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Web-based Supplementary Materials for

Sieve Analysis Using the Number of Infecting Pathogens

by Follmann and Huang.

Web Appendix A: Development and asymptotics for WEE

Our approach follows that of Follmann & Huang (2015) where estimating equations were

derived from a single empirical process that jumped by X when infection occurred. In that

work X was the total number of clonally unique infecting pathogens. Here we apply that

approach marginally for each of the f = 1, . . . , F different pathogens and then combine the

associated estimating equations. The flavor of the approach is similar to competing risks

as multiple types of events are considered, though different as simultaneous infections by

multiple pathogens are allowed.

We assume that at each exposure an independent X = (X1, . . . , XF ) is drawn and a

(terminal) infection occurs and follow-up stops if X+ =
∑F
f=1Xf > 0. Let T be the time

to infection and C the common time to censoring for all pathogens. Moreover, define Y =

min(T,C), δ = I(T 6 C) and N(t) = δI(Y 6 t). Next define XA as the vector of counts at

infection if δ = 1 and 0 otherwise.

We define W E as covariates that effect exposure (e.g. bed nets for malaria or condoms for

HIV) and WX
f as covariates that impact Xf (e.g. similarity of f to the immunogen times the

vaccine indicator, innate immunity, vaccine indicator times the time since randomization).

Note WX
f implicitly includes Z. Let WX = (WX

1 , . . . ,W
X
F ) and define W = (W E,WX).

We assume that the intensity of exposure is given by

ω(t |W ) = ω(t) exp(θ′W E),

where ω(t) is an unspecified baseline exposure intensity function. It follows that the hazard

for time to infection is given by

ω(t) exp(θ′W E)P (X+ > 0|W ).
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We next assume that the mean of Xf at time t, conditional on exposure, satisfies the

proportional mean model

E(Xf |W ) = E(Xf |WX
f )

= exp{βf (t) + φ′W I
f +ψ′ZV f}, f = 1, . . . , F.

Note that βf (t) allows arbitrary changes in the placebo mean for pathogen f over time.

Implicitly, Xf depends on t but for simplicity we do not reflect this in our notation. The

covariates W I
f reflect generic effects that impact both the placebo and vaccine means, such

as innate immunity, while V f reflects the distance from the vaccine to the immunogen—as

such it only applies to the vaccine group. It can be shown that the mean of Xf conditional

on infection is proportional to the unconditional mean

E(Xf |X+ > 0,W ) = E(Xf |W )/P (X+ > 0|W ).

Next define the empirical process for feature f as

XA
f dNf (t) = XA

f dN(t)I(Xf > 0).

With the above specifications, we can derive the mean of XA
fidNfi(t) for subject i = 1, . . . , n

and feature f = 1, . . . , F . This will allow us to derive unbiased estimating equations using

the mean zero empirical processes XA
f dNf (t)− E{XA

f dNf (t)}. Now,

E{XA
fidNfi(t) |W i}

=
∞∑
x=0

xP{XA
fi = x, dNfi(t) = 1 |W i}

=
∞∑
x=0

xP{XA
fi = x | dNfi(t) = 1,W i}P{dNfi(t) = 1 |W i}

= E(Xfi |WX
fi)/P (X+i > 0 |WX

fi)ω(t) exp(θ′W E
i )P (X+i > 0|WX

fi)P (Yi > t |W i)dt

= E(Xfi |WX
fi)ω(t) exp(θ′W E

i )P (Yi > t |W i)dt

= exp{βf (t)}ω(t) exp(φ′W I
fi +ψ′ZiV fi + θ′W E

fi)P (Yi > t |W i)dt

= λf (t) exp(φ′W I
fi +ψ′ZiV fi + θ′W E

i )P (Yi > t |W i)dt,
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where λf (t) = exp{βf (t)}ω(t) is the instantaneous mean function for a person in the placebo

group with covariatesW I
fi = 0 andW E

i = 0. We regard this as a nuisance function. Because

some covariates might impact both exposure (and be in W E
i ) and the mean of Xf given

exposure (and be in W I
fi) we will define W u

fi as the unique elements of W I
fi, ZiV i,W

E
i .

We will only be able to estimate the overall effect (i.e. θ + φ ) for such covariates.

With the expectation of E{XA
fidNi(t)} determined above, we can now define F mean zero

stochastic processes

Mfi(t) =
∫ τ

0
XA
fidNfi(u)−

∫ τ

0
λf (u) exp(α′W u

fi)I(Yi > u)du,

for f = 1, . . . , F . In the above, τ is a constant satisfying τ < sup{t : P (Y > t) > 0}. It can

be shown that

E

{
n∑
i=1

∫ t

0
dMfi(u)

}
= 0 for all t ∈ [0, τ ], (1)

E

{
n∑
i=1

∫ τ

0
W u

fidMfi(u)

}
= 0, (2)

for f = 1, . . . , F . The first equality corresponds to F equations, while the last equality

corresponds to F × p equations, where p = dim(α).

Define Λf (t) =
∫ τ
0 λf (s)ds. Solving the equation

∑n
i=1

∫ τ
0 dMfi(u) = 0 for each t and each

f yields

Λ̂f (t) =
n∑
i=1

∫ t

0

XA
fidNfi(u)∑n

k=1 exp(α′W u
fk)I(Yk > u)

, (3)

with the convention that 0/0 = 0. Note that if there are no events of type f , then Λ̂f (t) is zero.

Replacing Λf (t) with (3) in the estimating equations
∑n
i=1

∫ τ
0 W

u
fidMfi(u) = 0 eliminates

the nuisance functions λ1(), . . . , λF () and yields the F × p estimating equations

n∑
i=1

∫ τ

0
XA
fi

{
W u

fi −
∑n
j=1W

u
fj exp(α′W u

fj)I(Yj > u)∑n
k=1 exp(α′W u

fk)I(Yk > u)

}
dNfi(u) = 0. (4)

We can form a reduced set of p estimating equations to efficiently estimate α by summing

over f
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U(α) =
n∑
i=1

 F∑
f=1

∫ τ

0
XA
fi

{
W u

fi −
∑n
j=1W

u
fj exp(α′W u

fj)I(Yj > u)∑n
k=1 exp(α′W u

fk)I(Yk > u)

}
dNfi(u)

 = 0. (5)

We call the solution to (5) the weighted estimating equations (WEE) estimator, α̂.

Define Γ = −n−1E{∂U(α)/∂α |α=α0}, where the derivative is given by

∂U(α)

∂α
=

n∑
i=1

F∑
f=1

∫ τ

0
XA
fi

{∑n
j=1W

u
fj exp(α′W u

fj)I(Yj > u)∑n
k=1 exp(α′W u

fk)I(Yk > u)

}⊗2

−
∑n
j=1W

u⊗2
fj exp(α′W u

fj)I(Yj > u)∑n
k=1 exp(α′W u

fk)I(Yk > u)

]
dNfi(u).

Moreover, define

Ui(α) =
F∑
f=1

∫ τ

0
XA
fi

{
W u

fi −
∑n
j=1W

u
fj exp(α′W u

fj)I(Yj > u)∑n
k=1 exp(α′W u

fk)I(Yk > u)
,

}
dNfi(u)

and Ω = var{Ui(α0)}. By a Taylor series expansion and applying the standard argument,

we can show that
√
n(α̂ − α0) converges to a multivariate normal distribution with mean

zero and variance-covariance matrix Γ−1ΩΓ−1.
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Web Appendix B: WEE and product estimator performance in different settings

A small simulation was conducted to examine the performance of the WEE and product

estimators under different scenarios including time constant and time varying FZ() and

the presence and absence of subject level heterogeneity. For each simulated trial n = 100

volunteers are randomized to vaccine or placebo and the gap times between exposures are

generated as independent exponentials with parameter ω = 0.5. The trial is simultaneous

entry with a common follow-up of 3. Individual effects, exp(bi), are generated as Gamma with

mean 1 and variance σ2
exp(b) = 0 or 2. Following exposure for person i, a bivariate negative

binomial is drawn where Xi1, Xi2|bi has mean E(Xfi|bi) = exp{bi+Sp×α1 +α2Zi+α3I(f =

2) + α4I(f = 2)Zi}. We set S1 = +1 or -1 for exposures times in the first half of follow-up,

i.e. T in (0, 1.5), and set S2 = +1 or -1 for exposures times in the second half of follow-up,

i.e. T in (1.5,3). Thus S1, S2=(+1,+1) corresponds to a time constant pathogen mean while

S1, S2=(+1,-1) has fewer pathogens in period 2 and S1, S2= (-1,+1) has fewer in period 1.

We specified α1 = 1.0 and α3 = −0.7 so type f = 2 infections are less common than f = 1,

α2 = −1.5 so there was a vaccine effect, and α4 = −0.5 so there was a sieve effect. We also

evaluated a null case with no vaccine effect on either pathogen α = (1.0, 0,−0.7, 0).

If X+i = X1i + X2i > 0, the person is counted as infected and the time of infection and

Xfi recorded. If X+i = X1i +X2i = 0, another gap time to the next exposure is drawn and

another bivariate negative binomial X1i, X2i generated as above until the associated X+i > 0

or the sum of the gap times exceeds 3 and the individual is censored. Under this model

and conditional on bi, Sp we have V EM1 = 1 − exp(α2) and V EM2 = 1 − exp(α2 + α4), so

that α4 describes the sieve effect. We consider both WEE and product estimators of VEMf .

Each scenario was simulated 10,000 times. Table 1 presents the results. Note that the WEE

estimator should be unbiased for any S1, S2 with σ2
exp(b) = 0 while the product estimator
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should be unbiased for any S1, S2 = 1, 1 with σ2
exp(b) = 0. The other scenarios correspond to

mis-specifications.

Scanning the α4 columns reveals that both the WEE and product methods are essentially

unbiased for the sieve effect for all scenarios. For the first half of the table for non-null α we

see that the WEE is relatively unbiased for α2 for all scenarios except S1, S2= (-1,+1) where

it has modest bias of at most 10% when exp(bi) has variance 2 . In contrast, the product

estimator is badly biased for α2 for all values of S1, S2 when σ2
exp(b) = 2. For the bottom half

of the table for non-null α we see that the WEE estimator is unbiased for all scenarios while

the product estimator is substantially biased for α2, except when it is correctly specified with

σ2
exp(b) = 0 and S1, S2 = (1, 1). The results for α2 + α4 i.e. the transformed V E2 are similar.

[Table 1 about here.]
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Web Appendix C: EWCR and Active Surveillance estimates of VEIf are different

In this appendix we further explore the difference between the WCR and Product estimates

of VEIf . For simplicity we assume that exposure times are exponential and construct explicit

estimators. Let ω be the (constant) risk of exposure. Following exposure, counts X1, X2 are

drawn from F (x1, x2|z) where z identifies the vaccine group. Thus the times to infection are

exponentially distributed with parameter ωP (X1 +X2 > 0).

For a single resample, the WCR estimator of the exponential parameter for the time to

infection by a pathogen with feature f in group z is given by

λ̂fz =

∑n
i=1 I(Xfi > 0)I(Zi = z)Bfi

Tz
,

where Tz =
∑n
i=1 YiI(Zi = z) and (Bi1, Bi2) = (1,0) or (0,1) is distributed as a single

multinomial with probabilities (p1i, p2i) = {X1i/(X1i + X2i), X2i/(X1i + X2i)}, respectively.

It is easy to see that as the number of resamples goes to infinity Bfi → pfi, so the exhaustive

WCR estimator is

λ̂EWCR
fz =

∑n
i=1 I(Xfi > 0)I(Zi = z)pfi

Tz
.

Asymptotically on n

λ̂EWCR
fz =

∑n
i=1 I(Xfi > 0)I(Zi = z)pfi

Tz
(6)

→ ωP (X+ > 0|Z = z)× (7)

{P (Xf ′ < Xf |Z = z,X+ > 0) + 1/2P (X1 = X2|Z = z,X+ > 0)} (8)

= ω{P (Xf ′ < Xf , X+ > 0|Z = z) + 1/2P (X1 = X2, X+ > 0|Z = z)} (9)

Thus

1− V̂ E
EWCR

fi → 1− P (Xf ′ < Xf , X+ > 0|Z = 1) + 1/2P (X1 = X2, X+ > 0|Z = 1)

P (Xf ′ < Xf , X+ > 0|Z = 0) + 1/2P (X1 = X2, X+ > 0|Z = 0)
.

This can be viewed as the estimate of vaccine efficacy for the first infecting pathogen with

censoring of subsequent clonally distinct pathogens.

The product estimate of VEIf under the exponential assumption is given by the estimate



8 Biometrics, 000 0000

of overall vaccine efficacy on infection times a ratio of conditional infection probabilities.

1− V̂E
Prod

If = 1−

∑n

i=1
I(X+i>0)I(Zi=1)

T1∑n

i=1
I(X+i>0)I(Zi=0)

T0

× P̂ (Xf > 0|X+ > 0, Z = 1)

P̂ (Xf > 0|X+ > 0, Z = 0)

→ 1− ωP (X+ > 0|Z = 1)

ωP (X+ > 0|Z = 0)

P (Xf > 0|Z = 1, X+ > 0)

P (Xf > 0|Z = 0, X+ > 0)

= 1− P (Xf > 0|Z = 1)

P (Xf > 0|Z = 0)
.

This is an estimate of the marginal vaccine efficacy. It is clear that V̂ E
Prod

If and V̂ E
WCR

If

estimate different parameters in general, though both converge to 0 on the null FZ=0(x1, x2) =

FZ=1(x1, x2).

A small simulation was done to explore the behavior of the two estimators under exponen-

tial exposures and time constant FZ corresponding to that of Appendix 2 with S1, S2 = +,+

and σ2
exp(b) = 0. Note that the data are generated under a bivariate negative binomial model

for the counts but here we fit a model for infection. As such we use α1I , α2I for these infection

parameters to distinguish from the mean parameters α = (α1, α2, α3, α4).

We see that for the non-null case with α = (1.0,−1.5,−0.7,−0.5) the product estimator

is farther from zero and has smaller variance than the EWCR counterpart. The relative

efficiency for the sieve effect is 3.48. For the null case with α = (1, 0,−0.7, 0) both estimators

are unbiased for the null sieve effect. The ratio of sample variances is 3.54. For simplicity,

we did not evaluate the WEE in this setting, but simulations have shown that it is virtually

identically to the product estimator for this setting with exponential times to infection and

time constant FZ

[Table 2 about here.]
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Table 1
Simulated performance of the WEE and product estimators of mean parameters. 100 volunteers are randomized to

vaccine(Z=1) or placebo (Z=0), gap times between exposures are exponential, and the number of infecting pathogens
per exposure is a bivariate negative binomial with

E(Xfi|bi) = exp(bi + Sp × α1 + α2Zi + α3I(f = 2) + α4I(f = 2)Zi), where exp(bi) is Gamma with mean 1 and
variance σ2

exp(b). The coefficient Sp is either +1 or -1 with S1 for X drawn in the first half of follow-up (i.e exposure

times in (0,C/2) ) and S2 applying to X drawn for exposure times in (C/2,C). Sample means and variances of the
parameter estimates are reported in successive rows.

WEE Product
σ2
exp(b) S1S2 X > 0 P (X > 0) α2 α2 + α4 α4 α2 α2 + α4 α4

α= (1,-1.5,-0.7,-0.5)
0 ++ 2.052 0.602 -1.505 -2.018 0.513 -1.509 -2.023 0.513

0.044 0.091 0.088 0.044 0.090 0.088
0 +- 1.883 0.500 -1.507 -2.033 0.525 -1.379 -1.905 0.526

0.061 0.137 0.137 0.080 0.155 0.136
0 -+ 1.864 0.497 -1.507 -2.025 0.518 -1.520 -2.039 0.519

0.066 0.141 0.141 0.048 0.120 0.136
2 ++ 2.723 0.469 -1.528 -2.049 0.521 -0.966 -1.488 0.522

0.092 0.148 0.099 0.127 0.185 0.098
2 +- 2.483 0.380 -1.524 -2.055 0.531 -0.808 -1.340 0.532

0.129 0.216 0.154 0.165 0.251 0.153
2 -+ 2.046 0.404 -1.360 -1.894 0.533 -0.918 -Inf Inf

0.133 0.271 0.211 0.129 NaN NaN

α = (1,0 ,-0.7,0)
0 ++ 2.427 0.735 -0.002 -0.000 -0.002 -0.003 -0.000 -0.002

0.035 0.044 0.029 0.035 0.044 0.029
0 +- 2.179 0.636 -0.001 0.001 -0.003 0.226 0.229 -0.003

0.045 0.059 0.040 0.064 0.077 0.039
0 -+ 2.064 0.618 -0.004 0.000 -0.004 -0.129 -0.125 -0.005

0.052 0.068 0.048 0.033 0.048 0.042
2 ++ 3.377 0.565 0.002 0.004 -0.002 0.585 0.587 -0.002

0.085 0.093 0.029 0.118 0.126 0.029
2 +- 3.016 0.471 -0.002 -0.004 0.002 0.782 0.780 0.002

0.113 0.128 0.041 0.150 0.164 0.039
2 -+ 2.357 0.488 0.004 0.006 -0.002 0.394 0.394 -0.000

0.122 0.143 0.058 0.117 0.135 0.050
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Table 2
Simulated performance of the EWCR and product estimates of V EI under exponential exposure times. Simulation

setup is the same as for the S1, S2 = (1, 1) and σ2
exp(b)=0 scenarios of Table 1 in Appendix 2. We parameterize

VEIf = 1− exp{α1I + α2II(f = 2)}, so that α2I reflects the sieve effect. Sample means and variances of the
estimated αIs are reported. RE is the relative efficiency of the product method to EWCR for the estimate of α2I .

For the null scenario this is the ratio of sample variances. For the non-null setting, since the two methods estimate
different parameters, we form Z2

PROD/Z2
EWCR, where Z is the sample average divided by the sample standard

deviation.

Product EWCR
σ2
exp(b) S1S2 α1I α1I + α2I α2I α1I α1I + α2I α2I RE

α= (1,-1.5,-0.7,-0.5)
0 ++ -0.727 -1.514 0.787 -0.456 -0.974 0.518 3.48

0.036 0.081 0.071 0.038 0.094 0.107

α = (1,0 ,-0.7,0)
0 ++ -0.002 -0.001 -0.001 -0.002 -0.001 -0.001 3.54

0.027 0.034 0.011 0.030 0.043 0.039


