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section S1. PiFM and s-SNOM schematics 

 

fig. S1. PiFM and s-SNOM schematics. (A) PiFM (Molecular Vista) setup: a pulsed laser is focused on 

an AFM tip, operating in tapping mode with the the second cantilever resonance mode (about 1.8MHz 

oscillation frequency). The repetition rate of the pulsed QCL is tuned to match the frequency difference 

between the first and second mechanical eigenmode of the AFM cantilever. The cantilever first 

eigenmode is then used for the readout. An optical force is created between the sample and the AFM 

under illumination, and its effect is monitored directly from the cantilever oscillation. No optical detector 

is used in this type of measure, that is in fact photon-less. (B) The s-SNOM setup uses a continuous wave 

QCL laser to illuminate the sample and the tip. An interferometer with a pseudoheterodyne detection is 

used to extract the phase and the amplitude of the scattered signal. Light is p-polarized in both setups. 

 

section S2. Fringing field correction 

As specified in the main paper, the 2D wave equation for the modes in the RS2 band is 

 

(𝑖𝜔)2𝜌 = 𝑣𝑝
2(𝜔)∇2𝜌 (S1) 

 

As the charge density 𝜌 oscillates with time, a surface displacement current 𝑱 is created, which is related 

to 𝜌 by the continuity equation 

 

∇ ⋅ 𝑱 = −(𝑖𝜔)𝜌 (S2) 

 

Combining these equations, we find 

 

−𝑖𝜔∇ ⋅ 𝑱 = 𝑣𝑝
2(𝜔)∇ ⋅ (∇𝜌) (S3) 

 

Except for a spatially uniform term (which is unphysical in this finite size problem), equation S3 implies 



𝑱 = −
𝑣𝑝

2(𝜔)

𝑖𝜔
∇𝜌 (S4) 

 

Note that we are assuming that the current density has no curl, and that it is due only to the displacement 

of the charge density. At the edges of the patterned flake, the component of 𝑱 orthogonal to the edge must 

vanish, and hence we obtain the Neumann boundary condition on the spatial derivative of 𝜌, which for a 

circle with radius 𝑎 reads 

 

𝜕𝜌

𝜕𝑟
|

𝑟=𝑎
=  0 (S5) 

 

Solving the 2D wave equations in a circular domain always leads to solutions expressed using Bessel 

functions, with solution prototype 

 

𝜌 = 𝐽𝑠(𝑘𝑟)(𝐴 cos(𝑠𝜃) + 𝐵 sin(𝑠𝜃))𝑒𝑖𝜔𝑡 (S6) 

 

where 𝜔 = 𝑣𝑝𝑘 and 𝐽𝑠 is the Bessel function of order s. The boundary condition in (S5) gives 

 

𝜌 = 𝐽𝑠(𝑘𝑠𝑛𝑟)(𝐴 cos(𝑠𝜃) + 𝐵 sin(𝑠𝜃))𝑒𝑖𝜔𝑡 where 𝑘𝑠𝑛 is the nth root of  𝐽𝑠
′(𝑘𝑎) = 0 (S7) 

 

The resonant wave vector 𝑘𝑠𝑛 then determines the resonant frequency via 𝜔𝑠𝑛 = 𝑣𝑝𝑘𝑠𝑛, where 𝑠 =

0,1,2, … and 𝑛 = 1,2,3 ….  

The solution for 𝑠 = 0, 𝑛 = 1 is the constant solution, which represents the total charge, which we assume 

to be 0 by charge neutrality, hence we can disregard this case. 

As explained in (16) and (19), this ideal boundary condition does not consider the fringing fields, i.e. the 

electric field appearing beyond the edge of the flake when a mode propagating towards the edge is 

reflected by it. Both references (19) and (21) have studied this effect in detail. Due to the energy stored in 

the fringing fields, the reflected wave experiences an extra phase shift, which in our case is determined 

with fitting. The phase factor 𝜙 is added directly in the Bessel function in the equation as 

 

𝜌 = 𝐽𝑠(𝑘𝑠𝑛𝑟 + 𝜙)(𝐴 cos(𝑠𝜃) + 𝐵 sin(𝑠𝜃))𝑒𝑖𝜔𝑡 where 𝑘𝑠𝑛 is the nth root of  𝐽𝑠
′(𝑘𝑎 + 𝜙) = 0 (S8) 

 

The value of 𝜙 which ensures the best agreement between measured and analytical prediction is -0.28π in 

our case, in close agreement with the value -0.25 π found for both graphene in (19) and h-BN (21). Notice 

that in (19) and (21) the sign of the phase factor is different due to the use of the 𝑒−𝑖𝜔𝑡 physics time 

harmonic convention, while in this work we use the 𝑒𝑖𝜔𝑡 engineering time harmonic convention, which 

agrees with the canonical definition of the Fourier transform. 

If 𝑠 = 0 the sine term vanishes and only one mode (radially symmetric) for each 𝑛 is found. If 𝑠 ≥ 1 then 



for each 𝑛 two degenerate solutions are found, and any linear combination via the complex coefficients 

𝐴, 𝐵 can be used. Because the solutions are degenerate, several choices of the basis are possible. One way 

is to use the {cos(𝑠𝜃) , sin(𝑠𝜃)} pair, giving modes oriented at different angles, so that nodes and 

antinodes are exchanged. With this representation, for 𝑠 = 1, 𝑛 = 1 the fundamental dipole modes 

observed experimentally are found. Alternatively, since 𝐴 and 𝐵 can be chosen as complex numbers, also 

the pair {𝑒𝑖𝑠𝜃, 𝑒−𝑖𝑠𝜃} can be selected. In this way, the presence of the degenerate modes can be 

represented directly as the sign of 𝑠, which is then interpreted as the angular momentum topological 

charge of the modes.  

 

section S3. Modeling of resonators fields, light path contributions, and their separation 

 

To interpret the s-SNOM and PiFM images and to analyze quantitatively the light paths contributions, we 

provide here a model of the fields associated with the resonant modes. For simplicity, we do not consider 

here the substrate, the presence of which does not affect the conclusions of this argument but merely the 

geometry of the radiated fields. First, assuming that the resonator is driven by a monochromatic source at 

the resonant frequency, the fields surrounding the resonator can be found from the displacement currents 

in h-BN with the radiation integral for the vector potential 𝑨𝑹 

 

𝑨𝑹(𝑟) =
𝜇0

4𝜋
∭ 𝑱𝑹(𝑟′)

𝑒−𝑖𝑘|𝑟−𝑟′|

|𝑟 − 𝑟′|𝑉

d3𝑟′ (S9) 

 

where 𝑘 = 𝜔/𝑐 and the subscript R indicates that the fields are associated to the resonance. The electric 

field is given by 

 

𝑬𝑹 = −𝑖𝜔𝑨𝑹 +
1

𝑖𝜔𝜇0𝜀0
∇(∇ ⋅ 𝑨𝑹) (S10) 

 

If the h-BN resonator is much smaller than the wavelength, then equation S9 can be approximated with 

 

𝑨𝑹(𝑟) ≃
𝜇0

4𝜋

𝑒−𝑖𝑘|𝑟|

|𝑟|
∭ 𝑱𝑹(𝑟′)

𝑉

d3𝑟′ (S11) 

 

For nano-discs, from simple symmetry arguments, it is seen that the only modes that can radiate (bright 

modes) must have 𝑠 = ±1, since for other values of 𝑠 it is possible to split the integral on two halves of 

the disc giving opposite contributions that cancel each other. 

Let us now go back to a general h-BN nanoparticle (much smaller than the wavelength), and we consider 

the impulse response. In other words, we assume that energy is instantaneously coupled in the mode at the 

instant 𝑡 = 0, and we observe the time domain fields dynamics. The considered resonant modes have 

quality factors in the order of 100 or more, hence all the associated fields (𝑬𝑹, 𝑯𝑹, 𝑨𝑹, 𝑱𝑹, 𝜌𝑅 ) show 

damped oscillations. In the near field of the dipole the propagation delay can be neglected since the fields 

are quasi-static 



 

𝑬𝑹, 𝑯𝑹, 𝑨𝑹, 𝑱𝑹, 𝜌𝑅  ∝ u(𝑡) cos(𝜔0𝑡 + 𝛼) 𝑒−𝛾𝑡 (S12) 

 

where u(𝑡) is the unit step function, 𝜔0 is the resonance frequency, and 𝛾 is the damping coefficient. The 

resonance quality factor is then given by 

 

𝑄 =
𝜔0

2𝛾
=

𝜔0

Γ
    ,     Γ = 2𝛾 (S13) 

 

The damped resonance implies a frequency response that follows a Lorentzian shape, hence the response 

of the resonator (considering a single resonance) is then proportional to 

 

𝑬𝑹, 𝑯𝑹, 𝑨𝑹, 𝑱𝑹, 𝜌𝑅  ∝
𝐴

𝜔0
2 − 𝜔2 + 𝑖Γω

 (S14) 

 

The resonance can be excited by either the probing tip or by an incident free space beam (only for the 

case of bright resonances), which we can assume to be monochromatic as in the experiment. Let us first 

consider the case of the free space beam: first, we call 𝑬𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) the geometric of the incident beam 

assuming that no h-BN resonator is present. Note that 𝑬𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) includes any reflection from the 

substrate. If the resonator is instead present, the total field is different and can be called 𝑬𝑡𝑜𝑡(𝑥, 𝑦, 𝑧), 

which can be split in two parts 

 

𝑬𝑡𝑜𝑡(𝑥, 𝑦, 𝑧) = 𝑬𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) + 𝑬𝑠𝑐(𝑥, 𝑦, 𝑧) (S15) 

 

where 𝑬𝑠𝑐 is the scattered field. A similar decomposition can be done for the 𝑯 field as well. For small 

particles, 𝑬𝑠𝑐 is significant only if the used frequency is close to a resonance, and its geometry is 

determined by the resonant mode. The scattered field is the superposition of the fields associated to each 

excited mode 

 

𝑬𝑠𝑐(𝑥, 𝑦, 𝑧, 𝜔) = ∑ 𝑎𝑛 𝑬𝑀,𝑛(𝑥, 𝑦, 𝑧, 𝜔)
𝑛

= ∑ 𝑎𝑛

 𝐴𝑛

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

𝑬𝑅,𝑛(𝑥, 𝑦, 𝑧)
𝑛

 (S16) 

 

where 𝑎𝑛 is the amplitude of the scattered field of the nth mode, which depends on the coupling between 

the incident and the mode field geometry 𝑬𝑅.  

The amplitude 𝑎𝑛 of the mode can be computed by choosing a closed surface S enclosing the particle and 

integrating to find the field coupling 

 

𝑎𝑛 = 𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒 =
∯ (𝑬𝑖𝑛𝑐 × 𝑯𝑅

∗ − 𝑬𝑅
∗ × 𝑯𝑖𝑛𝑐)

𝑆
⋅ 𝑛̂d2𝑟

∯ (𝑬𝑅 × 𝑯𝑅
∗ − 𝑬𝑅

∗ × 𝑯𝑅) ⋅ 𝑛̂
𝑆

d2𝑟
 (S17) 



The integral at the denominator is equal to the total power injected in the mode, which we call 𝑃MODE, so 

we can rewrite it as 

 

𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒 =
∯ (𝑬𝑖𝑛𝑐 × 𝑯𝑅

∗ − 𝑬𝑅
∗ × 𝑯𝑖𝑛𝑐)

𝑆
⋅ 𝑛̂d2𝑟

𝑃MODE
 (S18) 

 

The relationship still works if an arbitrary value for 𝑃MODE is used, provided that the mode fields 𝑬𝑅 and 

𝑯𝑅 are chosen accordingly to the selected power of the mode. Importantly, 𝑃MODE can be interpreted as 

the sum of the radiated power and the dissipated power 

 

𝑃MODE = 𝑃𝑅𝐴𝐷 + 𝑃𝐷𝐼𝑆𝑆 (S19) 

 

Note that 𝑃𝑅𝐴𝐷 vanishes for dark modes. Similarly, 𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒 = 0 for dark modes, since the sphere can 

be selected far from the near field, where the total field is 0. This trivially means that it is not possible to 

excite dark modes using a beam incident on the sample. 

In the used near field setups the sample is scanned while the tip and the beam are still. Mathematically, 

this is equivalent to keeping the sample and the reference surface 𝑆 still and moving both the beam and 

the tip. The focused beam can locally be approximated by a plane wave 

 

𝑬𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) ≃ 𝑬0𝑒−𝑖𝒌⋅𝒓 (S20) 

 

If the displacement of the sample due to scanning is Δ𝑟 = (Δ𝑥, Δ𝑦, 0) then this is equivalent to changing 

the phase of the global wave 

 

 𝑬𝑖𝑛𝑐
′ (𝑥, 𝑦, 𝑧) = 𝑬𝑖𝑛𝑐(𝑥 − Δ𝑥, 𝑦 − Δ𝑦, 𝑧) ≃ 𝑬0𝑒−𝑖𝒌⋅𝒓𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) ≃ 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑬𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) (S21) 

𝑯𝑖𝑛𝑐
′ (𝑥, 𝑦, 𝑧) = 𝑯𝑖𝑛𝑐(𝑥 − Δ𝑥, 𝑦 − Δ𝑦, 𝑧) ≃ 𝑯0𝑒−𝑖𝒌⋅𝒓𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) ≃ 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑯𝑖𝑛𝑐(𝑥, 𝑦, 𝑧) (S22) 

 

Therefore, by inspection of equation S18, S21 and S22 

 

𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒 ∝ 𝑒𝑖(𝑘𝑥Δ𝑥+𝑘𝑦Δ𝑦) (S23) 

 

This phase shift can be neglected when scanning the considered deep subwavelength resonators, but has 

to be compensated for larger flakes and guided modes, as done in our previous work (17). Neglecting the 

phase shift implies 

 

𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒 ∝ 𝑒𝑖(𝑘𝑥Δ𝑥+𝑘𝑦Δ𝑦) ≃ 1 (S24) 

Let us now consider the case where light is coupled in the resonator via the AFM tip (which can occur 



also for dark resonances where the far field vanishes): the same argument can be used by replacing the 

incident field of the beam with the field launched by the tip. The tip can be approximated as an Hertzian 

dipole polarized along z, and the surface 𝑆 can be chosen an infinitesimal sphere around it. We then 

express the coupling as 

 

𝐴𝑡𝑖𝑝→𝑚𝑜𝑑𝑒 =
∯ (𝑬𝑡𝑖𝑝 × 𝑯𝑅

∗ − 𝑬𝑅
∗ × 𝑯𝑡𝑖𝑝)

𝑆
⋅ 𝑛̂d2𝑟

𝑃MODE
 (S25) 

 

where the Hertzian dipole fields of the tip in spherical coordinates are (in the near field limit 𝑟 → 0) 

 

𝐻𝑅,𝜙 = 𝑖
𝐼d𝑙

4𝜋
(

𝑘

𝑟
−

𝑖

𝑟2
) sin(𝜃) 𝑒−𝑖𝒌⋅𝒓 →  

𝐼d𝑙

4𝜋𝑟2
sin(𝜃) (S26) 

𝐸𝑅,𝜃 = 𝑖
𝜂𝐼𝑑𝑙

4𝜋
(

𝑘

𝑟
−

𝑖

𝑟2
−

1

𝑘𝑟3
) sin(𝜃) 𝑒−𝑖𝒌⋅𝒓 → − 𝑖

𝜂𝐼𝑑𝑙

4𝜋𝑘𝑟3
sin(𝜃) (S27) 

𝐸𝑅,𝑟 = 𝑖
𝜂𝐼𝑑𝑙

4𝜋
(−

𝑖

𝑟2
−

1

𝑘𝑟3
) cos(𝜃) 𝑒−𝑖𝒌⋅𝒓 →  −𝑖

𝜂𝐼𝑑𝑙

4𝜋𝑘𝑟3
cos(𝜃) (S28) 

 

where 𝜂 is the free space impedance. On the infinitesimal sphere 𝑆 the fields of the mode are then 

constant. It follows that the numerator of equation S25 only depends on the z component of the electric 

field, and the integral reads 

 

𝐴𝑡𝑖𝑝→𝑚𝑜𝑑𝑒 =
∯ (−𝑬𝑅

∗ × 𝑯𝑡𝑖𝑝)
𝑆

⋅ 𝑛̂d2𝑟

𝑃MODE
=

2𝐸𝑅,𝑧𝐼𝑑𝑙

3𝑃MODE
 (S29) 

 

If we take into account the scanning offsets Δ𝑥, Δ𝑦 we have 

 

𝐴𝑡𝑖𝑝→𝑚𝑜𝑑𝑒 ∝ 𝐸𝑅,𝑧(Δ𝑥, Δ𝑦, 0)  (S30) 

 

In other words, the coupling is proportional to the z component of the electric field of the resonating 

mode. 

Furthermore, we will indicate the coupling between the incident field and the Hertzian dipole as 𝐴𝑖𝑛𝑐→𝑡𝑖𝑝, 

and we assume it is constant since the tip does not move with respect to the incident field. Because of 

reciprocity, if light can couple from the tip to the sample, it can also couple back with the same coupling, 

and more in general 

 

𝐴1→2 = 𝐴2→1 (S31) 

 

We can now determine the dependence of the detected signal with respect to the scanning offsets Δ𝑥, Δ𝑦 



to predict the complex map associated to each of the light path described in the main paper (fig. S2). 

The material contrast is the contribution usually observed with s-SNOM measurement, and hence it is 

well known and depends solely on the optical constants of the materials immediately below the tip. 

Hence, since the resonance is not involved, this component can be treated simply as a complex number 

that, in our problem, takes two values: one on the h-BN nanostructure and the other on the substrate. 

The direct coupling contribution can occur in two different ways which, however, are equivalent due to 

equation S31. The total contribution is then 

 

𝐴direct = ∑
 𝐴𝑛

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

𝐴𝑖𝑛𝑐→𝑚𝑜𝑑𝑒(𝑛)  𝐴𝑚𝑜𝑑𝑒(𝑛)→𝑡𝑖𝑝 𝐴𝑡𝑖𝑝→𝑖𝑛𝑐
𝑛

 (S32) 

 

Only the modes excited directly by the incident wave contribute to equation S32. For instance, the 

orientation of the polarization of the excited dipole mode is parallel to the polarization of the incident 

beam. If a single mode 𝑛 is excited, then the direct contribution reads 

 

𝐴direct ∝
 𝐴𝑛𝑒𝑖(𝑘𝑥𝛥𝑥+𝑘𝑦𝛥𝑦)

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

𝐸𝑅,𝑧(𝛥𝑥, 𝛥𝑦, 0) ≃
 𝐴𝑛

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

𝐸𝑅,𝑛,𝑧(𝛥𝑥, 𝛥𝑦, 0) (S33) 

 

In other words, the direct contribution is a faithful representation of the z-component of the electric field 

of the resonant mode.  

The round-trip contribution is instead given by 

 

𝐴roundtrip = ∑
 𝐴𝑛

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

𝐴𝑖𝑛𝑐→𝑡𝑖𝑝 𝐴𝑡𝑖𝑝→𝑚𝑜𝑑𝑒(𝑛)  𝐴𝑚𝑜𝑑𝑒(𝑛)→𝑡𝑖𝑝 𝐴𝑡𝑖𝑝→𝑖𝑛𝑐
𝑛

 (S34) 

 

The coupling is mediated exclusively by the tip, so the modes are excited regardless of their orientation 

with the polarization of the incident field. The obtained image is then 

 

𝐴roundtrip ∝ ∑
 𝐴𝑛

𝜔0,𝑛
2 − 𝜔2 + 𝑖Γ𝑛ω

(𝐸𝑅,𝑛,𝑧(Δ𝑥, Δ𝑦, 0))
2

𝑛
 (S35) 

 

In the case of the disc, if 𝑠 > 0, the cosine and sine modes are always degenerate. Therefore, their 

squared amplitudes will add together in equation S35, resulting in the expected circularly symmetric 

patterns 

 

(𝐽𝑠(𝑘𝑠𝑛𝑟 + 𝜙) cos(𝑠𝜃))2 + (𝐽𝑠(𝑘𝑠𝑛𝑟 + 𝜙) sin(𝑠𝜃))2 = (𝐽𝑠(𝑘𝑠𝑛𝑟 + 𝜙))
2
 (S36) 



 

which in fact does not depend on 𝜃. 

The modulated scattering contribution is more complex since the presence of the tip can actually 

modulate all the components of the field, not only the z component. Empirically, we find that this 

component is negligible, except for the case of the dipole antenna where it appears in the antenna gap. 

This is because the gap is repeatedly opened and closed by the tip, modulating the overall scattering of the 

antenna.  

The contributions can be separated as explained in the main paper due to the odd symmetry of the dipole 

modes. This is due to the fact that the incident light is p-polarized, and hence the excited dipole mode will 

be parallel to the incident polarization. The charge, and hence the z component of the electric field, has 

opposite values on the two ends of the dipole. Knowing this, one can separate the direct coupling 

contribution (which, being a faithful representation of the field, also has an odd symmetry) by taking the 

difference between the initial fields and a replica flipped along the odd symmetry axis of the mode. The 

round-trip contribution is instead even, due to the aforementioned dependence on the square of the field, 

and hence is obtained summing instead of subtracting. 

We empirically find that the PiFM displays the round-trip contribution of the fields very clearly, as 

shown in the main paper. However, if the polarization of the incident light is aligned to the dipole 

antenna, a slight asymmetry can be seen, as evident in fig. S3. This suggests an interference effect 

between round-trip and direct coupling, showing that also the direct coupling can affect the PiFM.  

 

 

fig. S2. Possible light paths and coupling coefficients. (A) Photon paths as in Fig. 3 in main paper. (B) 

Graphical representation of the coupling coefficients 𝐴𝑖𝑛𝑐→𝑡𝑖𝑝 , 𝐴𝑡𝑖𝑝→𝑅 and 𝐴𝑖𝑛𝑐→𝑅. 

 

 



 

fig. S3. Additional PiFM image of the dipole antenna. PiFM is performed at 1402 cm-1, with the 

incident field polarized along the antenna. 

 

section S4. Additional measurements 

This section provides additional measurements performed on the h-BN nano-discs and antennas. 

Figure S4 shows that resonances are also visible in the RS1 band in these nanoparticles. Interestingly, 

because the propagating polaritons in the RS1 band have negative phase velocity, the smaller particles 

resonate at a lower photon frequency (fig. S4A-C), and higher order modes appear at lower frequencies 

(fig. S4D, E).  



 

fig. S4. Polaritons in discs and ellipses in the RS1 band. (A) Frequency slices of a hyperspectral scan 

taken on an array of discs in the RS1 band. Because guided modes in h-BN have a negative effective 

index in the RS1 band, smaller discs resonate at lower frequencies, which is the opposite of the usual 

behavior of polaritons. Disc diameters are 1630, 1120, 920, 730, 490, 400 and 290 nm. (B) Topography 

for the discs in A. (C) Spectra taken at the center of each disc. The PiFM signal is much stronger for 

smaller resonators, in agreement with the fact that PiFM signal is proportional to the gradient of the 

optical force, which is much larger in smaller structures. (D) The negative effective index also causes 

higher order modes in the nanoantennas to appear at lower frequencies. (E) Topography of the particles 

and the spectrum in two different positions. 

 

Movies S1 to S4 show the full hyperspectral PiFM characterization of the nanoparticles and nano-

antennas. Each frame of the movie corresponds to a frequency (indicated in the title of the frame above 

the image). More specifically: 

 movie S1. Hyperspectral PiFM for different wavelengths in the RS1 band. Is an 

overview of all the fabricated nanostructures for different wavelengths in the RS1 band 

 movie S2. Hyperspectral PiFM for different wavelengths in the RS2 band. Is an 

overview of all the fabricated nanostructures for different wavelengths in the RS2 band 

 movie S3. Zoom-in hyperspectral PiFM for different wavelengths in the RS1 band. Is 

a zoom-in on the dipole antennas and smallest nanoparticles for different wavelengths in the RS1 band 



 movie S4. ). Zoom-in hyperspectral PiFM for different wavelengths in the RS2 band. 
is a zoom-in on the dipole antennas and smallest nanoparticles for different wavelengths in the RS2 band 

Figure S5 shows a comparison of s-SNOM optical images and PiFM images taken on the same setup, 

with the same illumination conditions. This was possible by implementing PiFM on the Neaspec setup via 

modulation of the CW QCL laser. It can be seen that the PiFM signal is very similar with respect to the 

amplitude of the second harmonic of the optical fields, demonstrating the common origin of the observed 

polariton images. 

 

 
fig. S5. Comparison of PiFM and s-SNOM on the same setup (Neaspec). (A) PiFM. (B) s-SNOM 

using the second harmonic, amplitude is plotted. Both measures have been performed at 1410 cm-1. 

 

Figure S6 shows the resonances in a disc that has been moved with respect to its initial position, 

demonstrating that the resonances are supported by the h-BN disc itself. The resonances are the same in 

an identical disc still in its original position. 

Finally, fig. S7 shows additional measurement performed on the nanoparticles using PiFM with 

monochromatic excitation (while the images shown in the main paper are hyperspectral). 



 

fig. S6. Resonance in a disc shifted from its original position. (A) Topography. The original position of 

the disc is still visible due to the fact that during fabrication the SiO2 substrate is partially etched outside 

of the resist mask, leaving a pedestal under the disc. The moved disc can be used to determine the actual 

thickness of h-BN. (B) Resonances imaged with s-SNOM (1455 cm-1) using the second harmonic. 

 

 

fig. S7. Monochromatic PiFM images. (A-C) Single nanoparticles in the RS1 band. (D) Single 

nanoparticle in the RS2 band. (E-J) Overview of several nanoparticles in the RS1 band. (K, L) Overview 

of several nanoparticles in the RS2 band, with the first two dipole modes. 

 

 



section S5. Numerical simulations of Purcell factors 

Purcell factors are computed directly from the power radiated by a dipole source, and are shown in tables 

S1 and S2: 

table S1. Purcell factors for nanodiscs. Numerical calculations of Purcell factors FP for 50 nm thick 

nano-discs with variable diameters. The factors have been computed 50 nm away from the nano-disc 

edge. 

 

Radius Resonant λ0 FP 

290 nm 6.77 um 12000 

400 nm 6.85 um 8000 

490 nm 6.90 um 6800 

730 nm 7.02 um 3800 

table S2. Purcell factors for nanoantennas. Numerical calculations of Purcell factors FP for the dipole 

nanoantenna presented in the paper, for variable gap sizes. The factors have been computed at the center 

of the antenna gap. 

 

Gap Resonant λ0 FP 

150 nm 7.10 um 4000 

100 nm 7.11 um 10000 

50 nm 7.12 um 80000 

 


