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Abstract

Brownian motion of water molecules provides an essential length scale, the diffusion length, commensurate with cell dimensions
in biological tissues. Measuring the diffusion coefficient as a function of diffusion time makes in vivo diffusion MRI uniquely
sensitive to the cellular features about three orders of magnitude below imaging resolution. However, there is a longstanding
debate, regarding which contribution — intra- or extra-cellular — is more relevant in the overall time-dependence of the MRI-
derived diffusion metrics. Here we resolve this debate in the human brain white matter. By varying not just the diffusion time, but
also the gradient pulse duration of a standard diffusion MRI sequence, we identify a functional form of the measured time-dependent
diffusion coefficient transverse to white matter tracts in 10 healthy volunteers. This specific functional form is shown to originate
from the extra-axonal space, and provides estimates of the fiber packing correlation length for axons in a bundle. Our results offer
a metric for the outer axonal diameter, a promising candidate marker for demyelination in neurodegenerative diseases. From the
methodological perspective, our analysis demonstrates how competing models, which describe different physics yet interpolate
standard measurements equally well, can be distinguished based on their prediction for an independent “orthogonal” measurement.
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1. Introduction

The ultimate promise of diffusion MRI (dMRI) (Jones, 2011),
a technique that maps the diffusion propagator in each imag-
ing voxel, is to become sensitive and specific to tissue features
at the cellular level, orders of magnitude below the nominal
imaging resolution. The foundation for this sensitivity is pro-
vided by the diffusion length, i.e. the rms displacement of wa-
ter molecules, being of the order of a few µm, which is com-
mensurate with cellular dimensions. By controlling the diffu-
sion time, one can probe the time-dependent diffusive dynamics
(Tanner, 1979; Mitra et al., 1992; Assaf and Basser, 2005; As-
saf et al., 2008; Alexander et al., 2010; Novikov et al., 2014;
Burcaw et al., 2015; Fieremans et al., 2016; Reynaud et al.,
2016), and quantify the relevant cellular-level tissue structure
indirectly, using biophysical modeling (Yablonskiy and Suk-
stanskii, 2010; Kiselev, 2017; Novikov et al., 2016a).

In most tissues, and in the human brain in particular, the
dMRI signal generally originates from at least two “compart-
ments” — intra- and extra-cellular spaces (Ackerman and Neil,
2010). Their distinct microgeometries provide different com-
peting contributions to the overall non-Gaussian diffusion(Assaf
and Basser, 2005; Alexander et al., 2010; Assaf et al., 2008;
Fieremans et al., 2016; Burcaw et al., 2015). For any microstruc-
tural interpretation of MRI experiments, it is crucial to deter-
mine which contribution dominates at clinically feasible diffu-
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sion times, and which associated µm-level length scale can be
in principle quantified.

Here we consider diffusion in human white matter (WM),
transverse to major WM tracts. For the past decade, the focus
of microstructural modeling has been on the intra-axonal com-
partment, where the nontrivial (fully restricted) diffusion was
thereby related to the inner axonal diameters (Assaf and Basser,
2005; Assaf et al., 2008; Alexander et al., 2010), whereas the
extra-axonal diffusion has been deemed trivial (Gaussian). This
framework has served as the basis for a number of techniques
(CHARMED (Assaf and Basser, 2005), AxCaliber (Assaf et al.,
2008), ActiveAx (Alexander et al., 2010)) for axonal diameter
mapping. Their outcomes were subsequently debated due to
a notable (Innocenti et al., 2015), sometimes by an order-of-
magnitude (Alexander et al., 2010), overestimation of human
inner axonal diameters relative to their histological values of
∼ 1µm (Aboitiz et al., 1992; Caminiti et al., 2009; Liewald
et al., 2014; Tang and Nyengaard, 1997; Tang et al., 1997).
This recently prompted an alternative suggestion (Fieremans
et al., 2016; Burcaw et al., 2015) of the dominant role of non-
Gaussian, time-dependent diffusion in the extra-axonal space,
with the role of the intra-axonal space deemed trivial (negligible
radial signal attenuation due to thin axons). Relevant parame-
ters for the extra-axonal picture characterize the packing geom-
etry in a bundle; e.g., the packing correlation length should give
a measure of outer axonal diameters (Fieremans et al., 2016;
Burcaw et al., 2015).

Since both alternatives have compelling arguments behind
them and “fit the data well” (Alexander et al., 2010; Assaf et al.,
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2008; Fieremans et al., 2016; Burcaw et al., 2015), model selec-
tion blindly based on fit quality is unreliable. This is a common
challenge of model selection. To address it, here we (i) focus on
the functional form of the competing models originating from
their different physical assumptions, and (ii) use the fact that a
true model would not just interpolate the standard measurement
(varying the diffusion time) where both models perform well,
but would also predict the outcome of an independent “orthog-
onal” measurement. For the latter, we vary the gradient pulse
width — a technique applied earlier for parameter estimation
of diffusion in fully restricted geometry (Åslund and Topgaard,
2009), but not previously used for the model selection.

Technically, we consider the dependence of the apparent
diffusion coefficientD(∆, δ), measured perpendicular to major
axonal tracts, both on the diffusion time ∆, and on the diffusion
gradient pulse width δ. The quantity D(∆, δ) is defined as the
lowest-order cumulant term (Kiselev, 2010; Jensen et al., 2005;
Basser et al., 1994) of the dMRI signal,

lnS(∆, δ; g) = −bD(∆, δ) +O(b2) , b = g2δ2(∆− δ/3) ,
(1)

where g ≡ γG is the applied Larmor frequency gradient, de-
fined via the proton gyromagnetic ratio γ and diffusion gradi-
ent strength G, and b is the conventional diffusion weighting
(Jones, 2011). The overall D = finDin + fexDex is a weighted
average of the apparent intra- and extra-axonal diffusivities,
with their T2-weighted fractions normalized to fin + fex = 1
(we exclude the contribution of myelin water due to its short
T2 ∼ 10 ms (Mackay et al., 1994; Whittall et al., 1997) as com-
pared with our echo time). Remarkably, the functional forms of
Din(∆, δ) and Dex(∆, δ) will prove to be sufficiently distinct,
enabling us to identify which one dominates.

In the limit δ → 0, D(∆, δ)|δ→0 → 〈x2(∆)〉/(2d∆) corre-
sponds to the genuine water diffusion coefficient in the d = 2-
dimensional plane transverse to the fibers (a weighted average
of the genuine compartment diffusivities). Finite-δ measure-
ment imposes a low-pass filter (Callaghan, 1991; Burcaw et al.,
2015), suppressing the high-frequency dynamics of molecu-
lar displacements x(∆); this filter effect is what will techni-
cally distinguish Din(∆, δ) and Dex(∆, δ). We will use the
∆-dependence to estimate parameters of both models, and then
determine which one predicts the “orthogonal” δ-dependence
best.

2. Methods

2.1. Theory

We first outline the two models for transverse diffusivity
D(∆, δ), paying special attention to their functional forms.

In the intra-axonal picture, all ∆- and δ-dependence of the
radial diffusivityD ≡ finDin(∆, δ)+fexD

ex
∞ comes fromDin,

D(∆, δ) ' D∞ +
c

δ(∆− δ/3)
, c =

7

48

finr̄
4

D0
(2)

based on Neuman’s solution (Neuman, 1974) for narrow imper-
meable cylinder of radius r (cf. Eq. (A.1) in Appendix A), with

the free (axoplasmic) diffusion coefficientD0; for a distribution
of axons, the effective inner axonal radius r̄ is volume weighted,
r̄4 ≡ 〈r6〉/〈r2〉 (Burcaw et al., 2015). Note that Eq. (2) de-
pends on two independent combinations of tissue parameters:
c, and the overall bulk diffusion coefficient D∞ = fexD

ex
∞ (in

the ∆→∞ limit); here Dex
∞ is the bulk diffusion coefficient of

the extra-axonal water. Typically, δ/3 � ∆; in this limit, the
∼ 1/∆ scaling in Eq. (2) is a consequence of a fully restricted
geometry. Less obvious, but crucial for our work, is the inverse
scaling with the pulse duration,D−D∞ ∼ 1/δ. It can be traced
to the intra-axonal diffusion attenuation − lnSin ∝ δ inside a
cylinder, being equivalent to the effective T ∗2 relaxation in the
diffusion-narrowing regime (Kiselev and Posse, 1998; Jensen
and Chandra, 2000; Sukstanskii and Yablonskiy, 2003, 2004;
Novikov and Kiselev, 2008) during the time δ when diffusion
gradients are on; the 1/δ scaling follows from factoring out the
b ∝ δ2-dependence, cf. Eq. (1).

In the extra-axonal picture, attenuation inside axons is ne-
glected, i.e. Sin → 1 and Din → 0, and all dependence of
D ≡ fexDex on δ and ∆ comes from that of Dex(∆, δ) (Bur-
caw et al., 2015; Fieremans et al., 2016):

D(∆, δ) ' D∞ + c′ ·
ln(∆/δ) + 3

2

∆− δ/3
, c′ = fexA . (3)

Eq. (3) is again characterized by two combinations of tissue
parameters: D∞ and c′, where D∞ has the same meaning as
above, while c′ is related to the “disorder strength”A character-
izing the random packing geometry of axons in the extra-axonal
space (Fieremans et al., 2016; Burcaw et al., 2015). Empiri-
cally, A ∝ (l⊥c )2 (Burcaw et al., 2015), where l⊥c is the fiber
packing correlation length, a length scale on which diffusion
is restricted in extra-axonal space. Here it is crucial that D
increases logarithmically with 1/δ, rather than linearly as in
Eq. (2). This nontrivial scaling originates from the long-time
tail (Novikov et al., 2014; Ernst et al., 1984; Burcaw et al.,
2015) of the instantaneous diffusion coefficientDex

inst(t) = 1
2d∂t〈x

2(t)〉
' Dex

∞ + A/t of the extra-axonal water, restricted by the two-
dimensional disordered axonal packing geometry; the gradient
pulse width δ provides short-time cutoff for the tail (Fieremans
et al., 2016; Burcaw et al., 2015), which can thereby be probed
with varying δ.

2.2. In vivo MRI

Diffusion MRI was performed on ten healthy subjects (4
males / 6 females, 24-44 years old), by using a 3T Siemens
Prisma scanner (Erlangen, Germany) with a 64-channel head
coil. The monopolar pulse-gradient spin-echo (PGSE) diffu-
sion tensor imaging (DTI) sequence provided by the vendor
(Siemens WIP 511E) was used to perform two different scans
for each subject. For each scan, we obtained 3 b = 0 images
(no diffusion weighted) and diffusion weighted images (DWI)
of b = 0.5 ms/µm2 along 30 diffusion gradient directions, with
an isotropic resolution of (2.7 mm)3 and an FOV of (221 mm)2.
The scanned brain volume is a slab of 15 slices, aligned parallel
to the anterior commissure (AC) to posterior commissure (PC)
line. The corpus callosum was in the middle of the slab, such
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that the entire corpus callosum was scanned (Fieremans et al.,
2016). The data for 5 volunteers (3 males / 2 females, 25-35
years old) was collected using following parameters. In scan
1, we varied ∆ = [26, 30, 40, 55, 70, 85, 100] ms and fixed
δ at 20 ms; in scan 2, we fixed ∆ at 75 ms and varied δ = [4,
5, 6.7, 10, 15, 25, 45] ms. All scans were performed with the
same TR/TE = 5000/150 ms. Total acquisition time is ∼ 50
min. In the main text, we will discuss in detail this data subset.
The data of 5 additional subjects with a different set of δ and ∆
timings, exhibiting similar outcomes, is shown and discussed in
Supplementary Information, Section III.

2.3. Image processing

Our image processing pipeline includes four steps: denois-
ing, Gibbs ringing elimination, eddy-current and motion cor-
rection, and diffusion tensor estimation.

For denoising, we identified and truncated noise-only prin-
ciple components by using the fact that principle component
analysis eigenvalues, arising from noise, obey the universal
Marchenko-Pastur distribution (Veraart et al., 2016a,c). To elim-
inate Gibbs ringing, we re-interpolated each denoised image by
sampling the ringing pattern at the zero-crossings of the sinc
function (Kellner et al., 2016). Then we used FSL eddy to cor-
rect eddy-current distortions and subject motions (Andersson
and Sotiropoulos, 2016). Finally, diffusion tensors were evalu-
ated via an unconstrained weighted linear least squares (WLLS)
method, where the weights were estimated from diffusion ten-
sor calculations based on an unweighted LLS method (Veraart
et al., 2013). The contribution of imaging gradients to b-value
is negligible since it is always less than 10−3 ms/µm2 in our
experiments.

If the diffusion data have SNR> 2, tensor estimations of
WLLS will not be biased by Rician noise (Veraart et al., 2013).
To calculate the SNR of b = 0 images, denoised signal was di-
vided by the estimated noise level of the noise map, obtained
from denoising method mentioned above (Veraart et al., 2016a).
In our b = 0 images, mean SNR of the WM was ≈ 18-22. Con-
sidering that WM’s D‖ ∼ 1.2-1.6 µm2/ms, D ∼ 0.5 µm2/ms
and b = 0.5 ms/µm2, SNR in DWIs was still much higher than
2, and thus WLLS gave us unbiased tensor estimations.

For each voxel, we calculated eigenvalues of the diffusion
tensor estimated via WLLS, sorted in the order λ1 ≥ λ2 ≥
λ3. Axial diffusivity, defined by D‖ ≡ λ1, estimates diffusion
parallel to axons. Similarly, radial diffusivity, defined by D ≡
(λ2 + λ3)/2, estimates diffusion transverse to axons. In this
way, we obtain maps of axial diffusivity, radial diffusivity, and
fractional anisotropy (FA) (Basser et al., 1994).

2.4. Region of Interest (ROI)

To automatically delineate WM ROIs, we registered each
subject’s mean FA map to FSL’s standard FA map in MNI 152
space with FMRIB’s linear image registration tool (FLIRT) and
non-linear registration tool (FNIRT) (Jenkinson and Smith, 2001;
Jenkinson et al., 2002; Andersson et al., 2007). The individ-
ual mean FA map is acquired by averaging all the FA maps
in different ∆ and δ in scans 1 and 2 for each subject. The

transformation matrix (FLIRT) and the warp (FNIRT) were re-
trieved to inversely transform the WM atlas ROIs from MNI
152 space to the individual subject space. In our study, we used
the Johns Hopkins University DTI-based WM atlas (Mori et al.,
2005), which was registered to MNI 152 space with FLIRT and
FNIRT before use. To suppress the cerebrospinal fluid (CSF)
signal contamination due to the long TE, we used an extended
CSF mask to exclude WM voxels close to CSF. The CSF mask
was segmented from a mean b = 0 image by FMRIB’s Auto-
mated Segmentation Tool (FAST) (Zhang et al., 2001), and its
edge was expanded by one voxel. One subject’s WM ROIs are
shown in Fig. 1c. In the scanned slab, we focused on the main
WM tracts including anterior corona radiata (ACR), superior
corona radiata (SCR), posterior corona radiata (PCR), posterior
limb of the internal capsule (PLIC), genu, midbody, and sple-
nium of the corpus callosum.

2.5. Data Analysis

Eigenvalues, axial and radial diffusivities were calculated
voxel by voxel and averaged over each ROI. To evaluate the
strength of the ∆-dependence described by intra- and extra-
axonal models, we assumed that the D in scan 1 is a linear
function of 1/(δ(∆− δ/3)) and (ln(∆/δ) + 3/2)/(∆− δ/3),
suggested by Eq. (2) and Eq. (3), and calculated the two mod-
els’ Pearson’s linear correlation coefficients R and P -values
with the null hypothesis of no correlation. If P < 0.05 in an
ROI, the null hypothesis is rejected, and the ∆-dependence is
non-trivial. In the ROIs with significant ∆-dependence, we fit
Eq. (2) and Eq. (3) to the scan 1 data and acquired parameters
shown in Table 1.

3. Results

In Fig. 1, we show the results for brain scans of five healthy
subjects with a monopolar PGSE DTI sequence. The mean val-
ues ofD were computed within each ROI in brain WM, Fig. 1c,
and averaged over five subjects.

To explicitly reveal the dependence of D on both ∆ and δ,
we performed 2 scans for each subject. In scan 1, we fixed δ =
20 ms, as it is typically done (Fieremans et al., 2016; De San-
tis et al., 2016; Barazany et al., 2009; Nilsson et al., 2009;
Horsfield et al., 1994; Stanisz et al., 1997; Bar-Shir and Cohen,
2008; Kunz et al., 2013), and varied ∆. Scan 1 embodies a stan-
dard t-dependent (t ≈ ∆) dMRI measurement D(t). In scan 2,
we fixed ∆ = 75 ms and varied δ instead. This δ-dependence
has not been comprehensively studied, and turns out to be quite
revealing.

Fig. 1a shows that both the intra- and extra-axonal mod-
els fit the “standard” scan 1 data well in each ROI. The esti-
mated P -value, R2, and fit parameters are shown in Table 1. A
naive way to select between the two models would be to use
the R2 goodness-of-fit parameter (since both models have the
same number of 2 degrees of freedom). However, while R2 is
generally closer to 1 for the extra-axonal model, we feel it is not
enough to use this noisy metric to unequivocally select Eq. (3).
For a physically more informed model selection, we now focus
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Intra-axonal model, Eq. (2) Extra-axonal model, Eq. (3)

ROI P R2 D∞ c 2r̄

(
fin
D0

) 1
4 η̄

(
fin
D0

) 1
4 2r̄|D0,fin

η̄|D0,fin
P R2 D∞ c′ l⊥c

√
fex

ACR 2.1e-3 0.871 0.603 (0.002) 6.31 (1.10) 5.13 1.73 7.26 (0.32) 2.45 1.5e-3 0.887 0.597 (0.003) 0.241 (0.041) 1.10 (0.09)
SCR 2.5e-4 0.945 0.523 (0.002) 9.08 (0.97) 5.62 1.90 7.95 (0.21) 2.68 1.7e-4 0.952 0.515 (0.002) 0.338 (0.033) 1.30 (0.06)
PCR 6.5e-4 0.919 0.592 (0.003) 12.4 (1.6) 6.08 2.05 8.60 (0.27) 2.90 2.9e-4 0.942 0.581 (0.003) 0.484 (0.050) 1.56 (0.08)
PLIC 7.0e-4 0.917 0.427 (0.002) 11.8 (1.5) 6.00 2.03 8.48 (0.27) 2.86 5.9e-4 0.922 0.419 (0.003) 0.427 (0.050) 1.46 (0.09)
Genu 0.60 - - - - - - - 0.65 - - - -
Midbody 0.24 - - - - - - - 0.31 - - - -
Splenium 1.2e-3 0.896 0.349 (0.004) 15.6 (2.6) 6.43 2.17 9.09 (0.38) 3.07 2.1e-3 0.873 0.337 (0.007) 0.560 (0.111) 1.67 (0.17)

Table 1: Estimated parameters from scan 1, based on intra-axonal model, Eq. (2), and extra-axonal model, Eq. (3). Intra-axonal model: Values of 2r̄ (fin/D0)1/4

and η̄ (fin/D0)1/4 are lower bounds of, respectively, the (volume-weighted) inner axonal diameter 2r̄ (cf. text below Eq. (2)), and of the axonal shrinkage η̄ (Fig. 2
and Eq. (A.2)) since, practically, fin/D0 < 1 ms/µm2. The 2r̄|D0,fin

and η̄|D0,fin
are calculated by using typical values of fin = 0.5 and D0 = 2µm2/ms.

Extra-axonal model: We used empirical estimate (Burcaw et al., 2015) A ≈ 0.2 (l⊥c )2, to obtain the combination l⊥c
√
fex from c′. This sets a lower bound

(Fieremans et al., 2016) on the fiber packing correlation length l⊥c because fex < 1; l⊥c provides an estimate for the outer axonal diameter. Standard deviations are
shown in the parenthesis. All parameters are in the corresponding units of µm and ms.

on the functional form of the δ-dependence, by using fit param-
eters (D∞ and c, and D∞ and c′, correspondingly, Table 1),
to predict scan 2 data. Fig. 1b shows that the parameter-free
predictions of the two models are very different, both quantita-
tively and qualitatively; the diffusivity for extra-axonal model,
Eq. (3), captures the systematic bend in the curves with respect
to 1/δ very well, while Eq. (2) for intra-axonal model increases
linearly with 1/δ and clearly deviates from experimental re-
sults. We emphasize that the prediction of scan 2 was per-
formed without any adjustable parameters, since tissue prop-
erties are found in scan 1, and the δ-dependence is calculated
based on Eq. (2) and Eq. (3). Hence, this prediction provides a
parameter-free test of the models involved.

Fig. 1 shows that the extra-axonal model demonstrates bet-
ter consistency between scans 1 and 2, indicating that the con-
tribution of extra-axonal water dominates the signal change.
We can also observe this by inspecting model parameter values.
Based on intra-axonal model, Eq. (2), measuring only the diffu-
sivity does not allow us to quantify the diameter 2r̄, but only the
combination of parameters, 2r̄(fin/D0)1/4, which can serve as
a lower bound of the inner diameters since (fin/D0)1/4 < 1
(see below and Table 1). Using fit parameters based on the
intra-axonal model (see Table 1, Eq. (2), and Appendix A, Wide
pulse limit in the GPA) and typical values of fin ≈ 0.5 and
D0 & 2µm2/ms (Novikov et al., 2016b; Veraart et al., 2016b),
the estimated inner axonal diameter 2r̄ ≈ 7.3 − 9.1µm, much
larger than histologically reported values≈ 1µm (Aboitiz et al.,
1992; Caminiti et al., 2009; Liewald et al., 2014; Tang and
Nyengaard, 1997; Tang et al., 1997).

Based on fit results of extra-axonal model (see Table 1,
Eq. (3), andA ≈ 0.2 (l⊥c )2 from ref. (Burcaw et al., 2015)), and
fex ≈ 0.5, we estimate the axonal packing correlation length
l⊥c ≈ 1.6 − 2.4µm. As typical values of the ratio of inner to
outer diameter (the g-ratio) range within 0.6 − 0.8 in central
nervous system (Chomiak and Hu, 2009; Stikov et al., 2015),
the outer axonal diameter ∼ 1µm/(g-ratio) ≈ 1.3 − 1.7µm,
close to estimates of the correlation length in our experiments.
Tang and Nyengaard (Tang and Nyengaard, 1997; Tang et al.,
1997) uniformly sampled the WM of one human brain hemi-
sphere and also reported the outer diameter of myelinated axons
of about 1.14 µm on average. The scale of the fiber packing cor-
relation length is biologically plausible, and could be a poten-
tial biomarker for the outer diameter, a metric of myelination,
which is an important hallmark of neurodegeneration, such as
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Figure 1: Radial diffusivityD(∆, δ) for WM ROIs averaged over five subjects.
(a) With fixed δ = 20 ms, D from scan 1 decreases with ∆. Dashed and solid
lines are fits based on Eq. (2) (intra-axonal) and Eq. (3) (extra-axonal), corre-
spondingly. (b) With fixed ∆ = 75 ms, D from scan 2 increases as a function
of 1/δ. Dashed and solid lines are predictions (not fits) based on parameters
obtained from scan 1 (Table 1), using the corresponding models, Eq. (2) and
Eq. (3), where now ∆ is fixed and δ varies. (c) WM ROIs, including ACR (red)
= anterior corona radiata, SCR (orange) = superior corona radiata, PCR (green)
= posterior corona radiata, PLIC (magenta) = posterior limb of the internal cap-
sule, genu (cyan), and splenium (blue) of the corpus callosum.

multiple sclerosis (Bando et al., 2015). Besides the outer axonal
diameter, fiber packing correlation length could also be affected
by other factors changing the diffusion properties in WM, e.g.,
axonal loss and edema.

Instead of fitting scan 1 and predicting scan 2, we can ana-
lyze the data other way around, by fitting scan 2 and predicting
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Intra-axonal model Extra-axonal model
ROI R2 MSE R2 MSE
ACR 0.559 0.115 0.833 0.048
SCR 0.409 0.148 0.910 0.023
PCR 0.315 0.400 0.837 0.078
PLIC 0.320 0.284 0.820 0.095
Splenium 0.247 0.377 0.777 0.129

Table 2: Estimated R2 and MSE by fitting scan 1 and 2 data together, based
on Eq. (2) (intra-axonal model) and Eq. (3) (extra-axonal model).

scan 1. In Fig. 1, however, the diffusivity dependence on δ
is much smaller than that on ∆, leading to a unreliable fit of
scan 2. In Supplementary Information, Section III, we show a
data set acquired by a slightly different protocol, which is op-
timized for oberserving the δ-dependence. The analysis of this
data set also suggests that the extra-axonal model is preferred.

Furthermore, by fitting all data in Fig. 1, including scan 1
and 2 data at the same time, based on Eq. (2) and Eq. (3), Ta-
ble 2 shows that extra-axonal model leads to a higher overall
R2 and a lower mean squared error (MSE) in each ROI. Based
on all of the above observations, we conclude that diffusion in
the extra-axonal space is dominant not only in the t→∞ limit
(Sen and Basser, 2005; Novikov and Fieremans, 2012), but also
determines the overall time dependence of the diffusion coeffi-
cient transverse to WM fiber tracts.

4. Discussion

By varying both ∆ and δ, and identifying physical origins
of these dependencies, our in vivo dMRI measurements dis-
tinguish between functional forms of intra- and extra-axonal
models, and show the predominance of the extra-axonal time
dependence in human brain WM. The extra-axonal model of-
fers an estimate of outer axonal diameter via packing correla-
tion length, whose changes can be sensitive to demyelination,
and possibly axonal loss or other kinds of geometric changes
in axonal fiber tracts at the µm level, three orders of magnitude
below the achievable resolution of human MRI.

In what follows, we will put our work in context of previ-
ous measurements using shorter times or thicker axons (in the
spinal cord), and employing larger gradients, as well as discuss
a possible relation between the disorder strength A character-
izing outer axonal diameters, and the measurements of axonal
conduction velocity.

4.1. Intra-axonal model: when pulses are not wide

Suppose, for a moment, that despite all the above argu-
ments, the intra-axonal model is the true one. Then, accord-
ing to our results in Table 1, the very large inner axonal radius
r̄ ≈ 4µm should lead to an intra-axonal correlation time (time
to diffuse across an axon) tc = r2/D0 ≈ 8 ms. Technically,
Eq. (2) is applicable only if the wide pulse limit (δ � tc) is
satisfied (see details in Appendix A). For histologically feasible
2r̄ ∼ 1µm, Eq. (2) applies, since tc < 1 ms, and δ in scan 2
varied from 4-45 ms; that is the reason we used the Neuman’s

approximation in Eq. (2). However, for the “apparent” tc based
on fits of Eq. (2) to scan 1 data, the wide pulse limit is violated.
Hence, we will repeat our intra-axonal model analysis using a
more general, albeit less analytically transparent equation due
to van Gelderen et al. (van Gelderen et al., 1994), applicable
to axons of all sizes, and will employ the axonal radius his-
togram, Fig. 2, according to histological observations (Caminiti
et al., 2009) (cf. Eq. (A.3) and Eq. (A.5) in Appendix A). We
will refer to this modified model as the intra-axonal model (van
Gelderen).

Very large apparent axonal diameters would necessarily im-
ply strong brain tissue shrinkage in fixation and paraffin embed-
ding (Horowitz et al., 2015b), such that histologically measured
axons have to be assumed notably smaller than in vivo. To com-
pensate for such hypothetical shrinkage, we introduce a shrink-
age factor η > 1, which linearly extends the measured radii his-
togram (Fig. 2 and Appendix A), such that mean axonal radius is
η times larger than that calculated with histology. We note from
the outset, that η cannot exceed 1.5, as argued in refs. (Aboitiz
et al., 1992; Houzel et al., 1994), and η ∼ 1.03−1.07 measured
in ref. (Tang and Nyengaard, 1997; Tang et al., 1997).

Fig. 3 shows that, in each ROI, the full intra-axonal model
(van Gelderen), Eq. (A.3) and Eq. (A.5), can neither fit the scan
1 data nor predict the δ-dependence in scan 2 data if η ≤ 2.
(We fixed η to a few values, instead of letting it vary, to achieve
fit robustness.) Based on the parameters in Table 3, in most of
the ROIs, the values of fin hit the upper bound and the fits are
poor (R2 < 0.9) if η ≤ 2. Thus, to fit the data with reason-
able parameters and to predict the δ-dependence, the shrinkage
due to tissue fixation should exceed two-fold, which contradicts
available histological data (Aboitiz et al., 1992; Houzel et al.,
1994; Tang and Nyengaard, 1997; Tang et al., 1997).

Interestingly, when η > 2, the functional form of the intra-
axonal model (van Gelderen) is very similar to that of our extra-
axonal model, i.e. the intra-axonal model begins to describe
both the varying ∆ and δ data sets equally well. This explains

Figure 2: Histogram of axonal radii hi = h(ri), based on histological results
in corpus callosum of three post-mortem human brains (Caminiti et al., 2009)
sampled into 100 bins ri. The shrinkage factor η extends the bins ri → ηri,
modeling a correction for the axonal radii due to a uniform tissue shrinkage
during fixation, with η = 1 (blue area) corresponding to no shrinkage, i.e. the
measured histogram equal to that in vivo.
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Figure 3: D from Fig. 1, fit with full intra-axonal model (van Gelderen), Eq. (A.3) and Eq. (A.5), for the four values of the shrinkage factor η = [1, 1.5, 2, 2.4]
(dashed lines, top row). Poor fits for η ≤ 2 are due to fin hitting the upper bound. Dashed lines in bottom row are predictions (not fits) for δ-dependence in scan
2 data, based on parameters obtained from scan 1 (Table 3 and Eq. A.5). Solid lines in upper and lower rows are the same as those in Fig. 1, i.e. fits for scan 1 and
predictions for scan 2 based on Eq. 3 (extra-axonal model), shown here for reference.

Intra-axonal model (van Gelderen), Eq. (A.5)
ROI η = 1 η = 1.5 η = 2 η = 2.4

R2 D∞ fin R2 D∞ fin R2 D∞ fin R2 D∞ fin

ACR 0.145 0.611 1* 0.562 0.608 1* 0.872 0.603 0.901 0.875 0.602 0.510
SCR 0.112 0.534 1* 0.463 0.531 1* 0.903 0.525 1* 0.950 0.522 0.723
PCR 0.076 0.610 1* 0.327 0.607 1* 0.733 0.600 1* 0.933 0.592 1*
PLIC 0.071 0.440 1* 0.312 0.438 1* 0.719 0.433 1* 0.931 0.427 1*
Splenium 0.047 0.368 1* 0.211 0.366 1* 0.527 0.361 1* 0.785 0.354 1*
* The fitting parameter fin hits the upper bound.

Table 3: Estimated parameters from scan 1, based on intra-axonal model (van Gelderen), Eq. (A.5), fixed at four shrinkage factors η. The range of fin is [0, 1]. In
most of the ROIs, when η ≤ 2, the fitted fin hits its upper bound, and the fit is poor (R2 < 0.9), which is also shown in the upper rows of Fig. 3. To obtain a better
fit and ensure fin < 1, shrinkage factor η needs to exceed 2, which is unrealistic (Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014; Houzel et al.,
1994; Tang and Nyengaard, 1997; Tang et al., 1997).
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why, in previous studies, which were performed at a few ∆ and
δ and which did not focus on the functional form of D(∆, δ),
the axonal diameter estimations based on the intra-axonal model
alone were much larger than that in histological studies (Alexan-
der et al., 2010; Barazany et al., 2009) — the fitting was “stretch-
ing” the axons to match the data. In contrast, the extra-axonal
model, Eq. (3), does not stretch the length scales, and provides
precise predictions for the δ-dependence, Fig. 1b, and realistic
packing correlation length estimates, Table 1.

We also note that for the spinal cord, where axons are about
factor of 5 thicker than those in the brain (Peters et al., 1991;
Waxman et al., 1995), one must use the full van Gelderen’s
model since tc ∼ 10 ms. In this situation, the balance between
the intra- and extra-axonal time-dependencies should be revis-
ited, due to the very strong, ∼ r4 scaling of the intra-axonal
signal, so that both effects are now comparable. The dMRI
measurement can become sensitive to the inner diameters of
the spinal cord WM, and reasonable diameter estimates can be
obtained (Benjamini et al., 2016; Komlosh et al., 2013; Du-
val et al., 2015); however, accounting for the nontrivial time-
dependence of the extra-axonal diffusion coefficient still im-
proves such estimates (Xu et al., 2014).

4.2. Relation to measurements with strong diffusion gradients
Applying extremely strong diffusion gradients G ∼ 0.1− 1

T/m facilitates the estimation of intra-axonal parameters (Barazany
et al., 2009; Sepehrband et al., 2016; De Santis et al., 2016;
Alexander et al., 2010; Assaf et al., 2008; Huang et al., 2015)
because of stronger signal attenuation inside axons, as well as
due to exponential suppression of the extra-axonal signal in the
radial direction, roughly as ∼ fex e

−bDex
∞ .

However, for strong diffusion gradients, the intra-axonal
model needs corrections, since the Gaussian phase approxi-
mation (GPA) for Sin, under which both Neuman’s and van
Gelderen’s solutions were obtained, eventually breaks down.
Unfortunately, no solutions beyond GPA currently exist for fi-
nite pulse width δ. In Appendix A, Beyond GPA, we estimate
that GPA breaks down when

g & g∗ =
D0

r3
=

1

r
· 1

tc
. (4)

Recall that the Larmor frequency gradient g ≡ γG is defined
via the proton gyromagnetic ratio γ. For reference, g = 0.0107
(µm ·ms)−1 for G = 40 mT/m (typical human scanner).

Estimating Larmor frequency inhomogeneity across an axon
by Ω ∼ g∗ · r, the above condition becomes Ω · tc ∼ 1, i.e.
the typical precession phase during diffusion across an axon is
∼ 1 (i.e. not small). Note that the critical gradient g∗ is purely
determined by tissue properties, independent of sequence tim-
ings. For example, if r = 3µm and D0 = 2µm2/ms, g∗ =
0.0741 (µm ·ms)−1 (corresponding to G = 277 mT/m); when
the actual g becomes of this order of magnitude (and propor-
tionally larger for smaller axons), the higher-order in g correc-
tions to GPA become crucial.

In our experiments, the gradient strength stays below 77
mT/m, and GPA perfectly applies. Recent studies boosted dif-
fusion gradients up toG . 300 mT/m for humans (Huang et al.,

2015) and G . 1.3 T/m for ex-vivo mice (Sepehrband et al.,
2016). When the signal contribution of large axons is not neg-
ligible, beyond-GPA corrections are needed due to the tail of
axonal histogram extending to large axons, since for them, the
critical g∗ decreases as 1/r. The negative beyond-GPA cor-
rection to lnSin, Eq. (A.7), may therefore explain the residual
overestimation of axonal diameters in the study (Sepehrband
et al., 2016) with ultra-strong gradients — basically, this correc-
tion tells that Sin experiences extra attenuation due to theO(g4)
contribution, neglected in standard axonal diameter mapping
frameworks.

Similarly, higher-order corrections in the powers of diffu-
sion weighting b ∝ g2, Eq. (1), should be considered for the
extra-axonal signal. The extra-axonal signal Sex up to O(b2)
can be obtained from the recent narrow-pulse result [Appendix
E of ref. (Burcaw et al., 2015)], by substituting tc → δ as the
logarithmic cutoff:

lnSex ' −bDex(∆, δ) +
Kex

6
(bDex

∞)2 , (5)

where Kex(∆, δ) is the apparent extra-axonal kurtosis,

Kex(∆, δ)

6
' A

Dex
∞
· ln(∆/δ)

∆
, ∆� δ � tc .

Here, the genuine kurtosis Kex(t) has the ln(t/tc)/t tail (Bur-
caw et al., 2015), and we used the low-pass filter analogy in the
wide pulse limit δ � tc, to re-define the long-time tail cut-off,
tc → δ.

Eq. (5) tells that theO(b2) kurtosis term becomes of the or-
der of the nontrivial, time-dependent O(b) term, when bDex

∞ &
1; this condition practically coincides with the breakdown of
the O(b), DTI representation lnS ≈ −b · fexD

ex
∞, for the total

signal S ' fin+fex e
−bDex

∞ . In other words, at the same bwhen
the curvature of the observed lnS versus b becomes notable, the
extra-axonal Kex term in Eq. (5) must be included in the anal-
ysis if one wants to estimate A and fin, fex (and, possibly the
inner radii) separately, by going to high b; one cannot use the
approximation S|Kex≡0 ' finSin + fex e

−bDex(∆,δ) beyond its
O(b) term. De Santis et al. (De Santis et al., 2016) used the
S|Kex≡0 approximation to modify AxCaliber estimation of in-
ner diameters from human brain data in the corpus callosum
acquired with stimulated echo dMRI with b ≤ 4 ms/µm2. In-
cluding the Dex(∆, δ) term in Eq. (5) resulted in about 5-fold
smaller inner diameter estimates in comparison to just using
Dex
∞, effectively demonstrating the importance of non-Gaussian

(time-dependent) extra-axonal space contribution to the total
signal, consistent with ref. (Fieremans et al., 2016). However,
δ was fixed to a single value while ∆ varied, even though Sin

mostly depends on δ, and ∆-dependence drops out in the Neu-
man’s limit, cf. Appendix A. Omission of the equally important
Kex contribution (as well as, possibly, higher-order cumulant
terms) has introduced an unknown bias into parameter estima-
tion.

Here, we limited our analysis to b ≤ 0.5 ms/µm2 to stay
in the linear, DTI regime of Eq. (1). We therefore cannot esti-
mate A and compartment fractions separately; such estimation
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would require a systematic measurement of both ∆ and δ de-
pendencies at higher b, and including higher-order cumulants
into the model for Sex(∆, δ; b). This is beyond the scope of
the present work. We also attempted to fit to scan 1 data a
hybrid model D = finDin(∆, δ) + fexDex(∆, δ), including fi-
nite axonal radius histogram in the van Gelderen’s framework
of Din(∆, δ); fitting results were unstable, and corresponding
parameters were highly dependent on their initial values, sig-
nifying a “shallow direction” in the fitting landscape. Such
spurious parameter correlation should be expected from simi-
lar functional forms of the extra-axonal model and of the intra-
axonal (van Gelderen) model for large inner radii, cf. Fig. 3 for
large η.

4.3. Limitations

To simplify models and interpretations, we ignored the fiber
orientation dispersion, which is generally non-negligible in the
brain WM (Zhang et al., 2011; Alexander et al., 2010; Veraart
et al., 2016b). The orientation dispersion may project part of
the axial diffusivity time-dependence to the radial direction, in-
creasing estimated c and c′, and also the microstructural length
scale, 2r̄ and l⊥c (Fieremans et al., 2016). In the future, it may
be possible to consistently factor out this dispersion by general-
izing the rotationally-invariant parameter framework (Novikov
et al., 2016b; Reisert et al., 2017) onto time-dependent diffusion
propagators.

To ensure the SNR sufficient for the model selection, we
used a relatively large voxel size, leading to partial volume ef-
fects in some ROIs. For example, diffusivities in the genu and
midbody of the CC have no significant time dependence since
they are very close to the CSF, and vulnerable to the CSF sig-
nal contamination and potentially CSF pulsations. Because of
the same reason, the time dependence in the splenium is noisier
than in other ROIs with significant time dependences, shown in
Fig. 1 and Table 1 (higher P -value for splenium).

We also ignored the effect of T1 differences between intra-
and extra-axonal water, and water in-between myelin sheath.
To minimize this effect, we applied the same TR for all mea-
surements, and used a relatively long TR.

Due to the observable T2 differences between intra- and
extra-axonal water (Veraart et al., 2017), volume fractions (fin,
fex) are T2-weighted. By applying the same TE throughout
the measurements, this effect was fixed and did not change the
functional form of diffusion time-dependence.

We ignored the water exchange between intra- and extra-
axonal water, and water in-between myelin sheath. To reduce
the influence of water exchange between different compartments,
we used a spin-echo sequence (T2-weighted), rather than a stimu-
lated-echo one (T1-, T2-weighted), since the time scale of T1

relaxation and water exchange is comparable in the brain (∼
1 sec), and could confound measurements (Deoni et al., 2008;
Lampinen et al., 2017).

4.4. Correlation of dMRI with axonal conduction velocity

Generally, thicker axons have higher axonal conduction ve-
locity (ACV), by optimizing the ratio of internode length to

fiber diameter (Rushton, 1951). A relevant question is whether
it is inner or outer axonal diameter, or some combination of
both, that determine ACV most definitively. Hursh (1939) ob-
served that, in the peripheral nerve of cats and kittens, the ACV
was linearly correlated with the outer axonal diameter. On the
other hand, Gasser and Grundfest (1939) performed a simi-
lar experiment and argued that, in the peripheral nerve of cats
and rabbits, ACV was linearly correlated with the inner axonal
diameter. Rushton (1951) and Waxman and Bennett (1972)
reanalyzed Hursh’s data, and all concluded that ACV is pro-
portional to the outer diameter. However, Sanders and Whit-
teridge’s (1946) results in rabbit’s peroneal nerve showed that
the myelin sheath thickness, i.e. the difference between outer
and inner radii, had the highest correlation with ACV, rather
than inner and outer diameters separately. Arbuthnott et al.
(1980) studied the peripheral nerve of cat and suggested that
conduction velocity is proportional to inner diameter; however,
they did not measure the conduction velocity in this study, and
the conclusion was made based on their theoretical discussion.
To estimate the ACV in the human brain, Aboitiz et al. (1992)
assumed that inner diameter has a linear relationship with ACV;
the proportionality constant is 8.7 mm/ms per µm of inner di-
ameter, which is calculated in the peripheral nervous system
(Ruch and Patton, 1982). Also, ACV is highly affected by
myelination (Castelfranco and Hartline, 2016), such as myelin
sheath thickness and internode length, prompting more advanced
models for estimating ACV.

The advent of in vivo dMRI has offered an exciting proposi-
tion to map axonal diameters, and to study in vivo the decades-
old relation between axonal sizes and ACV. In 2014, based on
the AxCaliber interpretation of dMRI, Horowitz et al. (2015a)
estimated apparent inner axonal diameters in the in vivo human
brain, and displayed their correlation with ACV measured with
electroencephalography; the estimated proportionality constant
was close to the value used by Aboitiz et al. (1992) (Ruch and
Patton, 1982). The finding was subsequently criticized by Inno-
centi, Caminiti, and Aboitiz (2015) since the estimated inner di-
ameter was much larger than histological observations, and the
measured interhemispheric transfer time was much shorter than
the value in previous literature. This debate presents an interest-
ing scientific question: Can one rationalize fairly strong appar-
ent correlations between dMRI and ACV observed by Horowitz
et al. (2015a) with the inconsistencies of inner diameter estima-
tion methodology?

The relevance of the nontrivial dMRI signal from the extra-
axonal space leads us to posit that the correlation uncovered by
Horowitz et al. (2015a) is, to the leading order O(b), between
the strength of time dependence (c or c′ in Eq. (2) or Eq. (3)),
and ACV. Interpreting the strength of time dependence as inner
diameter or extra-axonal packing correlation length depends on
the model selection. Our present model selection results sug-
gest re-interpreting dMRI axonal diameter mapping in terms
of the dominant extra-axonal contribution, defined in terms of
the “disorder strength” A, and the related axonal packing cor-
relation length l⊥c ∼

√
A ∼

√
c′ estimating outer diameters.

Selecting the extra-axonal model based on our current data is
then consistent with the above mentioned correlations (Hursh,
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1939; Waxman and Bennett, 1972; Rushton, 1951; Sanders and
Whitteridge, 1946) between, predominantly, the outer axonal
diameters and ACV.

5. Conclusions

We considered the functional form ofD(∆, δ) for two plau-
sible biophysical models with mutually exclusive physical as-
sumptions. We experimentally showed in the in vivo human
brain, that the extra-axonal model provides a far better agree-
ment with the measurement, both in terms of the quality of its
parameter-free prediction of the measurement with varying δ,
and in terms of the qualitative ln(1/δ), rather than 1/δ, func-
tional form. Varying δ has revealed a nontrivial low-pass filter
effect of the gradient duration on the genuine molecular diffu-
sion coefficient D(t).

Extra-axonal model provides reasonable values of the pack-
ing correlation length, which is compatible to the scale of outer
axonal diameter. In contrast, intra-axonal model alone overes-
timates the inner axonal diameters by at least twofold as com-
pared with histology, which cannot be explained by any reason-
able degree of the tissue shrinkage in fixation.

The sensitivity of time-dependent diffusion to packing ge-
ometry of the extra-axonal space may serve as a marker for de-
myelination or axonal loss in neurodegenerative diseases. Our
results are also consistent with the correlations between outer
axonal diameter and axonal conduction velocity.
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Appendix A. Intra-axonal model

Here we obtain qualitative estimates for signal attenuation
within an impermeable cylinder in the GPA, outline exact rela-
tions for Din(∆, δ) in different limits, and estimate when GPA
breaks down.

Mapping onto transverse relaxation

Fundamentally, dMRI is a measurement of transverse NMR
relaxation in the applied diffusion gradient. Each spin, follow-
ing its Brownian path x(τ), contributes the precession phase
e−iφ(t), φ(t) =

∫ t
0
Ω
(
x(τ), τ

)
dτ , where Ω(x, τ) is the local

Larmor frequency offset (relative to γB0), that also depends on
time τ explicitly due to the time-varying applied gradient. The
dMRI signal S = 〈e−iφ〉 ≡ p(λ)|λ=1, given by the average
over all spins in a voxel, is, effectively, the Fourier transform
p(λ) = 〈e−iλφ〉 of the probability density function P(φ) of
all possible precession phases φ(t), where 〈. . . 〉 is the average
with respect to P(φ).

Wide-pulse limit in the GPA

Generally, the form of P(φ) is quite complicated, and is
mediated by the diffusion (Kiselev and Posse, 1998; Jensen
and Chandra, 2000; Sukstanskii and Yablonskiy, 2003, 2004;
Novikov and Kiselev, 2008). Fortunately, in the wide-pulse
limit δ � tc, the problem of finding its Fourier transform p(λ)
simplifies, as the problem maps onto that of transverse relax-
ation in the diffusion-narrowing regime (equivalent to the GPA).
In this limit, the time tc to diffuse across an axon of radius r
provides the correlation time, beyond which the contribution to
the precession phase φ for each spin gets randomized. It is then
natural to split each Brownian path x(τ) into N = t/tc � 1
steps of duration tc, such that the total phase can be estimated
as φ ∼

∑N
n=1 φn, where each φn ∼ Ω · tc can be treated as

an independent random variable with zero mean and variance
〈φ2
n〉 ∼ (Ω · tc)2; here Ω ∼ g · r is a typical value of the

Larmor frequency inhomogeneity across an axon imposed by
the applied gradient g. When the number N of independent
“steps” becomes large, the Central limit theorem (CLT) tells
that the characteristic function p(λ) ' e−iλ〈φ〉−λ

2〈φ2〉c/2 ap-
proaches that of the Gaussian distribution, with the higher-order
cumulants being less relevant. Moreover, according to the CLT,
the mean values and variances from the independent steps add
up, i.e. 〈φ〉 ≡ 0, and 〈φ2〉c ≡ 〈φ2〉 − 〈φ〉2 ∼ N〈φ2

n〉 ∼
Ω2 tc · t, such that Sin ∼ e−R

∗
2 ·t, with effective R∗2 ∼ Ω2 tc,

cf. refs. (Kiselev and Posse, 1998; Jensen and Chandra, 2000;
Sukstanskii and Yablonskiy, 2003, 2004; Novikov and Kiselev,
2008). In our case, it is the total pulse duration t = 2δ that
matters; note that the inter-pulse duration ∆ ≥ δ does not enter
these considerations, as long as δ � tc, since Ω(x, τ) ≡ 0 and
no transverse relaxation occurs during the time when the gradi-
ent is off. Hence, the O(g2) attenuation inside an axon scales
as − lnSin ' 1

2 〈φ
2〉c ∼ (g2r4/D0) · δ, which indeed agrees

with the 1974 exact calculation of Neuman (1974)

− lnSin =
7

48
· g

2r4

D0
· δ +O(g4) , (A.1)

where the coefficient 7/48 is specific to the assumed perfectly
circular cylinder cross-section.

Factoring out b in Eq. (A.1), cf. Eq. (1), leads to the intra-
axonal contribution in Eq. (2). The corresponding Din is about
4× 10−5 − 2× 10−4 µm2/ms for r ∼ 1µm, D0 = 2µm2/ms,
∆ = 26− 100 ms, and δ = 20 ms, being much smaller than the
measured diffusivity change in our experiment; to account for
the observed diffusivity variation over diffusion times, apparent
radii r̄ need to be much larger, cf. Table 1.

The estimated shrinkage factor for apparent radii r̄ in the
Neuman’s regime is

η̄ ≡ r̄

1.48µm
, (A.2)

where the denominator is the apparent radius
(
〈r6〉/〈r2〉

) 1
4 cal-

culated via the histology histogram (Caminiti et al., 2009), the
blue area in Fig. 2.

General solution in the GPA
When Neuman’s assumption δ � tc is not satisfied, one

needs to use the general O(g2) solution for signal attenuation
inside a cylinder of radius r by van Gelderen et al. (1994):

− lnSvG
in (∆, δ; r) =

2g2r4

D0

∞∑
m=1

tc
α6
m(α2

m − 1)
·
[
2α2

m

δ

tc
− 2

+2e−α
2
mδ/tc + 2e−α

2
m∆/tc − e−α

2
m(∆−δ)/tc − e−α

2
m(∆+δ)/tc

]
(A.3)

where αm is the mth root of dJ1(α)/dα = 0, and J1(α) is the
Bessel function of the first kind; note that tc = tc(r) = r2/D0.
In the δ � tc limit, the ∆-dependence drops out, and Eq. (A.3)
approaches Eq. (A.1). In the opposite, narrow-pulse limit δ �
tc, lnSin(t, δ; r)|δ=0 = −bD(t), with D(t) = r2/(4t).

In our analysis, we incorporate the axonal radius histogram
from the corpus callosum of three post-mortem human brains,
by Caminiti et al. (2009), Fig. 2, and allow for the uniform ax-
onal stretching, ri → ηri, such that the overall intra-axonal
signal for a given shrinkage factor η is the volume-averaged
Eq. (A.3)

Sin(∆, δ; η) =
∑
i

fi S
vG
in (∆, δ; ηri) (A.4)

with the normalized weights fi = hir
2
i /
∑
j hjr

2
j given in terms

of the histogram bin values hi. The effective DvGel
in (∆, δ; η) is

obtained by factoring out the b-value from lnSin, cf. Eq. (1).
The average radius is 〈r〉 ∼ 0.67µm × η according to the
weights hi. The value of g2 is estimated by the b-value de-
fined in Eq. (1). The intra-axonal model based on van Gelderen
et al. ’s solution then yields

DvGel(∆, δ; η) = D∞ + finD
vGel
in (∆, δ; η) . (A.5)

This model includes four parameters: D∞, fin, η, and D0. To
stabilize our fitting, we fixed D0 by the value of the axial diffu-
sivity D‖ from the diffusion tensor, and fixed η at a few values
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[1, 1.5, 2, 2.4]. After that, we only have two fitted parameters,
D∞ and fin, estimated from scan 1 data, in Table 3. Using
these parameters, we predicted the δ-dependence in scan 2 re-
sults based on Eq. (A.5) without tunable parameters, shown in
Fig. 3.

Beyond GPA

Unfortunately, there are no exact results for theO(g4) terms
and beyond in Eq. (A.1). Let us estimate this next-order term
using similar qualitative considerations as above, and establish
where the GPA breaks down. For that, we need to estimate the
4th-order cumulant 〈φ4〉c ≡ 〈φ4〉 − 3〈φ2〉2 of the precession
phase in the cumulant expansion (Kiselev, 2010) of p(λ) taken
at λ ≡ 1:

lnS = − 1

2!
〈φ2〉c +

1

4!
〈φ4〉c − . . . . (A.6)

By definition of the kurtosis K of the phase distribution P(φ),
〈φ4〉c = K · 〈φ2〉2c . In the large-N limit, kurtosis scales as
K ∼ −1/N ∼ −tc/δ and is negative as a result of the confined
intra-axonal geometry (see the derivation in Supplementary In-
formation, Section I). As a result, we obtain

〈φ4〉c ∼ −
g4r10

D3
0

· δ . (A.7)

GPA breaks down when 〈φ4〉c ∼ 〈φ2〉c in Eq. (A.6), equivalent
to 〈φ2〉c ∼ δ/tc, from which the breakdown condition, Eq. (4)
in the main text, follows. For such strong gradients, all terms
in cumulant expansion are of the same order, which requires
development of non-perturbative approaches.
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2009. On the effects of a varied diffusion time in vivo: is the diffusion in
white matter restricted? Magnetic Resonance Imaging 27 (2), 176 – 187.
URL http://www.sciencedirect.com/science/article/
pii/S0730725X08002014

Novikov, D. S., Fieremans, E., 2012. Relating extracellular diffusivity to cell
size distribution and packing density as applied to white matter. In: Proceed-
ings of the 20th Annual Meeting of ISMRM, Melbourne, Victoria, Australia.
p. 1829.

Novikov, D. S., Jensen, J. H., Helpern, J. A., Fieremans, E., 2014. Revealing
mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA
111 (14), 5088–5093.
URL http://www.ncbi.nlm.nih.gov/pubmed/24706873

Novikov, D. S., Jespersen, S. N., Kiselev, V. G., Fieremans, E., 2016a. Quanti-
fying brain microstructure with diffusion MRI: Theory and parameter esti-
mation. preprint arXiv:1612.02059.
URL http://arxiv.org/abs/1612.02059

Novikov, D. S., Kiselev, V. G., Nov 2008. Transverse NMR relaxation in mag-
netically heterogeneous media. J Magn Reson 195 (1), 33–9.

Novikov, D. S., Veraart, J., Jelescu, I. O., Fieremans, E., 2016b. Mapping ori-
entational and microstructural metrics of neuronal integrity with in vivo dif-
fusion MRI. preprint arXiv:1609.09144 https://arxiv.org/abs/1609.09144.

Peters, A., Palay, S. L., Webster, H. F., 1991. The fine structure of the nervous
system: neurons and their supporting cells. Oxford University Press, USA.

Reisert, M., Kellner, E., Dhital, B., Hennig, J., Kiselev, V. G., 2017. Disen-
tangling micro from mesostructure by diffusion MRI: A Bayesian approach.
NeuroImage 147, 964–975.

Reynaud, O., Winters, K. V., Hoang, D. M., Wadghiri, Y. Z., Novikov, D. S.,
Kim, S. G., Jul 2016. Surface-to-volume ratio mapping of tumor microstruc-
ture using oscillating gradient diffusion weighted imaging. Magn Reson
Med 76 (1), 237–47.

Ruch, T., Patton, H., 1982. Physiology and Biophysics. Vol. 4. Saunders,
Philadelphia.

Rushton, W. A., 1951. A theory of the effects of fibre size in medullated nerve.
J Physiol 115 (1), 101–122.
URL http://www.ncbi.nlm.nih.gov/pubmed/14889433

Sanders, F. K., Whitteridge, D., 1946. Conduction velocity and myelin thick-
ness in regenerating nerve fibres. J Physiol 105, 152–174.
URL http://www.ncbi.nlm.nih.gov/pubmed/20999939

Sen, P. N., Basser, P. J., 2005. A model for diffusion in white matter in the
brain. Biophysical journal 89 (5), 2927–2938.

Sepehrband, F., Alexander, D. C., Kurniawan, N. D., Reutens, D. C., Yang, Z.,
2016. Towards higher sensitivity and stability of axon diameter estimation
with diffusion-weighted MRI. NMR Biomed 29 (3), 293–308.
URL http://www.ncbi.nlm.nih.gov/pubmed/26748471

Stanisz, G. J., Wright, G. A., Henkelman, R. M., Szafer, A., 1997. An analytical
model of restricted diffusion in bovine optic nerve. Magnetic Resonance in
Medicine 37 (1), 103–111.
URL http://dx.doi.org/10.1002/mrm.1910370115

Stikov, N., Campbell, J. S., Stroh, T., Lavelée, M., Frey, S., Novek, J., Nuara,
S., Ho, M.-K., Bedell, B. J., Dougherty, R. F., Leppert, I. R., Boudreau, M.,
Narayanan, S., Duval, T., Cohen-Adad, J., Picard, P.-A., Gasecka, A., Côté,
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Supplementary Information

Section I provides the derivation of the kurtosis in the Ap-
pendix A, beyond GPA. Section II provides supplementary data
of five subjects. Section III provides complementary data of five
additional subjects with an acquisition protocol slightly differ-
ent from the main text.

I. Kurtosis of the diffusion on a simple lattice

Considering a molecule randomly walking on a one-dimen-
sional lattice, we assume that, in each step, the molecule has
equal probability to walk to the left and the right. Starting from
the origin, after walkingN steps, the molecule is away from the
origin by n steps. The molecule walks (N + n)/2 steps to the
right and (N − n)/2 steps to the left. Therefore, the diffusion
propagator is given by

Gn,N =
1

2
·
(

1

2

)N
· N !(

N−n
2

)
!
(
N+n

2

)
!
,

where the first 1/2 is a normalization constant such that∑N
n=−N Gn,N = 1 for N � 1. Using Stirling’s formula for

factorials, n! ≈
√

2πn
(
n
e

)n · (1 + 1
12N

)
, the propagator is ap-

proximated by

Gn,N ≈
1√

2πN
e−

n2

2N−
n4

12N3 ,

which is very similar to the propagator of free diffusion except
the correction term exp

(
−n4/12N3

)
. Keeping the lowest or-

der terms of the correction term, we approximate

Gn,N ≈
1√

2πN
e−

n2

2N

(
1− n4

12N3

)
· C ,

where C =
(
1− 1

4N

)−1
is a normalization constant such that∫∞

−∞Gn,Ndn = 1. Using the above propagator Gn,N to calcu-
late 〈n4〉 and 〈n2〉, we obtain the kurtosis

K ≡ 〈n
4〉

〈n2〉2
− 3 ≈ − 2

N
+O

(
1

N2

)
.

II. Supplementary data

Fig. S.1 shows scan 1 result in WM ROIs of the five sub-
jects described in the main text. In ACR, SCR, PCR, PLIC, and
splenium of the corpus callosum, D decreases with ∆, mani-
festing expected ∆-dependence; in contrast, based on the scan
2 result in Fig. S.2, the δ-dependence of D is too subtle to be
individually observed in all WM ROIs.

To evaluate the variability between subjects, probability den-
sity functions (PDFs) of radial diffusivities of five subjects in
WM ROIs are shown in Fig. S.3 and Fig. S.4. PDFs of five
subjects generally overlap in all WM ROIs, indicating that the
variability between subjects is small.
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Figure S.1: Five subjects’ radial diffusivities D in scan 1 within seven WM ROIs with respect to diffusion time ∆.
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Figure S.2: Five subjects’ radial diffusivities D in scan 2 within seven WM ROIs with respect to diffusion gradient pulse width δ.
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Figure S.3: Five subjects’ probability density functions (PDFs) of radial diffusivities D in scan 1 within seven WM ROIs with respect to diffusion time ∆.
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Figure S.4: Five subjects’ probability density functions (PDFs) of radial diffusivities D in scan 2 within seven WM ROIs with respect to diffusion gradient pulse
width δ.
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III. Complementary data: A different data set

In vivo MRI
Diffusion MRI was performed on five additional healthy

subjects (1 male / 4 females, 24-44 years old). All experimental
settings are the same as the ones in main text, except the slice
number = 17, and ∆ and δ in the two scans. In scan 1, we varied
∆ = [21, 40, 55, 70, 100] ms and fixed δ at 15 ms; in scan 2, we
fixed ∆ at 55 ms and varied δ = [4.7, 7, 10, 15, 20, 30, 40, 49]
ms. The two scans shared a data point of (∆, δ) = (55, 15) ms.
Total acquisition time is ∼ 45 min.

Results
Fig. S.5a shows that both the intra- and extra-axonal models

fit scan 1 data well in each ROI except ACR, based on the esti-
mated P -value and R2 shown in Table S.1. By using fit param-
eters (D∞ and c, and D∞ and c′ in Table S.1) to predict scan 2
data, Fig. S.5b shows that the parameter-free predictions of the
two models are very different; the diffusivity for extra-axonal
model, Eq. (3), captures the systematic bend in the curves with
respect to 1/δ, while Eq. (2) for intra-axonal model increases
linearly with 1/δ and deviates from experimental results.

In Fig. S.5b, the δ-dependence in scan 2 looks quite sig-
nificant, prompting us to fit the scan 2 data based on Eq. (2)
(intra-axonal mode) and Eq. (3) (extra-axonal model).

Fig. S.6b shows that both models fit scan 2 data well in
each ROI, according to the estimated P -value and R2 shown in
Table S.2. Again, by using fit parameters in Table S.2 to predict
scan 1 data, Fig. S.6a shows that only the diffusivity for extra-
axonal model, Eq. (3), captures the diffusivity time-dependence
over the whole range of ∆, while Eq. (2) for intra-axonal model
cannot explain the experimental results at shorter ∆.

Since the diffusivity time-dependence on δ is smaller than
that on ∆, fits to scan 2 data are less reliable and lead to smaller
R2 values shown in Table S.2, compared with fits to scan 1 data
and the corresponding R2 in Table S.1.

Fig. S.5 and Fig. S.6 both show that the extra-axonal model
demonstrates better consistency between scans 1 and 2, indi-
cating that the contribution of extra-axonal water dominates the
signal change, consistent to the conlusion in the main text.

0 40 80 120
0.3

0.4

0.5

0.6

0.7

ACR
SCR
PCR
PLIC
Splenium

0 0.1 0.2 0.3
0.3

0.4

0.5

0.6

0.7

Figure S.5: Radial diffusivity D(∆, δ) for WM ROIs averaged over five sub-
jects (a data set different from the main text). (a) With fixed δ = 15 ms, D
from scan 1 decreases with ∆. Dashed and solid lines are fits based on Eq. (2)
(intra-axonal) and Eq. (3) (extra-axonal), correspondingly. (b) With fixed ∆ =
55 ms, D from scan 2 increases as a function of 1/δ. Dashed and solid lines
are predictions (not fits) based on parameters obtained from scan 1 (Table S.1),
using the corresponding models, Eq. (2) and Eq. (3).
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Figure S.6: Radial diffusivity D(∆, δ) for WM ROIs averaged over five sub-
jects (a data set different from the main text). (a) With fixed δ = 15 ms, D
from scan 1 decreases with ∆. Dashed and solid lines are predictions (not fits)
based on parameters obtained from scan 2 (Table S.2), using the corresponding
models, Eq. (2) (intra-axonal) and Eq. (3) (extra-axonal). (b) With fixed ∆ =
55 ms, D from scan 2 increases as a function of 1/δ. Dashed and solid lines
are fits based on Eq. (2) and Eq. (3), correspondingly.
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Intra-axonal model, Eq. (2) Extra-axonal model, Eq. (3)

ROI P R2 D∞ c 2r̄

(
fin
D0

) 1
4 η̄

(
fin
D0

) 1
4 2r̄|D0,fin

η̄|D0,fin
P R2 D∞ c′ l⊥c

√
fex

ACR 9.1e-2 0.669 0.657 (0.003) 3.11 (1.24) 4.30 1.45 6.08 (0.60) 2.05 0.12 0.612 0.654 (0.004) 0.139 (0.063) 0.83 (0.19)
SCR 1.8e-3 0.974 0.536 (0.002) 11.1 (1.02) 5.91 2.00 8.36 (0.19) 2.82 2.3e-3 0.969 0.523 (0.004) 0.519 (0.055) 1.61 (0.09)
PCR 1.5e-4 0.995 0.649 (0.001) 11.2 (0.44) 5.93 2.00 8.38 (0.08) 2.83 1.1e-3 0.981 0.636 (0.003) 0.523 (0.044) 1.62 (0.07)
PLIC 4.3e-5 0.998 0.414 (0.001) 11.6 (0.31) 5.98 2.02 8.45 (0.06) 2.86 1.8e-4 0.994 0.400 (0.002) 0.543 (0.028) 1.65 (0.04)
Splenium 1.8e-2 0.883 0.398 (0.005) 11.1 (2.34) 5.91 2.00 8.36 (0.44) 2.82 8.8e-3 0.926 0.383 (0.006) 0.536 (0.086) 1.64 (0.13)

Table S.1: Estimated parameters from scan 1 (a data set different from the main text), based on intra-axonal model, Eq. (2), and extra-axonal model, Eq. (3).
Intra-axonal model: Values of 2r̄ (fin/D0)1/4 and η̄ (fin/D0)1/4 are lower bounds of, respectively, the (volume-weighted) inner axonal diameter 2r̄ (cf. text
below Eq. (2)), and of the axonal shrinkage η̄ (Fig. 2 and Eq. (A.2)) since, practically, fin/D0 < 1 ms/µm2. The 2r̄|D0,fin

and η̄|D0,fin
are calculated by

using typical values of fin = 0.5 and D0 = 2µm2/ms. Extra-axonal model: We used empirical estimate (Burcaw et al., 2015) A ≈ 0.2 (l⊥c )2, to obtain the
combination l⊥c

√
fex from c′. This sets a lower bound (Fieremans et al., 2016) on the fiber packing correlation length l⊥c because fex < 1; l⊥c provides an estimate

for the outer axonal diameter. Standard deviations are shown in the parenthesis. All parameters are in the corresponding units of µm and ms.

Intra-axonal model, Eq. (2) Extra-axonal model, Eq. (3)

ROI P R2 D∞ c 2r̄

(
fin
D0

) 1
4 η̄

(
fin
D0

) 1
4 2r̄|D0,fin

η̄|D0,fin
P R2 D∞ c′ l⊥c

√
fex

ACR 2.6e-3 0.804 0.655 (0.002) 5.38 (1.09) 4.93 1.67 6.97 (0.35) 2.35 9.1e-4 0.860 0.633 (0.005) 0.548 (0.093) 1.66 (0.14)
SCR 6.0e-4 0.878 0.542 (0.002) 5.73 (0.86) 5.01 1.69 7.08 (0.27) 2.39 7.5e-5 0.939 0.519 (0.004) 0.584 (0.063) 1.71 (0.09)
PCR 1.2e-2 0.682 0.658 (0.003) 4.54 (1.28) 4.72 1.60 6.68 (0.47) 2.26 3.8e-3 0.777 0.639 (0.006) 0.480 (0.106) 1.55 (0.17)
PLIC 2.4e-3 0.808 0.422 (0.002) 4.57 (0.91) 4.73 1.60 6.69 (0.33) 2.26 2.2e-3 0.813 0.405 (0.005) 0.444 (0.094) 1.49 (0.16)
Splenium 2.5e-2 0.595 0.404 (0.003) 4.91 (1.71) 4.82 1.63 6.81 (0.59) 2.30 1.6e-2 0.650 0.383 (0.009) 0.512 (0.156) 1.60 (0.24)

Table S.2: Estimated parameters from scan 2 (a data set different from the main text), based on intra-axonal model, Eq. (2), and extra-axonal model, Eq. (3).
Intra-axonal model: Values of 2r̄ (fin/D0)1/4 and η̄ (fin/D0)1/4 are lower bounds of, respectively, the (volume-weighted) inner axonal diameter 2r̄ (cf. text
below Eq. (2)), and of the axonal shrinkage η̄ (Fig. 2 and Eq. (A.2)) since, practically, fin/D0 < 1 ms/µm2. The 2r̄|D0,fin

and η̄|D0,fin
are calculated by

using typical values of fin = 0.5 and D0 = 2µm2/ms. Extra-axonal model: We used empirical estimate (Burcaw et al., 2015) A ≈ 0.2 (l⊥c )2, to obtain the
combination l⊥c

√
fex from c′. This sets a lower bound (Fieremans et al., 2016) on the fiber packing correlation length l⊥c because fex < 1; l⊥c provides an estimate

for the outer axonal diameter. Standard deviations are shown in the parenthesis. All parameters are in the corresponding units of µm and ms.
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