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Supplementary Information Text 

Supplemental Methods 
Drugs. A library of TCM plants was donated to the DM-R laboratory by Sun Ten Pharmaceutical 
Co. in Taiwan. D-limonene, all other screened compounds, and pilocarpine were purchased from 
Sigma-Aldrich. Isoflurane (VetOne), ketamine (VEDCO), and xylazine (AnaSEd) were acquired 
through Stanford University’s Veterinary Service Center. 

Salisphere formation assay. Mouse salivary gland cells were isolated as previously described 
(1). Mouse submandibular glands (SMG) were homogenized and incubated in DMEM/F12 with 
collagenase (0.025%) and hyaluronidase (0.04%) (Stem Cell Technologies), 6.25 mM CaCl, and 
an antifungal (Omega Scientific; 1:500) for 1 h and in dispase (BD Biosciences) for 1 h on a 
shaker at 37°C. Tissue was filtered through a 100 μM cell strainer and centrifuged at 1200 rpm 
for 6 min. Red blood cells were lysed with ACK Lysing Buffer (Lonza) for 2 min, inactivated 
with 10% FBS DMEM, filtered through 100 μM cell strainer, and centrifuged at 1200 rpm for 6 
min. Cells were then trypsinized with 0.25% trypsin for 1 min, inactivated with 10% FBS 
DMEM, filtered through a 40 μM cell strainer, and centrifuged at 1200 rpm for 6 min. 
Dissociated cells were seeded on matrigel (BD Biosciences) and grown in 
DMEM/F12+GlutaMax (Gibco) media containing 10% FBS, 1x antibiotic-antimycotic (Gibco), 
1% N2 supplement (Gibco), 20 ng/mL epidermal growth factor-2 (Sigma-Aldrich), 20 ng/mL 
fibroblast growth factor-2 (Sigma-Aldrich), 10 μg/mL insulin (Sigma-Aldrich), 1 μM 
dexamethasone (Sigma-Aldrich), 10 μM	Y-27632 (Stem Cell Technologies). Spheres were grown 
for 7 d, imaged using a Leica DMi8 microscope at 2.5x magnification, and quantified with 
ImageJ (NIH). 

DarkZone dye aldehyde assay in murine salispheres. Cells isolated from mouse SMG were 
grown into spheres in DMEM/F12+GlutaMax (Gibco) media containing 10% FBS, 1x antibiotic-
antimycotic (Gibco), 1% N2 supplement (Gibco), 20 ng/mL epidermal growth factor-2 (Sigma-
Aldrich), 20 ng/mL fibroblast growth factor-2 (Sigma-Aldrich), 10 μg/mL insulin (Sigma-
Aldrich), 1 μM dexamethasone (Sigma-Aldrich), 10 μM	Y-27632 (Stem Cell Technologies). 
Spheres were dissociated in sterile PBS with 2% FBS, irradiated with 4 Gy, and incubated at 
37°C for 2 h. Cells were then stained with 20 uM DarkZone fluorescein aldehyde dye synthesized 
by the laboratory of Dr. Eric Kool at Stanford University (Stanford, CA) (3) and 10 mM  
2,4-Dimethoxyaniline catalyst (TCI America) for 15 min at 37°C. Cells were washed twice with 
PBS and analyzed by flow cytometry. Data were represented as the average median fluorescence 
intensity.  

DarkZone dye aldehyde assay in intact E13.5 embryonic SMG. E13.5 embryonic whole SMG 
were manually dissected from pregnant CD-1/ICR or C57BL6/J mice and cultured in DMEM/F12 
with 50 ug/mL transferrin and 50 μg/mL Vitamin C for 24 h (4). Glands were irradiated with 4 or 
8 Gy and incubated with 20 uM DarkZone fluorescein aldehyde dye (Stanford, CA) and 10 mM 
2,4-Dimethoxyaniline catalyst (TCI America) for 1 h (3). Glands were imaged 3 h after IR using 
a Keyence BZ-X710 microscope GFP filter at 10x magnification. Average fluorescence intensity 
was quantified using ImageJ (NIH).  

ALDH enzymatic assay. Isozymes of ALDH1A1, ALDH1A2, ALDH2, ALDH3A1, ALDH3A2, 
ALDH4A1, ALDH5A1, ALDH7A1 were measured as previously described using 5 μg/ml of 
recombinant protein (2). Briefly, enzymatic activity was measured spectrophotometrically by the 
reduction of NAD+ to NADH at A340 over 5 min in the presence of increasing concentrations of 
D-limonene or DMSO vehicle control. Assays were conducted in 50 mM sodium pyrophosphate 
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buffer (pH 7.4) in the presence of 2.5 mM NAD+ and 10 mM substrate and measured at 25°C. 
Dose-response curve fits and EC50’s were calculated using GraphPad Prism 7 software.   

ALDH fluorescence-coupled enzymatic assay. ALDH enzyme activity was measured in cell 
lysate or using recombinant ALDH1A1, ALDH1A2, ALDH3A1 by the reduction of NAD+ to 
NADH amplified by the diaphorase conversation of resazurin to fluorescent resorufin (excitation 
565 nm and emission 590 nm) as previously described (5) over 5 min in the presence of 
D-limonene or DMSO vehicle control. Assay conditions were modified from the original enzyme 
assay protocol above using 50 mM sodium pyrophosphate buffer (pH 7.4), 2.5 mM NAD+, 10 
mM acetaldehyde or all-trans-retinal as substrates with the addition of 1 U/mL diaphorase and 
0.1 mM resazurin for the secondary reaction. Measurements were collected at 25°C. 

Docking of D-limonene. Crystal structure files were downloaded from the RCSB PDB: ALDH2 
(3INJ) and ALDH3A1 (3SZA). Each crystal structure was prepared for docking using 
Schrödinger suite Protein Preparation Wizard (6). The structures were preprocessed to fill in 
missing hydrogens and side chains, extra subunits were removed to leave a single ALDH 
monomer, and structures were automatically minimized with an OPLS3 force field. The receptor 
for each of the prepared protein structures was generated using the Schrödinger Receptor Grid 
Generation function (7) with default parameters. For ALDH2 (3INJ), the grid was generated 
around the co-crystallized Alda-1 ligand. For ALDH3A1 (3SZA), the grid was centered around 
the site (analogous to the ALDH2 Alda-1 binding site) identified through the SiteMap (8) 
function. D-limonene was prepared for docking using LigPrep. D-limonene was docked (9) to 
both ALDH2 and ALDH3A1 using their respective generated grids. Default settings for the 
Ligand Docking program were used, and no additional constraints were applied. We allowed for 
at most 40 poses per ligand to be written following post-docking minimization and selected the 
highest ranked pose for each enzyme for final analysis.  

Stimulated saliva collection. 9-11 wk old female C57BL/6J WT mice or C57BL6 Aldh3a1-/- 
(from the laboratory of Dr. Vasilis Vasiliou at Yale University) were treated with 10%  
D-limonene mixed in chow or no treatment. 15 Gy single dose or 30 Gy fractionated over 5 d (6 
Gy/d) were delivered to the SMG with the rest of the body lead shielded. Stimulated saliva was 
measured as previously described (10). Mice were anesthetized with a ketamine (80 mg/kg) and 
xylazine (16 mg/kg) mixture delivered by intraperitoneal injection and subcutaneously injected 
with 2 mg/kg pilocarpine. Saliva was collected for 15 min. Saliva volume was calculated by 
assuming that the density equals 1 mg/μL and was normalized to the mouse body weight by 
dividing the total collected saliva volume by the mouse weight (kg).   

Periodic acid-Schiff staining and acinar quantification. SMG were removed from mice, fixed 
in 10% formalin for 24 h, and paraffin-embedded. Sections were deparaffinized, rehydrated, and 
stained with Periodic acid-Schiff staining (0.5% Periodic acid). 10 images per group were 
collected at random at 30x magnification using a Leica DM6000 B microscope. Acinar regions 
were quantified using RT_Image software (11). Images were separated into red, green, and blue 
color channels, blurred using a 20-pixel box filter, and segmented using an intensity contour of 
110 with a minimum area of 100 um2. Acinar area was calculated as a percentage of acinar area 
relative to the area of the microscopy field. 

RNA-sequencing. Samples were extracted using Qiagen miRNeasy Kit (217084). Extracted 
samples were assessed for quality using Agilent Pico-RNA bio-analyzer chip (5067-1513). The 
Smarter Ultra Low Input RNA kit (Clontech, 634848) was used to generate cDNA from total 
RNA. Amplified cDNA was purified using SPRI Ampure Beads from Beckman Coulter, and 
quality and quantity were measured using a High Sensitivity DNA chip on an Agilent 2100 
Bioanalyzer. cDNA was sheared to an average length of 300BP using a Covaris S2, and libraries 
were generated following the Clontech Low Input Library Prep kit (634947). Indexed libraries 
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were pooled and quantitated for sequencing. Sequencing data were generated on an Illumina 
HiSeq 4000 at the Stanford Functional Genomics Facility. The processed RNA-seq reads were 
imported into BRB-ArrayTools, an integrated package for the visualization and statistical analysis 
of gene expression data developed by Dr. Richard Simon and BRB-ArrayTools Development 
Team (Biometric Research Program, National Cancer Institute). The imported expression values 
were log2-transformed and subjected to quantile normalization by Robust Multi-chip Average 
(RMA). Genes that showed differential expression between control and irradiated groups 
(univariate p-value < 0.01) were selected. To identify functional networks and pathways enriched 
in these significant genes, we analyzed these genes using MetaCore (GeneGo). To generate the 
heatmaps, we used the clustering function of ArrayTools with experimental samples in fixed 
grouping and order. Genes were ordered by hierarchical clustering. Color scales of the individual 
heatmaps are shown. From these heatmaps, genes that share similar differential expression 
patterns were identified. 

Annexin V/propidium iodide apoptosis assay. EpCAM+-sorted salivary sphere cells were 
grown in matrigel as described above and treated with vehicle control (PEG-400) or 100 μM  
D-limonene for 48 h. Cells were dissociated from matrigel, stained with FITC Annexin V 
Apoptosis Detection Kit (Biolegend) and with Propidium Iodide (Life Technologies), and 
analyzed by flow cytometry. Annexin V+PI- cells were analyzed as early apoptotic cells, and 
Annexin V+PI+ cells were analyzed as late apoptotic cells.  

Cleaved caspase-3 staining. SMG were removed from mice, fixed in 10% formalin for 24 h, and 
paraffin-embedded. Sections were stained with Caspase 3 rabbit antibody (1:200, Cell Signaling) 
and DAPI. Three random images using red and blue filters were taken at 100x magnification with 
a Leica DM6000 B microscope from each gland and quantified by counting cleaved caspase-3 
positive (red) cells per field.  

Phase 0 study in head and neck cancer patients. This study was approved by Stanford 
University’s Institutional Review Board. Patients diagnosed with salivary gland tumors and 
scheduled to undergo salivary gland surgery were recruited for this 2-wk, open-label, oral 
disposition study of D-limonene. Patients were required to be between 18 to 85 years of age, have 
elected to undergo surgery for recent diagnosis of parotid or submandibular gland tumor, and 
qualified for anesthesia. Written informed consent was obtained from all patients before any 
study procedure was conducted. Patients were excluded from study participation if nursing or 
pregnant or diagnosed with kidney disease, end-stage liver disease, metastatic cancer, or any 
unstable medical condition. Four subjects began D-limonene treatment at 2 g/d (1 g twice daily) 
for 14 d during the period immediately before surgery. Blood and saliva samples were collected 
at baseline and on the day of surgery. Normal and tumor salivary gland tissues were collected 
during surgery. Drug levels in tissue, plasma, and saliva were measured by the GC-MS method 
described below.  

Gas chromatography mass spectrometry. Human salivary gland samples were prepared using 
25% tissue homogenate in phosphate buffer, spiked with 10,000 ng/mL perillyl aldehyde (in 
acetonitrile) as an internal standard, and extracted with heptane. An aliquot of the heptane layer 
was used for analysis. D-limonene concentrations were measured using an Agilent 7890/5975C 
GC/MSD equipped with an Agilent 7693 autosampler. Sample volumes of 1 μL splitless were 
injected with an inlet temperature of 220°C.  The flow rate was constant at 1 mL/min. An Agilent 
DB-5MS UI column was used (30 m length, 0.250 mm inner diameter, 0.25 μm film). The 
temperature was held at 60°C for 1 min, increased to 150°C at a rate of 30°C/min, increased to 
320°C at 60°C/min, and held for 3.167 min for a total run time of 10 min. Calibration curves were 
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linear from 4 to 8000 ng/mL. Experiments were conducted at the Stanford Mass Spectrometry 
Facility.  

Methanol and hexane extractions of traditional Chinese medicine plants. 10 g of raw 
material were soaked in 100 mL of methanol or hexane overnight at 37°C on a shaker. The 
mixture was passed through qualitative filter paper (GE Healthcare Life Sciences Whatman, 270 
mm diameter, grade 1). The remaining unfiltered material was soaked in 100 mL of methanol or 
hexane for an additional 2 h. The second mixture was passed through a qualitative filter paper. 
The two filtrates were combined for a total volume of 200 mL and concentrated to 20 mL using a 
rotavapor (Buchi R-100). 1 mL was further concentrated to a powder using a vacuum. 

High Performance Liquid Chromatography. Active TCM extracts were fractionated with a 1:2 
mixture of water and acetonitrile and fractionated by reversed-phase HPLC (Agilent 1260 
Infinity, C18 column, 250 x 4.6 mm). A linear gradient of water to acetonitrile (5% to 100%) 
over 30 min at a flow rate of 0.65 ml/min was used. Fractions were collected once per min using 
an autosample collector.  

Nuclear Magnetic Resonance. 1D 1H NMR spectra were acquired at the Stanford Magnetic 
Resonance Laboratory on a Bruker Avance 500 MHz spectrometer (TopSpin v1.3) with sample 
temperature regulated to 25˚C, 30˚ pulse, 16-264 scans, 1 sec pre-scan delay, 65536 total data 
points, 10330.58 Hz spectral width. Data were processed and analyzed using ACD Labs 
SpecHPLCtrus Processor.  

Xenograft study. Six-wk old SCID mice (Jackson Labs) were implanted with SAS or SCC90 
cells (2 x 106 cells/injection) into both flanks of each mouse. D-limonene was delivered orally 
(10% in chow) starting 1 wk before IR and continuing daily during and after IR. 30 Gy over 5 
fractions (6 Gy/d) was delivered to the tumor site with the rest of the body shielded. Tumor size 
was measured every 1-2 d. Tumor volume was calculated using the formula (π x length x width x 
height)/6.  

 
  



 
 

6 
 

 
Fig. S1. Aldehyde levels in salispheres measured by DarkZone dye 

Aldehyde levels in dissociated primary WT and Aldh3a1-/- salisphere cells were measured by 
DarkZone dye fluorescence intensity. This experiment was repeated in Fig. 1A but the data here 
show that there is a statistically significant increase in aldehyde levels in irradiated WT cells 
compared with nonirradiated WT cells. Aldehyde levels in nonirradiated WT and nonirradiated 
Aldh3a1-/- cells were not significantly different. (n=3; bars represent SEM; **=p<0.01). 
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Fig. S2. Saliva production levels in WT and Aldh3a1-/- mice after 15 Gy 

Individual mouse data of pilocarpine-induced saliva production collected in female C57BL/6J 
WT and Aldh3a1-/- mice at baseline and 1, 2, 4, 6, and 8 wk after 15 Gy (single dose). (n=8-11; 
thick lines represent mean; thin lines represent individual mice; wk 1 p=0.0071; wk 2 p=0.0067; 
wk 4 p=0.0008; wk 6 p=0.0531; wk 8 p=0.0374). 
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Fig. S3. TCM library screen and single active constituent identification by HPLC and NMR  

(A) Workflow representing TCM library screen by spectrophotometric ALDH enzyme activity 
assay and the identification of 7 TCM extracts that increased ALDH3A1 catalytic activity. Active 
extracts were fractionated by HPLC, and active fractions were characterized by NMR in order to 
identify single active constituents. (B) ALDH3A1 activator dose-response curves for four 
additional single active ingredients (in addition to those represented in Fig. 2A) identified from 
TCM library screen (6 nM to 400 µM) (2), measured by spectrophotometric enzyme activity 
assay and normalized to baseline activity. (n=3; bars represent propagated error). 
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Fig. S4 DarkZone dye aldehyde levels in Aldh3a1-/- salisphere cells after 4 Gy or without 
radiation 

Aldehyde levels in dissociated Aldh3a1-/- salispheres, 2 h after IR, treated with 100 µM  
D-limonene or vehicle control PEG-400, measured as median fluorescence intensity of DarkZone 
dye. (n=3; bars represent SEM; groups are not significantly different). 
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Fig. S5. Saliva production levels after IR in individual mice with or without D-limonene 
treatment 

(A) Saliva was measured in female C57BL/6J WT mice at baseline and 1, 2, 4, 6, and 8 wk after a 
single dose of 15 Gy. Treatment group started 10% D-limonene in chow 7 d before IR, and 
control group received no treatment. (n=7-8; thick lines represent mean; thin lines represent 
individual mice; wk 1 p=0.4049; wk 2 p=0.3876; wk 4 p=0.0028; wk 6 p=0.0004; wk 8 
p=0.0001). (B) Saliva was collected at baseline and at wk 1, 2, 4, 6, and 8 after 30 Gy (6 Gy/d). 
Treatment group received 10% D-limonene in chow starting 7 d before IR, and control group 
received no treatment. (n=12-15; thick lines represent mean values; thin lines represent individual 
mice; wk 1, 2, 4, 6 p<0.0001; wk 8 p=0.0087). (C) Quantification of SMG acinar area 8 wk after 
30 Gy (6 Gy/d) by PAS staining (20x images), analyzed with ImageJ and normalized to 
nonirradiated glands. Treatment group received 10% D-limonene in chow starting 7 d before IR, 
and control group received no treatment (n=10; bars represent SEM, ***=p<0.001). (D) Saliva 
was measured in female C57BL/6J mice at baseline and every 4 wk after 30 Gy (6 Gy/d). 
Treatment group started 10% D-limonene in chow 24 h after final IR fraction, and control group 
received no treatment. (n=7-8; thick lines represent mean values; thin lines represent individual 
mice; wk 4 p<0.0001; wk 8 p=0.0016; wk 12 p=0.0001; wk 16 p=0.0003; wk 20 p=0.0059). (E) 
Saliva production levels in nonirradiated mice. Treatment group received 10% D-limonene in 
chow, and control group received no treatment. Saliva was measured at baseline and after 
treatment at wk 1, 2, and 4. (n=10 mice/group; thick lines represent mean values; thin lines 
represent individual mice; groups are not significantly different). 
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Fig. S6. Xenograft study in mice treated with or without D-limonene 

(A) Tumor volume measured over time in nonirradiated SCID mice implanted with SAS cells.  
(B) Tumor volume measured over time in SCID mice implanted with SAS cells and irradiated 
with 30 Gy. (C) Tumor volume measured over time in nonirradiated SCID mice implanted with 
SCC-90 cells. (D) Tumor volume measured over time in SCID mice implanted with SCC-90 cells 
and irradiated with 30 Gy. All treatment groups received D-limonene in chow starting 7 d before 
IR, and all control groups received no treatment. (n=5; no significant difference between groups). 
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Fig. S7. Heatmaps of RNA-seq analysis 

(A) Heatmap comparing RNA levels of immune-response related genes of EpCAM+ cells isolated 
from SMG of mice 2 wk after 30 Gy (6 Gy/d) or no IR. Treatment group received 10%  
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D-limonene in chow for 1 wk before IR and daily thereafter, and control groups received no 
treatment. (n=3 mice/group; 3 RNA samples/mouse). (B) Heatmap comparing RNA levels of 
genes related to glutathione metabolism. 
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Table S1. Phase 0 human study of D-limonene drug distribution in 4 patients  

(A) D-limonene levels in human salivary gland tissue collected after 2 wk of 2 g/d oral  
D-limonene measured by GC-MS. (B) D-limonene levels in human plasma at baseline and after 2 
wk of D-limonene treatment. Two samples per time point were analyzed. The 4th patient was 
unable to provide plasma, therefore only data for 3 patients are reported. (C) D-limonene levels in 
human saliva at baseline and after 2 wk of D-limonene treatment. One sample per time point was 
analyzed. BQL=below quantifiable limits. 

 
 
  

Sample Run 1 (ng/g) Run 2 (ng/g)

Sample 1 Sample 2 Sample 3 Sample 4

Patient 1 7935 675.3 920.8 1546.5

Patient 2 1328 1156.4 1004.2 796.3

Patient 3 454 97 79.4 72

Patient 4 7284.7 3466 3481

Control 1 1.5 BQL

Control 2 0 BQL

Control 3 6.2 BQL

Sample Run 1 (ng/mL) Run 2 (ng/mL)

Patient 1 (before) 4 1.7 (BQL)

Patient 2 (before) 6 0 (BQL)

Patient 3 (before) 8 0 (BQL)

Patient 1 (after) 149.1 145.4

Patient 2 (after) 243.1 235.5

Patient 3 (after) 39.9 27.9

Sample Run 1 (ng/mL) Run 2 (ng/mL)

Patient 1 (before) 0 (BQL)

Patient 2 (before) 0 (BQL)

Patient 3 (before) 0 (BQL)

Patient 4 (before) 0 (BQL)

Patient 1 (after) 0 (BQL)

Patient 2 (after) 9.5

Patient 3 (after) 8.8

Patient 4 (after) 11.7

A

B

C
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