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S1. SAMPLE PREPARATION

The commercially available YIG samples are grown
by liquid-phase epitaxy on a (111)-oriented gallium
gadolinum garnet substrate to a YIG thickness of d2 =
1 µm. Each sample is cut to lateral dimensions of
(6× 5) mm2 and is cleaned with Piranha etch and subse-
quently annealed in oxygen at 500 ◦C for 40 min [? ]. For
the first set of samples a thin Co film is deposited onto
the YIG film in-situ via electron beam evaporation with-
out breaking vacuum. These samples have thicknesses of
d1 = 35 nm and d1 = 50 nm (samples YIG/Co(35) and
YIG/Co(50), respectively). For a second set of samples a
Cu layer with a thickness of ds = 5 nm is evaporated on
the YIG before a Co film with a thickness of d1 = 50 nm
is grown on top of it (YIG/Cu(5)/Co(50)). Finally, a
control sample is prepared, where a ds = 1.5 nm thick alu-
minum (Al) film is sputtered on the YIG with subsequent
oxidation. A Co film with a thickness of d1 = 50 nm is
subsequently deposited on top of the insulating AlOx via
electron beam evaporation (YIG/AlOx(1.5)/Co(50)). All
samples are capped with a 2.5 nm thick layer of AlOx to
prevent oxidation of the Co layer.

S2. EXPERIMENTAL SETUP

The dynamic magnetization properties are measured us-
ing a vector network analyzer (VNA)-based broadband fer-
romagnetic resonance setup at room temperature. Fig. S2
shows a sketch of the measurement setup. The YIG/Co
samples are placed on a coplanar waveguide (CPW) with
the Co side down. The center conductor of the CPW has
a width of w = 300 µm. The CPW is positioned between
the pole shoes of an electromagnet, where magnetic fields
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of up to 3 T can be applied. The CPW is connected to
ports 1 and 2 (P1 and P2, respectively) of the VNA and
the complex-valued transmission of a microwave current
jrf is measured in a frequency range between f = 1 GHz
and f = 26.5 GHz as a function of the applied magnetic
field for a fixed microwave power of 0 dBm. When the
applied frequency f matches the resonance condition for
a given field H, microwave power is absorbed, which re-
sults in a precession of the samples magnetization. As
the transmission signal of the CPW is strongly frequency
dependent, we do not show the raw frequency spectra in
the main text, but the field-derivative of S21 as shown in
Ref. [? ] and S3.
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FIG. S2. Sketch of the measurement setup. The YIG/Co
samples are positioned with the Co-side down onto the center
conductor of the CPW.
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S3. DERIVATIVE DIVIDE - EXPERIMENT
AND SIMULATIONS

The measured transmission of the vector network ana-
lyzer is given by:

S21(H) = ∆S21(H)S0
21 + S0

21. (S3.1)

Here, S0
21 is the field-independent background transmis-

sion. Note that a perfect background transmission is
achieved for S0

21 = 1. The measurement signal is given
by [? ]:

∆S21(H) = −iωL0(H)
2Z0

, (S3.2)

where L0 is the inductance of the sample and Z0 = 50 Ω is
the microwave circuit impedance. The sample inductance
is given by [? ]:

L0(H) = µ0ldtot

4w χ(H), (S3.3)

where l = 5 mm is the length of the sample, dtot ≈ 1 µm
is the total thickness of the sample, w = 300 µm is the
width of the center conductor, and χ(H) is the dynamic
magnetic susceptibility.

The background-corrected field derivative of our mea-
surement signal is now given by [? ]:

∂DS21/∂H = 1
S21(H)

S21(H + δH)− S21(H − δH)
δH

,

(S3.4)
where δH is a constant field step in our measurement
of about 0.5 mT. Note that the differential quotient is
rescaled by the central value S21(H) which eliminates
background drift.

We simulate χ = χ1,xx, from which we calculate ∆S21
with Eq. (S3.2), where χ1,xx creates the x-component of
the dynamic magnetization in the limit of w > dtot. To
compare the simulation results to experimental data, we
use Eq. (S3.1) with S0

21 = 1 and then calculate ∂DS21/∂H
from Eq. (S3.3) which yields:

∂DS21/∂H = ∆S21(H + δH)−∆S21(H − δH)
(∆S21(H) + 1)δH

= dtotlµ0ω(χ1,xx(δH +H)− χ1,xx(H − δH))
δH(dtotlµ0ωχ1,xx(H) + 8iwZ0) .

(S3.5)

The susceptibility element χ1,xx is derived in S9.

S4. DETERMINATION OF MATERIAL
PARAMETERS

Fig. S4 (a) shows the extracted resonance fields as a
function of the frequency for the YIG/Co(35) sample us-
ing a fit of up to five superimposed Lorentzian resonances.
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FIG. S4. (a) Fitted raw data resonance fields and frequen-
cies of the YIG/Co(35) sample. (b) Isolated Co FMR line.
(c) Isolated YIG PSSWs.

The inset shows a magnification of the field and frequency
range marked with the dashed box, and we observe mul-
tiple avoided crossings. The frequency splitting geff is
determined using a fit of a coupled harmonic oscillator
model to the avoided crossings, as shown in [? ].

To obtain the material parameters of the Co layer, we
fit the pure Co FMR line which we get by deleting all
data points of avoided crossings and YIG PSSWs from
the data set, as shown in Fig. S4 (b). For the fit we use
the in-plane Kittel equation,

fi = µ0γi
2π

√
(H +Hex,i)(H +Hex,i +Ms,i) (S4.1)

which yields γ1/2π = 28.7(1) GHz/T and µ0Ms,1 =
1.91(2) T, where the number in brackets denotes the
error of the last digit. The fit is shown as a black line.

To obtain the material parameters of the YIG film, we
fit the pure YIG PSSWs, as shown in Fig. S4 (c). We
keep µ0Ms,2 = 0.18 T constant, as we otherwise get a
mutual dependence of Ms,2 and Hex,2 during the fit [?
]. A global fit, where γ1 in Eq. (S4.1) is a shared fit
parameter and Hex,i is fitted for each PSSW individually,
yields γ2/2π = 27.07(1) GHz/T. The fits are shown as
black lines.

The values of the YIG and the Co film agree very well
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FIG. S5. (a) Example frequency spectrum of the YIG/Co(50)
sample at µ0H = 0.02 T. (b) The extracted exchange fields
of the YIG/Co(50) sample are plotted as a function of the
PSSW mode number n.

with the literature values [? ? ? ? ] and they are thus
taken to be constant throughout for the data analysis.

S5. DETERMINATION OF THE EXCHANGE
STIFFNESS

In Fig. S5 (a), an example frequency spectrum is shown
for the YIG/Co(50) sample for a fixed field of µ0H =
0.02 T. Plotted is |∂DS21/∂H| versus applied microwave
frequency, and the plot corresponds to a cut along the
x-axis in Fig. 1 (a). The peak in |∂DS21/∂H| at 2 GHz is
attributed to the YIG FMR frequency. At about 6 GHz
we find a broad excitation of the Co FMR. Furthermore,
we resolve about 40 YIG PSSW resonances. Some of
the YIG PSSWs are labeled to guide the reader. In
comparison to Ref. [? ] we find a drastically increased
sensitivity for the YIG PSSWs. Furthermore, all PSSWs
are equally visible, not only the modes with an odd mode
number. This is expected for driving fields which are
strongly inhomogeneous, but cannot be explained with
the width of the used center conductor, which is much
larger than the YIG film thickness.

From the extracted resonance fields of each YIG mode,
we are able to determine the exchange fields, see S4.
For this we assume a fixed saturation magnetization of
µ0Ms,2 = 0.18 T [? ]. We then use the method proposed

in Ref. [? ] to determine the exchange stiffness Ds. In
Fig. S5 (b), the extracted exchange fields are shown as
a function of the mode number n. We see a quadratic
curvature (black) of the exchange field, which is fitted
using:

µ0Hex,2 = Ds,2

(
nπ

d2

)2
. (S5.1)

From the fit a value of Ds,2 = 5.25(2) × 10−17 T m2

is obtained, which is in very good agreement with pre-
viously reported values [? ? ]. Using the relation
Ai = Ds,iMs,i/2 we yield A2 = A = 3.76 pJ/m. Fur-
thermore, the quadratic increase of the exchange fields
with the mode number n and the extracted value of Ds,i
confirm our assumption that we indeed observe standing
spin-wave modes in the YIG film. Note that we only
expect minor interfacial corrections to for Hex,2(k) for
mixed boundary conditions.1

S6. TRANSMISSION SPECTRA YIG/Co(35)

Fig. S6 (a) shows the background-corrected field deriva-
tive of the transmission spectra for the YIG/Co(35) het-
erostructure. Again we observe the high and the low
frequency mode which correspond to the Co and YIG
FMR lines, respectively, together with the exchange mode.
The YIG PSSWs form avoided crossings with the Co
FMR line as shown in magnification (inset). The fre-
quency splitting has about the same size as found from
the YIG/Co(50) heterostructure and be simulated with
similar parameters. Here, we show that these parameters
are not unique. Fig. S6 (b) shows the simulation for the
YIG/Co(35) heterostructure using a negative field-like
torque and a ferromagnetic coupling, in contrast to the
simulations in the main text. This parameter set also
models the avoided crossings. However, the intensity
asymmetry of the avoided crossings is only reproduced
with the ferromagnetic coupling if the field-like torque is
negative, as shown in Fig. S6 (b). For more details, see
S10.

S7. CO LINEWIDTH EVOLUTION OF THE
YIG/AlOx(1.5)/Co(50) SAMPLE

In this section we analyze the linewidth evolution of
the YIG/AlOx/Co(50) sample and compare it to the
YIG/Co(50) sample to show that the magnetizations are
uncoupled. Even a weak coupling of the YIG and the Co

1 If we assume total pinning of the YIG magnetization at both
interfaces, we obtain a small deviation of 4 % to the extracted
value of Ds,2.
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FIG. S6. (a) Transmission spectra of the YIG/Co(35). (b) Simulation of the of the YIG/Co(35) sample using the inverted
field-like and exchange torques as in the main text for the YIG/Co(50) sample.

magnetizations should be visible in the linewidth evalua-
tions of the subsystems [? ? ], as the coupling opens ad-
ditional relaxation channels, which is reflected in the life-
times of the spin-wave resonances. In Fig. S7 the linewidth
evolution of the YIG/Co(50) sample is shown as a function
of the excitation frequency (blue symbols). We find for
f < 14 GHz a strong modulation of the linewidth. This
modulation goes along with the observation of avoided
crossings in Fig. 1 (a). However, in Fig. S7 also the Co
linewidth from the YIG/AlOx(1.5)/Co(50) sample (or-
ange symbols) is shown as a function of the excitation
frequency. For small frequencies we see a fast increase of
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FIG. S7. The linewidth evolution of the YIG/Co(50)
and YIG/AlOx(1.5)/Co(50) samples is shown as a func-
tion of the excitation frequency. The linewidth of the
YIG/AlOx(1.5)/Co(50) sample increases monotonically (or-
ange symbols), without any modulation. The blue symbols
show the linewidths of the YIG/Co(50) sample which shows
characteristic modulation for every coupled PSSW.

the linewidth which flattens out above f = 10 GHz. The
shape of this linewidth evolution can be understood with
Gilbert damping and two-magnon scattering processes,
which are expected for an in-plane measurement geome-
try [? ? ? ? ? ? ? ]. There are no additional features
that indicate any coupling of the YIG and the Co in the
YIG/AlOx(1.5)/Co(50) heterostructure. Hence, we can
rule out dynamic stray fields as the origin of the coupling.
From the YIG/AlOx(1.5)/Co(50) sample we extract a
Gilbert damping parameter α1 of the Co layer using the
Gilbert damping equation [? ]:

µ0∆Hi = µ0∆H0,i + 4παi
γi

f, (S7.1)

where ∆H1 is the Co linewidth and ∆H0,1 the inhomo-
geneous line broadening of the Co film. The fit is shown
as the black dashed line in Fig. S7 and we obtain an
intrinsic Gilbert damping of α1 = 0.0077 ± 0.0001 and
µ0∆H0,1 = (8± 1) mT. Hence, approximately half of the
linewidth of the Co resonance is due to the frequency
independent inhomogeneous line broadening. The YIG
damping can be estimated in a similar way from the cou-
pled YIG/Co(50) sample to be α2 = (7.2± 0.3)× 10−4,
which is in good agreement with previous reports [? ] .

S8. DYNAMIC SPIN TORQUE IN A
FM1|NM|FM2 HETEROSTRUCTURE

We write the following equations in terms of the mag-
netization density and magnetization current. We assume
a large applied field in the y-direction which aligns the
magnetization. The film lies in the x− y-plane, whereas
the film normal points along the z-direction (S2). We
also assume that the transverse magnetizations are small
and decouple from the charge and longitudinal magneti-



5

zation. It is convenient to write the equations of motion
in terms of complex numbers made up of the transverse
components. Thus we express the vector f = (fx, 1, fz)
as follow:

f⊥ = fz + ifx ↔
(

Re [f⊥]
Im [f⊥]

)
=
(
fz
fx

)
. (S8.1)

In this notation, the cross product operation (0, 1, 0) ×
(fx, 1, fz) = (fz, 0,−fx) can be represented as multiplica-
tion with the imaginary unit i

(ŷ × f)⊥ → −fx + ifz = i(fz + ifx) = if⊥. (S8.2)

In the following we drop the subscript ⊥ from the complex
representation of vectors (without serifs and upright) for
simplicity.

We consider a ferromagnet
∣∣normal metal

∣∣ferromagnet
(FM1

∣∣NM
∣∣FM2) heterostructure, where the spacer layer

ds is thick compared to its mean free path but thin com-
pared to the spin diffusion length. The first assumption
allows us to use the drift-diffusion approach to treat the
transport. The second assumption allows us to neglect
spin-flip scattering in the spacer layer, in which case the
spin accumulation varies linearly across the spacer layer.
In this case the transverse spin current density j = 2eQ/~
(in units of V, the traditional spin current density is given
by Q) in the spacer layer can be written as follows:

j(z) = −D∇µ(z)
= −D∇(µ0 + µ′z)
= −Dµ′. (S8.3)

Here, µ(z) = (µ↑ − µ↓)/e is the spin accumulation in the
spacer (units of V), also written as a complex number;
and D = σNM (units of 1/Ω m), where σNM is the bulk
conductivity of the normal metal. Note that we work
with spin accumulation rather than spin density; this
gives the constant D units of 1/Ω m rather than m2/s. In
the second line we have used a linear expansion of the
spin accumulation, where µ′ = ∂µ/∂z. We find that the
spatially-constant spin current density is proportional to
the gradient of the spin accumulation.

We assume the spacer layer has length ds, running from
z = −ds/2 to z = ds/2 (Without loss of generality, we
have shifted here the origin of the coordinate system to the
center of the spacer layer, in contrast to the other sections).
For the boundary conditions at the first interface (z =
−ds/2), we have

−Dµ′ = j(−ds/2)

= −G1µ+ ~
e

G1iṁ1

= −G1(µ0 − µ′ds/2) + ~
e

G1iṁ1. (S8.4)

Here, G1 is the complex spin mixing conductance of the
first interface (units of 1/Ω m2). The top line gives the
spin current in the spacer layer and the second line is

the boundary condition from magnetoelectronic circuit
theory with the second term the pumped spin current. In
the second line, we have used M1×Ṁ1 ≈ ŷ×Ṁ1 → iṁ1
The boundary condition at the other interface (z = ds/2)
is the same except that the signs change because the
direction of the interface normal changes:

j(ds/2) = −Dµ′

= G2(µ0 + µ′ds/2)− ~
e

G2iṁ2.
(S8.5)

The boundary conditions then give us four equations in
four unknowns (µ0z, µ0x µ

′
z, µ′x), or two complex equa-

tions Eq. (S8.4) and Eq. (S8.5) in two complex unknowns
(µ0, µ′). We find

µ0 = i~
e

2D(G1ṁ1 + G2ṁ2) + dsG1G2(ṁ1 + ṁ2)
2(D(G1 + G2) + dsG1G2) ,

µ′ = − iG1G2~(ṁ1 − ṁ2)
e(D(G1 + G2) + dsG1G2) ,

(S8.6)

from which we can derive the spin current

j(−ds/2) = −i~
e

G(ṁ1 − ṁ2). (S8.7)

Here we have defined an effective mixing conductance
that describes the coupled system:

G = G1G2

G1 + G2 + G1G2ds/D
≈ G1G2

G1 + G2
, (S8.8)

where we have used the small ds limit in the second step
in the denominator, as the conductance of a thin Cu layer
is much greater than either mixing conductance (the Cu
interlayer is much thinner than the spin-diffusion length
of Cu). Note that in this limit the amplitudes of the spin
currents persist, when we remove the Cu layer. However,
in this case the exchange coupling starts to play a major
role.

In the absence of spin-orbit coupling, the spin torque
exerted on some region equals the difference between
the spin currents at the boundaries of that region. The
transverse spin current just inside the ferromagnets vanish
due to dephasing, i.e., j(−ds/2 − ε) = 0 and j(ds/2 +
ε) = 0. So, the spin torque, τ1, also a complex number
representing the two transverse components, at the first
interface is given by

τ1 =∆j
=j(−ds/2 + ε)− j(−ds/2− ε)
=j(−ds/2 + ε),

(S8.9)

where the x and z components are extracted according
to the prescription given above:

τ1,z = Re[j], (S8.10)
τ1,x = Im[j]. (S8.11)

Since the interface normal flips between the two interfaces,
the torques on the two magnetizations are equal and
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opposite (i.e., τ1 = −τ2). Note that here the torques have
the same units as the normalized spin current density.

We now want to show how the spin torques are included
in the Landau-Lifshitz-Gilbert equation. Assuming a time
dependence of the magnetization

mi = (mi,z,mi,x) exp (−iωt), (S8.12)

the spin torque on the first ferromagnet is given by

τ1 =− i~
e

G(−iω)(m1 −m2)

=− ω~
e

G(m1 −m2),
(S8.13)

and similarly the spin torque on the second ferromagnet

is given by

τ2 = ω
~
e

G(m1 −m2) = −τ1. (S8.14)

Hence, the torques depend on the real and imaginary parts
of the effective mixing conductance G. Unfortunately,
extracting the mixing conductances for each interface
is impossible unless one mixing conductance is already
known.

In the following we show how the torques can be in-
troduced to the LLG. After a complex multiplication we
obtain from Eq. (S8.13) and Eq. (S8.14):

τ1,z = Re[τ1] = −ω~
e

(
Re[G]Re[m1 −m2]− Im[G]Im[m1 −m2]

)
= −ω

(
τD(m1,z −m2,z)− τF(m1,x −m2,x)

)
(S8.15)

τ1,x = Im[τ1] = −ω~
e

(
Im[G]Re[m1 −m2] + Re[G]Im[m1 −m2]

)
= −ω

(
τF(m1,z −m2,z) + τD(m1,x −m2,x)

)
, (S8.16)

and analogously

τ2,z = Re[τ2] = ω
(
τD(m1,z −m2,z)− τF(m1,x −m2,x)

)
(S8.17)

τ2,x = Im[τ2] = ω
(
τF(m1,z −m2,z) + τD(m1,x −m2,x)

)
, (S8.18)

where we have defined the torque strengths (units of
A s/m2) as

τD =~
e

Re[G], (S8.19)

τF =~
e

Im[G]. (S8.20)

Note that multiplying a torque strength (τD/F) by the time
derivative of a magnetization unit vector gives a torque
in units of A/m2. The torque on the second interface (τ2)
is obtained in a similar manner. The expressions for both
torques can be written in matrix notation as follows:

τ1,zτ1,x
τ2,z
τ2,x

 = −ω

 τD −τF −τD τF
τF τD −τF −τD
−τD τF τD −τF
−τF −τD τF τD


m1,z
m1,x
m2,z
m2,x

 .

(S8.21)
Here the torques still have units of charge current density.
To convert the torque strengths into a form consistent

with the LLG equations, they must be multiplied by

− ~γi
ediMs,i

, (S8.22)

where i ∈ [1, 2] denotes the material, γi is the gyromag-
netic ratio, Ms,i is the saturation magnetization, and di
is the magnetic film thickness.

S9. THE INTERFACIAL SPIN-TORQUE MODEL

Here, we derive a model for the dynamic mode coupling
at the YIG/Co interface. For this we use a macrospin
approximation for the Co magnetization (M1), as we only
consider the first cobalt mode. However, we assume that
the unit vector of YIG magnetization direction (M2(z))
varies spatially. In section S8, a real-valued two-vector was
represented as a single complex number. Here, we adopt
a notation of using lower case bold letters to indicate
the transverse components. In addition, to capture the
phases of the precessing moments, we allow these vectors
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to be complex with the understanding that the real part
should be taken of a results to get physical quantities.

As in the main text, upper case bold characters indicate
three-dimensional vectors.

In the limit of small transverse magnetization, the energy of the coupled heterostructure is given by:

E =
∫ d2

0
dz

[
A (∂zm2)2 + µ0HMs,2

2 m2 ·m2 +
µ0M

2
s,2

2 m2
2,z

]
+ µ0HMs,1d1

2 m1 ·m1 +
µ0M

2
s,1d1

2 m2
1,z + J(m1 −m2(d2))2.

(S9.1)

Here, the integrand describes the energy contribution of the YIG film. All variable definitions are given in the main
text.

We obtain the effective field of the Co by using the magnetic energy which is normalized on the Co thickness and
saturation magnetization: Heff,1 = −∇E/(Ms,1d1). We can hence write down the linearized Landau-Lifshitz-Gilbert
equation for the Co film:

ṁ1 =− γ1ŷ ×
[
− µ0Hm1 −

α1

γ1
ṁ1 − µ0Ms,1M1,zẑ −

J

d1Ms,1
(m1 −m2(d2)) + µ0h

]
− ~γ1

ed1Ms,1
[(τF − τDŷ×)(ṁ1 − ṁ2(d2))] .

(S9.2)

Here we have used that the static magnetization lies along in the film plane, parallel to the external magnetic field
along the y-direction. Analogously, we derive the equation of motion for the YIG away from the interface:

ṁ2 =− γ2ŷ×
[
− µ0Hm2 −

α2

γ2
ṁ2 − µ0Ms,2m2,zẑ + 2A

Ms,2
∂2
zm2 + µ0h

]
, (S9.3)

where the definitions of the variables is analogous to the Co variables, except of the index 2 instead of 1. The coupling
terms will be treated as a boundary condition.

A. Determination of the Eigenvectors

We know that the magnetization in the YIG is a superposition of the eigenmodes in the undisturbed film. In order
to determine those, we start by rewriting Eq. (S9.3) in a notation of the transverse magnetization. By using the ansatz
for the transverse magnetization components

m2 = exp(ikz) exp(−iωt)
(
m2,z
m2,x

)
, (S9.4)

we obtain a system of equations including the YIG susceptibility χ̃−1
2 , which describes the response of the transverse

YIG magnetization perpendicular to external magnetic fields:

0 =

 −iω γ2

(
2Ak2

Ms,2
+ µ0H

)
− iα2ω

γ2

(
− 2Ak2

Ms,2
− µ0H − µ0Ms,2

)
+ iα2ω −iω


︸ ︷︷ ︸

χ̃−1
2

(
m2,z
m2,x

)
. (S9.5)

The system of equations is solved for det χ̃−1
2 = 0 by the wavevectors:

k = 1
2

√√√√Ms,2

(
2iα2ω − γ2µ0(2H +Ms,2) +

√
γ2

2µ
2
0M

2
s,2 + 4ω2

)
Aγ2

, (S9.6)

κ = 1
2

√√√√
−
Ms,2

(
−2iα2ω + γ2µ0(2H +Ms,2) +

√
γ2

2µ
2
0M

2
s,2 + 4ω2

)
Aγ2

. (S9.7)
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The wavevector k describes an harmonic oscillation of the magnetization along the z-direction. The wavevector κ on
the other side describes an evanescent behavior of the YIG magnetization, with a decay length in the order of 10 nm.
We now use the obtained wavevectors in Eq. (S9.5) in order to derive the eigenvectors of the YIG magnetization. For
the wavevectors k and κ we obtain

k : 0 =

 −iω 1
2

(
−Ms,2γ2µ0 +

√
M2

s,2γ
2
2µ

2
0 + 4ω2

)
1
2

(
−Ms,2γ2µ0 −

√
M2

s,2γ
2
2µ

2
0 + 4ω2

)
−iω

(m2,z
m2,x

)
, (S9.8)

κ : 0 =

 −iω 1
2

(
−Ms,2γ2µ0 −

√
M2

s,2γ
2
2µ

2
0 + 4ω2

)
1
2

(
−Ms,2γ2µ0 +

√
M2

s,2γ
2
2µ

2
0 + 4ω2

)
−iω

(m2,z
m2,x

)
. (S9.9)

We now take the zero eigenvalue of both systems, as this
refers to our resonance condition det χ̃−1

2 = 0. We find

k : m2+ =
(
i(−
√
γ2

2µ
2
0M

2
s,2+4ω2+γ2µ0Ms,2)

2ω
1

)
, (S9.10)

κ : m2− =
(
i(
√
γ2

2µ
2
0M

2
s,2+4ω2+γ2µ0Ms,2)

2ω
1

)
. (S9.11)

B. Setup of the Boundary Conditions

We model the YIG/Co interface as an infinitesimally
thin surface layer. While the magnetization is not pinned
at the interface, the infinitesimally thin layer has no vol-
ume and hence no angular momentum. As a consequence,
the total torque acting at the interface has to vanish [? ?
? ]:

0 =2Aŷ × ∂zm2(z)|z=d2 − J ŷ × (m1 −m2(d2))
+ (~/e)(τF − τDŷ×) (ṁ1 − ṁ2(d2)) .

(S9.12)

On the YIG/substrate interface we also set the torques
to be zero:

0 = 2Aŷ × ∂zm2(z)|z=0 (S9.13)

C. Solution of the Problem

The ansatz of the dynamic YIG magnetization m2 and
the dynamic Co magnetization m1 are

m2 = + c−m2− exp(−iωt) cos(κz)
+ c+m2+ exp(−iωt) cos(kz),

(S9.14)

and

m1 =
(
mz,1
mx,1

)
exp(−iωt). (S9.15)

In a first step we rewrite the boundary condition
Eq. (S9.12):

0 = + 2A(−c−κm2− sin(κz)− c+km2+ sin(kz))
− (~/e)τFŷ × (ic−m2−ω cos(κz) + ic+m2+ω cos(kz)− im1,0ω)
+ (~/e)τD(ic−m2−ω cos(κz) + ic+m2+ω cos(kz)− im1,0ω)
− J(−c−m2− cos(κz)− c+m2+ cos(kz) +m1,0)

(S9.16)

where we have used ŷ × (ŷ ×mi) = −mi in the first step. In the second step we have used Eq. (S9.14), and the fact
that the dynamic YIG magnetization must obey the boundary conditions for all times t. To solve for the coefficients
c±, we multiply the above equation with the complex conjugates of the YIG magnetization eigenvectors m∗2±, which
obey the special orthogonality relations m2∓m

∗
2± = 0. From the multiplication of m∗2+ we obtain:

0 = m∗2+
[
− 2Ac+km2+ sin(kz)
− (~/e)τFŷ × (ic−m2−ω cos(κz) + ic+m2+ω cos(kz)− im1,0ω)
+ (~/e)τD(ic+m2+ω cos(kz)− im1,0ω)
− J(−c+m2+ cos(kz) +m1,0)

]
.

(S9.17)
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From the multiplication of m∗2− we obtain:

0 = m∗2−
[
− 2Ac−κm2− sin(κz)
− (~/e)τFŷ × (ic−m2−ω cos(κz) + ic+m2+ω cos(kz)− im1,0ω)
+ (~/e)τD(ic−m2−ω cos(κz)− im1,0ω)
− J(−c−m2− cos(κz) +m1,0)

]
.

(S9.18)

We now can solve the system of equations consisting of Eq. (S9.17) and Eq. (S9.18) to obtain the complex coefficients
c± as a function of the four variables m1(ŷ ×m2±) and m2∓(ŷ ×m2±):

c± = ±1
c

[
2Aκ sin(dκ)(Jm1,0(ŷ ×m2∓)− i(~/e)ω(m1,0m2∓τF +m1,0(ŷ ×m2∓)τD))

+m1,0(ŷ ×m2∓) cos(dκ)
(
(~/e)2ω2 (τ2

D + τ2
F
)

+ 2i(~/e)JτDω − J2) ] (S9.19)

where the prefactor c is given by:

c = cos(dk)
[
2Aκ sin(dκ)(Jm2+(ŷ ×m2−) + i(~/e)ω(m2−(ŷ ×m2+)τD −m2−m2+τF))

+m2+(ŷ ×m2−) cos(dκ)
(
(~/e)2ω2 (τ2

D + τ2
F
)

+ 2i(~/e)JτDω − J2)]
+ 2Ak sin(dk)

[
− 2Aκm2+(ŷ ×m2−) sin(dκ) + cos(dκ)(Jm2+(ŷ ×m2−)

+ i(~/e)ω(m2−m2+τF +m2−(ŷ ×m2+)τD))
]
.

(S9.20)

The complex coefficients c± now specify the YIG solution and contain the influence of the Co layer. Using the
eigenvectors Eq. (S9.11) and Eq. (S9.10) together with the wavevectors Eq. (S9.6) and Eq. (S9.7) and the complex
coefficients Eq. (S9.20) and Eq. (S9.19) in the ansatz Eq. (S9.14) yields the spatially-dependent YIG magnetization.
Using subsequently the ansatz Eq. (S9.14) and Eq. (S9.15) in the modified LLG Eq. (S9.2) allows to extract the Co
susceptibility χ̃1 by sorting the resulting expression by the transverse Co magnetization components (m1,z,m1,x). We
find

χ̃−1
1 =

(
χ−1

1,zz χ−1
1,xz

χ−1
1,zx χ−1

1,xx

)
⇐⇒ χ̃1 = 1

χ−1
1,zzχ

−1
1,xx − χ

−1
1,zxχ

−1
1,xz

(
χ−1

1,xx −χ−1
1,zx

−χ−1
1,xz χ−1

1,zz

)
(S9.21)

where the entries of the inverse susceptibility are:

χ−1
1,zz = iα1ω

γ1
+m2(d2)−i(~/e)τDω + i(~/e)τFω + J

d1Ms,1
+ i(~/e)τDω − J

d1Ms,1
− µ0(H +Ms,1), (S9.22)

χ−1
1,zx =− iω

γ1
+m2(d2)−i(~/e)τDω + i(~/e)τFω + J

d1Ms,1
− i(~/e)τFω

d1Ms,1
, (S9.23)

χ−1
1,xz = iω

γ1
+m2(d2)−i(~/e)τDω − i(~/e)τFω + J

d1Ms,1
+ i(~/e)τFω

d1Ms,1
, (S9.24)

χ−1
1,xx = iα1ω

γ1
+m2(d2)−i(~/e)τDω − i(~/e)τFω + J

d1Ms,1
+ i(~/e)τDω − J

d1Ms,1
− µ0H. (S9.25)

However, an analytical solution of the resonance condition
det χ̃−1

1 = 0 is not possible. A numerical solution has
been used to compute the results presented in the main

text using

χ1,xx =
χ−1

1,zz

χ−1
1,zzχ

−1
1,xx − χ

−1
1,zxχ

−1
1,xz

. (S9.26)

Note that we can obtain analytical resonance conditions
in the macrospin approximation. For this we have to
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replace the spatially-dependent YIG magnetization by an
uniform magnetization m2(d2)→m2 in Eq. (S9.2).

S10. SIMULATION OF THE EXCHANGE MODE

Fig. S10 (a) shows the color map for a pure antiferro-
magnetic exchange coupling between the YIG and Co
layers. We find an exchange mode at higher frequencies
than the Co resonance and symmetric avoided crossings.

In Fig. S10 (b) we show the color map for a field-like
torque which is substantially smaller than the damping-
like torque. We observe a dominant mode-locking of the
YIG and Co resonances. In metallic systems [? ] we
expect that the torques are primarily damping-like, as
the real part of the spin mixing conductance exceeds the
imaginary part. However, for insulating interfaces the
amplitudes of the torques are less clear. Here, we find
that our experiments are not reproduced with a dominant
damping-like torque.

In Fig. S10 (c) we plot the color map for τF =
−30 A s/m2, τD = 15 A s/m2 and J = 0. Note
that this configuration refers to the situation of the
YIG/Cu(5)/Co(50) sample from Fig. 1 (b),(e) with an
inverted field-like torque. We find that the intensity
symmetry of the avoided crossings is now also inverted
compared to the experimental data (inset). Therefore, we
know the sign of the field-like torque is positive for the
YIG/Cu(5)/Co(50) samples.

In Fig. S10 (d) we show the color map for the
YIG/Co(50) sample for a positive field-like torque and a
strong antiferromagnetic coupling. The avoided crossings
are symmetric, as the influence of the field-like torque
is much smaller than the exchange torque. When we
compare Fig. S6 (b), Fig. 3 (a), and Fig. S10 (d), we find
that all used parameter combinations produce avoided
crossings, with slightly different intensity modifications in
the dispersion branches of the coupled systems. Due to
the similar effects of the exchange torques and field-like
torques, it is challenging to determine the signs of these
torques for the YIG/Co samples without an interlayer.
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FIG. S10. (a) An exchange coupling can reproduce the exchange mode in the experiment. (b) A dominant damping-like torque
results in a mode-locking of the YIG and Co resonances. (c) The sign of the field-like torques determines the asymmetry of
the color code. We require a positive field-like torque to simulate the YIG/Cu(5)/Co(50) experiments, cf. Fig. 3 (b). (d) A
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