated chain and reach steady state very quickly. Similarly for smallest N , we observed 〈R2〉 ∼ s1 and Pc(s) ∼ s−2.0,
which are close to the self-avoiding freely jointed chain limit.
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Figure N. (a) Experimental Hi-C map for the investagated 20 Mbp region of chromosome 3R. Corresponding epigenome is shown
on top. (b) Predicted (Ei = −0.1 kT ) vs experimental contact maps for a 10 Mbp region. Predicted data were multiplied by a
factor 2500 to adjust scale with experiments.
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Figure O. Pearson correlation between the predicted and experimental Hi-C data as a function of the interaction strength Ei.
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Figure P. (a) For a fixed Kuhn size Nk = 23 kbp, we compared the contour length of the coarse-grained polymer (LCG = Nb)
with the reference model (LRef = N0b0). The ratio does not depend strongly on the coarse-graining for a fixed Kuhn size.
Alternatively by choosing the CG bead size as the mean end to end distance of the corresponding fine scale model, the
deformation (

√

l0k/nb0) is stronger (dotted line). (b) Comparison of the polymer size (N monomers) with the “simulated”
lattice polymer size NLattice defined as the number of lattice sites actually occupied by the polymer (due to double occupancy
NLattice ≤ N). For example, in the reference model, where the lattice density is quite low φ ≈ 0.04, we still have 4% of it’s
length stored in the form of double occupancy.
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2. SUPPLEMENTARY TABLES

2.1. Simulation parameters for yeast chromosome

200 bp 2 kbp 5 kbp

——————————— ——————————— ——————————–
Φ0 N0

k b0 l0k Φ Nk b lk Φ Nk b lk
——————————— ——————————— ——————————–
0.023 1.0 11.0 56.4 0.016 29.2 20.8 304 0.11 27 53.6 292

0.027 20.1 25.1 250 0.17 20 62.5 250
0.054 13.0 31.3 198 0.30 13 75.1 209
0.093 9.10 37.5 166 0.58 8.9 93.9 165

Table A. Table for the simulation parameters of yeast chromosome at different coarse-graining of CG = 0.2 kbp (reference
model), 2 kbp, and 5 kbp. Here Φ is the lattice volumic fraction, Nk is the Kuhn size in kbp, b is the bead size in nm and lk
is the Kuhn length in nm. The corresponding physical parameters associated to reference model are Φ0, N

0

k , b0 and l0k. The
general characteristics of yeast chromosome we used here are length L = 750 kbp, base pair density ρ = 0.005 bp/nm3 and the
corresponding entanglement length we calculated Le = 924.2 kbp.

2.2. Simulation parameters for mammalian chromosome

200 bp 2 kbp 5 kbp 10 kbp

——————————— ——————————— ——————————— ———————————
Φ0 N0

k b0 l0k Φ Nk b lk Φ Nk b lk Φ Nk b lk
——————————— ——————————— ——————————— ———————————
0.043 1.0 10.6 55.4 0.021 49 15.8 389 0.09 62 35.4 434 0.37 62 70.7 448

0.027 42 17.3 364 0.17 42 43.2 364 0.68 42 86.4 354
0.039 33 19.4 322 0.24 33 48.6 298 0.97 33 97.2 323

Table B. Table for simulation parameters for the mammalian chromosome at different coarse-graining: 200 bp (reference fine-
scale model), 2, 5 and 10 kbp. Here lattice volumic fraction Φ, Kuhn size NK ≡ lk/b (in kbp-unit), nearest-neighbor distance
b (in nm) and Kuhn length lk (in nm). The corresponding physical parameters associated to reference model are Φ0, N

0

k , b0
and l0k. We simulated a portion of mammalian chromosome of length 20 Mbp with base pair density ρ = 0.015 bp/nm3 and the
corresponding entanglement length, we have Le = 102.7 kbp.

2.3. Chromatin state positioning along drosophila chromosome 3R

Position State

1 9.70 PcG

2 11.1 Active

3 12.24 PcG

4 12.64 PcG

5 13.04 Black

6 15.44 Black

7 21.88 PcG

8 23.3 Black

Table C. Position along chromosome 3R and corresponding chromatin state (PcG: “blue” state, Black: “black” state, Active:
“red” state in the epigenome legend of Fig. 6.) for the 8 loci tracked with high precision in Sec.II.D.3 of the main text. Fig.
7c,d were computed from the relative distances between loci 1&4, 1&7, 2&8, 3 & 4, 4&5, 4&6.


