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Overview

This supporting document provides details on the acquisition and preprocessing of the ana-
lyzed connectivity data. We also provide descriptions of the network measures and methods
applied throughout this work. Finally, we include supplementary and replication analyses
that indicate the robustness and universality of the results reported in the main manuscript.
Figure numbering is with respect to the ordering of references in the main manuscript.

Materials and Methods

Connectivity data

Mouse. The Allen Institute for Brain Science mapped the mesoscale topology of the mouse
nervous system by means of anterograde axonal injections of a viral tracer [1]. Using two-
photon tomography, they identified axonal projections from the 469 injections sites to 295
target regions. Building on these efforts, Rubinov and colleagues constructed a bilaterally
symmetric whole-brain network for the mouse, comprising N = 112 cortical and subcortical
regions with 53% connection density [2]. Connections represent interregional axonal projec-
tions and their weights were determined as the proportion of tracer density found in target
and injected regions. Connection weights followed a log-normal distribution and graph-
theoretical analyses of the constructed topology revealed many organisational similarities to
the human connectome.

Macaque. Markov and colleagues applied 1615 retrograde tracer injections to 29 of the
91 areas of the macaque cerebral cortex, spanning occipital, temporal, parietal, frontal,
prefrontal and limbic regions [3, 4]. This resulted in a 29 × 29 directed interregional sub-
network of the macaque coritco-cortical connections. Connection weights were estimated
based on the number of neurons labelled by the tracer found in source and target regions,
relative to the amount found in whole brain. In line with other tract-tracing studies, the
network showed high connection density (66%) and weights were distributed log-normally.

Human data acquisition and preprocessing. Minimally preprocessed diffusion weighted
MRI data from 75 unrelated healthy participants (age 22–35, 40 females) was obtained from
the Human Connectome Project (HCP) 1 [5]. Spin-echo planar diffusion weighted imaging
was performed in a customized Siemens Skyra 3T scanner according to the following param-
eters: 5520 ms repetition time, 89.5 ms echo time, 78 degree flip angle, 160 degree refocusing
flip angle, 210 × 180 mm filed of view, 168 × 144 matrix, 1.25 mm isotropic voxels, 3 shells
of b=1000, 2000 and 3000 s/mm2 and approximately 90 diffusion weighted directions per

1
HCP participants ID: 100206, 100307, 100408, 101006, 101107, 101309, 101915, 102109, 102513, 102614, 102715, 102816, 103111,

103212, 103414, 103515, 103818, 104012, 105014, 105115, 105216, 105620, 106016, 106319, 106521, 106824, 107018, 107321, 107422,
107725, 108020, 108121, 108222, 108323, 108525, 108828, 109123, 109830, 110007, 110411, 110613, 111009, 111211, 111312, 111413,
111716, 112112, 112314, 112516, 112920, 113215, 113316, 113619, 113922, 114217, 100610, 102311, 104416, 118225, 105923, 111514,
114823, 115017, 125525, 128935, 131722, 140117, 146129, 146432, 155938, 156334, 157336, 158035, 158136, 162935.
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gradient table. The obtained diffusion images were submitted to the HCP diffusion pre-
processing pipeline [6] consisting of: 1) b0 intensity normalization, 2) top-up EPI distortion
correction, 3) Eddy current distortions and subject motion correction, 4) gradient distortion
correction and 5) resampling to 1.25mm native structural space. Refer to [6, 7] for further
details on HCP diffusion MRI acquisition and preprocessing.

Minimally preprocessed resting-state functional MRI data from the same 75 participants
was also obtained from the HCP. Data acquisition consisted of four 14m33s runs, two runs
(right-to-left and left-to-right phase encodings) in one session and two in another session,
with eyes open with relaxed fixation on a projected bright cross-hair on a dark background
(and presented in a darkened room). Data collection was performed in a customized Siemens
Skyra 3T scanner according to the following parameters: gradient-echo EPI sequence, 720
ms TR, 33.1 ms TE, 52 degree flip angle, 208 × 180 mm FOV, 104 × 90 matrix, 2.0
mm slice thickness, 72 slices, 2.0 mm isotropic voxels, 8 multiband factor and 0.58 ms echo
spacing. Acquired images were preprocessing according to the HCP functional preprocessing
pipeline [6], which involves: 1) spatial and gradient distortion corrections, 2) correction of
head movement, 3) intensity normalization 4) single spline re-sampling of EPI frames into
2mm isotropic MNI space and 5) HCP’s FIX+ICA pipeline for the removal of temporal
artefacts. Refer to [6,8] for further details on HCP resting-state functional MRI acquisition
and preprocessing.

Human cortical parcellation. Connectome analyses are sensitive to the number of nodes
used to reconstruct brain networks [9]. In order to assess the validity of our results across
connectomes defined over different granularities of cortical segmentations, we generated par-
cellations of the human cerebral cortex containing N = 256, 512, 1024 regions. In addition,
we also mapped connectomes using the Glasser Atlas [10], a multi-modal cortical parcella-
tion built from the combination of structural, diffusion and functional imaging data from
HCP participants.

We developed an algorithm to generate high-resolution cortical parcellations by means of
sub-dividing an input low-resolution parcellation. Starting from a well established anatom-
ical atlas (N = 68) [11] defined on FreeSurfer’s (https://surfer.nmr.mgh.harvard.edu/)
fsaverage cortical sheet, each surface region was subdivided according to three criteria: (i)
the resulting number of regions is specified by the user as a power of 2; (ii) subdivisions must
respect the original anatomical boundaries, so that all resulting parcels can be attributed
to a single anatomical structure; and (iii) each resulting sub-region has approximately the
same surface area. Criterion (i) allows for a systematic investigation of the robustness of
graph theory measures to variations in parcellation resolution. Criterion (ii) ensures that
the resulting parcellation comprises biologically meaningful regions that can be assigned to a
single anatomical input region. Finally, criterion (iii) minimizes tractography biases related
to the surface area and volume of regions. Importantly, defining the parcellations over the
cortical surface ensures that every grey matter region has an interface with white matter,
making it accessible to tractography streamlines.

Input low-resolution regions were divided based on their size (number of vertices in
the cortical sheet mesh) and the desired number of high-resolution output regions. Large
input regions originated many output regions, while small input regions gave rise to few
output regions. K-means++ [12] applied to the spatial coordinates of vertices was used
to perform region division, leading to evenly sized, spatially contiguous, tile-shaped output
regions (Fig. S16). The resulting cortical surface parcellations were registered to native
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subject space and projected into parcellation volumes using ConnectomeWorkbench (https:
//www.humanconnectome.org/software/connectome-workbench, [13]).

While cortical regions are commonly defined in terms of a surface mesh, representations
of subcortical structures remain voxel-based [6]. Parcellating subcortical regions is there-
fore more challenging and requires different methodologies to those that we have applied
to the cortex. For this reason, subcortical regions were not included in the connectomes
reconstructed in this study.

Human network mapping. Structural networks (connectomes) were mapped for each
individual using a deterministic tractography [14] pipeline from the MRtrix3 software (http:
//www.mrtrix.org/, [15]). Diffusion tensors were estimated from the preprocessed diffusion
weighted images using a iteratively reweighted linear least squares estimator. White matter
masks was extracted from structural segmentation files provided by the HCP. White matter
boundaries were dilated by 1 voxel to fill potential gaps between grey and white matter
caused by slight imperfections in subject registration. Streamlines were uniformly seeded
from the white matter mask and tracked along diffusion tensor directions (eigenvectors) until
they exited the mask into grey matter or reached a voxel with low fractional anisotropy (FA)
(FACT tracking algorithm, 5×106 streamlines, 0.5 mm tracking step-size, 400 mm maximum
streamline length and 0.1 FA cutoff for termination of tracks). Connection strength between
any pair of regions was determined as the number of streamlines with extremities located
in the regions, resulting in N × N weighted connectivity matrices. In order to capture
general patterns of brain organization and filter out idiosyncratic variation, a group average
connectome was computed by averaging the individual connectomes of all 75 participants.
Subsequent network analyses were carried out on the group-averaged connectome.

Functional networks were mapped using command line tools from Connectome Work-
bench. For each subject, four runs of preprocessed resting-state fMRI volumes were averaged
together and projected onto the subject’s cortical surface. The functional activation profile
of each region was described as a single time series by averaging the signal of all the vertices
comprised in the region. Pairwise functional connectivity was computed by means of the
Pearson correlation coefficient between regional time series, resulting in N × N weighted
connectivity matrices. A group-averaged functional network comprising the 75 individual
connectivity matrices was computed and used in subsequent analyses.

Network analysis

Connection weights and lengths A weighted connectome can be expressed as a matrix
W ∈ RN×N , whereWij is the connection weight between nodes i and j. Connection weights
are a measure of similarity or affinity, denoting the strength of the relationship between
two nodes (e.g., streamline counts in tractography or fraction of labelled neurons in tract
tracing). Typically, the matrix of connection lengths L is computed from W by means of a
weight-to-length transformation that monotonically remaps strong weights into short lengths
and weak weights into long lengths. This way, connection lengths denote the dissimilarity,
distance or travel cost between nodes. Defining nodal relationships in terms of lengths allows
for the computation of short communication paths.

Connection length matrices were computed as follows. In the binary case, Lbin ∈ [0, 1]
denoting only the presence or absence of a connection in W . In the weighted case, Lwei =
− log10(W/max(W )) ensuring a monotonic weight-to-length transformation that produces
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log-normally distributed connection lengths and attenuates extreme connection weights [16,
17] (for human connectomes weighted by streamline counts, Lwei = − log10(W/max(W )+1)
to avoid remapping the largest weight to a length of zero.) In the distance-based case,
connections lengths denote the physical distance between directly connected nodes, with
Ldis = D � Lbin, where D is the Euclidean distance matrix between node pairs. Hence,
shortest paths computed on Lbin, Lwei and Ldis minimize the number of traversed connec-
tions (hops), maximize the strength and reliability of traversed connections and minimize
the physical distance traversed between nodes, respectively.

Connectome thresholding. Density-based thresholding of connection weights was ap-
plied to the group-averaged connectome in order to filter out potentially noisy and spurious
connections [18]. A density threshold of 15% consists of keeping the top 15% highest weighted
connections and deleting the remaining ones. Since the true connection density of the brain
remains unknown [19], we sought to replicate our key analyses for a range of 5% to 60%
connection density thresholds, at 5% intervals.

Null network models. Six null network models were used in this work: (M1) topo-
logically randomized (rewired) networks, (M2) spatially randomized (repositioned) net-
works, (M3) topologically randomized cost-preserving networks, (M4) progressively random-
ized networks, (M5) progressively clusterized networks and (M6) progressively randomized,
navigability-improving networks.

Null models (M1), (M2) and (M3) were employed in the sections Navigability of the
human connectome and Navigability of non-human mammalian connectomes, while (M4),
(M5) and (M6) were used in section Connectome topology and navigation performance.

Topological randomized networks (M1) were computed by rewiring the connectome using
the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/, [20]) imple-
mentation of the Maslov-Sneppen algorithm [21]. Rewiring was carried out by swapping
each connection once (on average) while preserving the network original degree distribution
and connectedness. Spatially randomized networks (M2) had the spatial coordinates or their
nodes randomly swapped with each other, while maintaining the topology unaltered.

For reasons of computational tractability, navigation performance in the human connec-
tome (Navigability of the human connectome) was benchmarked against ensembles of 1000
(N = 256), 1000 (N = 360), 500 (N = 512) and 100 (N = 1024) topologically randomized
networks (M1), per connection density threshold. Ensembles of the same size were gener-
ated for spatially randomized networks (M2). The benchmarking of non-human connectomes
(Navigability of non-human mammalian connectomes) was done by constructing ensembles
of 104 topologically randomized networks (M1) and 104 spatially randomized networks (M2).
Non-parametric P-values for SR, EbinR , EweiR and EdisR were computed as the proportion of
times null networks outperformed the empirical connectomes. Cost-preserving randomized
networks (M3) showed markedly improved navigability when compared to models (M1) and
(M2). Therefore, to ensure an accurate characterization of the statistical differences between
the navigability of cost-preserving null networks and empirical connectomes, we generated
larger ensembles of 104 (N = 256), 104 (N = 360), 104 (N = 512) and 500 (N = 1024)
cost-preserving networks for the human connectomes; and 5000 cost-preserving networks per
non-human species (see Cost-preserving topological randomization for further details).

Progressively randomized networks (M4) were obtained by the same rewiring process as
topologically randomized networks (M1), consisting simply of partially rewired networks for
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which only a fraction of connections have been swapped. Progressively clusterized networks
(M5) were produced by an adaptation of the (M4) procedure that only considers connection
swaps that lead to an increase in the overall clustering coefficient of the network. The
randomizing–clusterizing routine (Connectome topology and navigation performance) was
repeated 100 times for N = 256, 360, 512, with EbinR and EweiR re-computed once every 5
connection swaps. The construction of progressively randomized, navigability-improving
networks (M6) is detailed at Optimizing connectome navigability with topological rewiring.

Navigation centrality. The node navigation centrality of node i defined as c(i) =
∑

s 6=i 6=t πst(i),
where πst = 1 if the successful navigation path from s to t passes through i and πst = 0
otherwise. In order to define a measure of edge navigation centrality (ENC), we first defined
c(i, j) =

∑
s 6=t;i 6=j πst(i, j), where πst(i, j) = 1 if the successful navigation path from s to

t traverses the connection from node i to node j, and πst(i, j) = 0 otherwise. Due to the
asymmetric character of navigation, c(i, j) 6= c(j, i). For simplicity, we adopted a symmetric
definition of edge navigation centrality given by csym(i, j) = (c(i, j) + c(j, i))/2.

Node (edge) betweenness centralities were computed using the Brain Connectivity Tool-
box (https://sites.google.com/site/bctnet/, [20]), representing the absolute number
of shortest paths that pass through each node (edge) of the network.

Navigation and functional connectivity. Our implementation of navigation identifies
paths based on the Euclidean distance between network nodes. Thus, a natural definition
of navigation path length is to consider the physical distance traversed from one node to
another. For our FC analysis, we defined navigation path length from i to j as Λnavij =
log10(Diu + ... + Dvj), where {u, ..., v} is the sequence of nodes visited during navigation
from i to j and D is the Euclidean distance matrix between node pairs.

The logarithmic transformation leads to a better differentiation of the distance covered
by short navigation paths (Fig. S17), leading to an expansion of the left tail (short navigation
distances) of the navigation path length distribution and a compression of the right tail (long
navigation distances). The transformation leads to stronger correlations with FC, suggesting
that a nuanced characterization of short communication paths might play an important role
in understanding the relationship between structural and functional brain networks.

Supplementary analyses

Navigability of individual human connectomes. In order to confirm the results ob-
tained for the group-averaged human connectome, we evaluated the navigability of each
individual’s connectome separately for several connection densities and parcellation reso-
lutions. The navigability of individual connectomes was consistent with group-averaged
performance (SR = 95%, EbinR = 84%, EweiR = 63% and EdisR = 83%, averaged over all
individuals, for N = 360 at 15% connection density).

We tested the null hypothesis of equality in navigation performance between males and
females, as well as between three age brackets. Our sample consisted of 35 males and 40
females; and 11, 33 and 31 individuals aged between 22 to 25, 26 to 30 and 31 to 35 years,
respectively. Statistical testing was performed on the area under the curve (AUC) of the
navigation performance measures shown in Figures S8 and S7. In particular, a three-way
analysis of variance (F-test) was used to test the null hypothesis of equality in the AUC
between the three age brackets, while a two-sample t-test was used to test for differences in
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the AUC between males and females. We found significant differences in the navigability
of age groups across all parcellation resolutions (Table S1), with navigation performance
decreasing with age. This result is in line with previous analyses suggesting a decrease
in measures of network efficiency with age [22]. No significant difference in navigation
performance between genders was found. Individual connectomes mapped for representative
males and females from each of the three age brackets (N = 360, 15% connection density)
were significantly more navigable than rewired, repositioned and cost-preserving rewired null
networks (Fig. S6).

Navigation with scaling of streamline counts. A common practice in connectomics
studies based on white matter tractography is to scale streamline counts by average fiber
lengths [23]. This is motivated by the notion that certain tractography algorithms are biased
towards overestimating the streamline count of long fiber bundles, although it is important
to remark that this effect varies substantially between algorithms and streamline seed strate-
gies, with grey-matter seeding strategies often underestimating the streamline count of long
fibers [24]. We chose not to perform distance-based scaling, since this would impart infor-
mation about the distance between nodes in each connection weight, potentially leading to
an artificial improvement in navigation performance. However, it is then possible that the
observed values of EweiR are a result of the uncorrected tractography bias towards long fiber
bundles, since long range connections would be more efficient for both streamline count and
distance-based path length regimes. In order to test for this issue, we recomputed navigation
performance after dividing streamline counts by the Euclidean distance between nodes. As
initially hypothesized, this transformation led to slight improvements in navigation perfor-
mance across parcellation resolutions and connection density thresholds (orange curve, Fig.
S5).

Similarly, streamline count are often normalized by the volume of brain regions [23]. This
is motivated by the notion that the number of streamlines terminating in a certain region
is influenced by the volume (or surface area) of that region, leading to an artificial increase
(decrease) in the strength of network nodes corresponding to large (small) cortical regions. In
order to address this potential issue, we computed the navigability of the human connectome
constructed after normalizing connection weights Wij by Wij = (NOSij)/(ViVj), where
NOSij is number of streamlines between regions i and j and Vi is the volume of region
i. This transformation lead to visible improvements in navigation performance, especially
for EweiR , across several connection density thresholds and parcellation resolutions (yellow
curve, Fig. S5).

Alternative distance measures for navigation. Navigation was performed using the
Euclidean distance between region centroids as the distance measure between network nodes.
While this approach has been extensively used as an approximation of the distance between
neuronal populations [25,26,27], it has potential shortcomings.

First, brain regions such as the motor, pre- and post-central cortices are long and nar-
row, rendering a centroid-based distance measure not representative of distances between
voxels. In order to address this potential issue, we defined the distance between nodes as
Dmax(i, j) = max(dαβ) and Dmin(i, j) = min(dαβ), where dαβ is the set of pairwise Eu-
clidean distances between all voxels comprising regions i and j, α ∈ i and β ∈ i. The
purple and green curves in Fig. S5 show the navigation performance obtained for Dmax and
Dmin, respectively, for several connection densities and parcellation resolutions. The ob-
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tained results are consistent with previously presented analyses (Fig. S5, blue curve), with
the marked exception of EdisR when navigation is computed over Dmin. This discrepancy is
caused by the skewed distribution of connection lengths for Dmin (Fig. S18A). For any pair
of adjacent regions i, j, Dmin(i, j) ∝ 1. Distance-based shortest paths are heavily mediated
by these short connection lengths, which leads to unrealistic shortest paths composed of
many hops but very small path lengths (Fig. S18B-D). For this reason, Dmin is most likely
an unsuitable distance measure for shortest paths.

Second, we assessed the navigability of the human connectome when introducing increas-
ing amounts of noise to centroid coordinates. We added noise sampled from a Gaussian (0, σ)
to the spatial coordinates of each region centroid. We assessed the navigability of the hu-
man connectome (group-averaged, N = 360 at 15% connection density) using an Euclidean
distance matrix computed on the noisy coordinates, for increasing values of σ (Fig. S4).
We found that all measures of navigation performance (averaged over 100 simulations) were
robust to small amounts of noise and gradually deteriorated as the centroid coordinates
became noisier. Robustness to small amounts of noise is important when considering po-
tential errors in node spatial coordinates due to, for instance, slight imperfections in image
registration; whereas marked navigability reductions for large amounts of noise serves as
an alternative null model that reiterates the important of the spatial embedding of brain
networks.

Finally, quantifying inter-regional distances with measures other than the Euclidean
distance between regional centroids (e.g. fiber-tract length or tract myelination) may pro-
vide more realistic distance estimates and thereby improve connectome navigability. Fiber-
tract length may represent a more realistic measure of the distance travelled between two
nodes. However, in addition to the distance between structurally connected nodes, nav-
igation also depends on the distance between structurally unconnected nodes, for which
fiber-tract lengths cannot be computed. Techniques of fiber interpolation [27] or heavily
seeded probabilistic tractograms leading to near-complete connectivity matrices [28] could
guide future work on navigation based on fiber lengths.

Cost-preserving topological randomization. Longer connections are typically assumed
to demand greater metabolic resources, and thus connection length is often used as a proxy
measure of metabolic cost [19,29]. In this study, we defined network cost as the sum of the
Euclidean distances between connected nodes [27, 30,31].

We implemented a rewiring routine that generates null networks that preserve the origi-
nal network’s degree distribution and number of connected components, while approximately
preserving its cost. The routine is an adaptation of the Maslov-Sneppen algorithm [21] that
only considers connection swaps that do not alter the resulting network’s cost by more than
a user defined threshold (set to 1mm). We assessed how closely null networks matched
original costs by means of a relative cost measure costrel = costnull/costemp. Ideally, this
ratio should be exactly 1, but because cost was matched up to a prescribed tolerance for
each connection swap (± 1mm), the a small difference in the cost of the empirical and null
networks can accumulate with a growing number of swaps. Fixing the tolerance at 0 is not
practical, since the vast majority of candidate swaps cannot lead to an exact preservation
of cost. As shown in the results below, this strategy was able to match the total cost of
connectomes within a 0.1% error margin.

Starting from the human connectome (N = 360), we generated 1000 cost-preserving
rewired networks for each of several connection density thresholds. In addition, we gener-
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ated 104 cost-preserving networks for the human connectome at parcellation resolutions of
N = 256, 512, 1024 and 15% connection density threshold. Preserving network cost greatly
improved the navigability of the null networks, as seen by the reduced gap between navi-
gation performance measures computed on rewired and empirical networks (Fig. S3A-D).
Despite this improvement, the human connectome remained significantly more navigable
than the cost-preserving surrogate networks (P < 10−4), across all navigation performance
measures, parcellation resolutions (Fig. S3E) and connection density thresholds (with the ex-
ception of 5% connection density). Significance was assessed using a non-parametric P -value
computed as the proportion of times null networks outperformed empirical connectomes.

Next, we next generated 5000 cost-preserving rewired networks for the macaque (N = 29)
and mouse (N = 112) connectomes. For both species, the null hypothesis of equality in
navigation performance between the empirical and cost-preserving null networks could not
be rejected for any connection density (Fig. S9). Thus, preservation of network cost is
sufficient to account for the efficiency of navigation in the non-human connectomes. The
considered macaque connectome comprises a single hemisphere [4], and thus lacks long-
range inter-hemispherical connections, which could potentially explain the non-significant
results obtained for this species. However, this is not the case for the investigated mouse
connectome [2]. In following, we provide several explanations of the importance of network
cost to navigation performance, particularly for the non-human connectomes.

Network cost, being defined in terms of connection lengths, has a direct relationship
with the distance between network nodes. A number of studies have documented the im-
portant influence of the spatial positioning of nodes in brain network topology [25, 27, 28],
indicating that preserving network cost not only leads to null networks with more realistic
spatial embedding, but also topological organization that more closely resembles that of
empirical connectomes. Thus, the cost-preserving null model results in networks that (i) are
less topologically random than the ones produced by simple rewiring routines, (ii) respect
the original distance relationships between connectome nodes and (iii) match the original
degree distribution of the connectome. In non-human species, preserving these three traits
was sufficient to fully account for the extent to which brain networks are navigable. In con-
trast, the human connectome remained significantly more navigable than cost-preserving
null networks. The human cortex exhibits more gyrification than those of the macaque
and mouse [32,33], resulting in a more complex anatomical configuration of cortical folding,
and, consequentially, a more intricate spatial embedding. We hypothesized that, in order
to facilitate navigation given this higher spatial complexity, the topology and geometry of
the human connectome may have additional organizational factors not present in the mouse
and macaque brains, and not captured by the cost-preserving null model.

Ultimately, the findings from the cost-preserving null model analysis reiterate the im-
portance of connectome geometry for efficient communication under navigation routing,
indicating that the relative spatial positioning of network nodes explains, to a large extent,
the navigation performance of brain networks.

Optimizing connectome navigability with topological rewiring. We sought to test
whether human connectome navigability could be improved (optimized) by topological
rewiring explicitly seeking to improve navigation performance. More specifically, we im-
plemented an adaptation of the Maslov-Sneppen rewiring routine [21] that only accepts
connection swaps resulting in an increase of a given measure of navigation performance.
In addition, we aimed preserved the total cost of connectomes during the connection swap
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routine, where network cost was defined as the sum of the Euclidean distance between
structurally connected node pairs [27,29,34]. Thus, topological rewiring was constrained to
connection swaps between randomly chosen node pairs that (i) preserved connection density
and degree-distribution; (ii) improved a measure of navigation performance; and (iii) did
not result in a cost offset larger than a predefined threshold (set to 1mm). Connection swaps
that did not simultaneously meet all three conditions were rejected.

Optimization was performed with respect to several different navigation performance
measures. In the previous randomize/clusterize analysis we focused on EbinR and EweiR ,
quantifying how efficient navigation paths are in relation to shortest paths. However, seeking
to optimize ratio measures by progressive alterations in topology could theoretically result in
networks that are not efficient for navigation nor optimal routing, but show high efficiency
ratios. For instance, in a regular lattice, both navigation and shortest paths have low
absolute efficiencies but EbinR = 1. Thus, another possibility is to optimize “raw” measures of
navigation performance (e.g., Ebin or Ewei) that capture the absolute efficiency of navigation
paths.

Progressively altering network topology to optimize navigation is a time-intensive task,
requiring the computation of navigation for each connection swap attempt. In contrast to
the randomize/clusterize routine, the navigability of the networks generated in this analysis
monotonically increases by design. As a result, in order to assess the room for improvement
in navigation, it is necessary to perform enough connection swaps to adequately converge
to an asymptote in the measures of navigation performance of the generated networks. We
found that in the order of 106 connection swap attempts lead to a reasonable characterization
of the margin to increase navigability.

We applied this swap routine to the human connectome (group-averaged, N = 256, 360, 512
at 15% connection density) aiming to optimize, in turn, EbinR , EweiR , Ebin and Ewei. We found
that when explicitly optimizing these navigation measures, the margin for improvement in
navigability is larger inferred from the randomize/clusterize analysis (Fig. S11). On aver-
age, the generated networks showed a 13%–17% increase in EbinR , while EweiR had a 18%–20%
margin of improvement. Similarly, the swap routine lead to a 17%–20% improvement in Ebin

and Ewei was increased by around 5% for N = 256, 360 and 13% for N = 512. In all cases,
the majority of observed improvement took place in the first 106 swap attempts (87.5%,
88.1%, 88.6% and 88.0% of the average total improvement in EbinR , EweiR , Ebin and Ewei,
respectively, for N = 360). Therefore, increasing connectome navigability quickly became
more difficult as a function of swap attempts, suggesting that the observed improvements
converge to an asymptote.

Importantly, the 5%–22% margin for navigability improvement identified by our con-
nection swap analyses is not definitive. We attempted to optimize network navigability by
means of a greedy connection swap strategy that is not guaranteed to converge to global
maxima of navigation performance. Performing a higher number of navigation optimiza-
tion connection swaps, or employing more sophisticated methodologies to alter connectome
topology, could potentially result in more pronounced improvements to navigation.

There are many possible explanations for the fact that connectome navigability can be
marginally improved with explicit optimization. First, evolutionary pressures for the de-
velopment of desirable characteristics other than efficient communication are likely to have
been influential in shaping connectome architecture. For instance, network robustness is
conjectured to confer the brain resilience against lesions in cortical regions and white matter
projections [30,35,36]. Second, the need to accommodate higher-order geometric constraints
not captured by our length-based definition of network cost, such as the volumetric profile
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Parcellation
resolution

SR EbinR EweiR EdisR
P -value F -stat P -value F -stat P -value F -stat P -value F -stat

256 0.02 4.05 0.75× 10−4 10.86 0.17 1.81 0.1× 10−4 10.40
360 0.02 4.03 0.001 6.87 0.02 4.05 0.003 6.07
512 0.26 1.36 0.03 3.75 0.06 2.95 0.05 3.14
1024 0.10 2.37 0.02 3.89 0.01 4.46 0.03 3.61

Table S1: Influence of age on connectome navigability. The table shows the P -values
and F -statistics for a three-way analysis of variance of the AUC between three age brack-
ets, computed for different navigation performance measures. Age significantly influenced
connectome navigability, with navigation performance decreasing with age.

of axonal projections of different shapes and diameters [28], might result in sub-optimal
arrangements of white matter fiber bundles within the brain. Third, it is plausible that
certain patterns of connectivity between cortical regions, although sub-optimal from a com-
munication efficiency standpoint, are necessary for the performance of high-order cognitive
and perceptual functions. Conversely, it is possible that certain pairs of cortical regions do
not exchange information under normal brain function, and thus communication channels
between them would not have evolved to be efficient [37]. Therefore, while our analyses indi-
cate that the navigability of brain networks can be improved with explicit optimization, this
improvement would potentially be at the cost of other important aspects of brain network
organization.

Edge navigation centrality. We computed edge navigation centrality (ENC), weighted
edge betweenness centrality (EBC) and binary EBC for the human connectome (group-
averaged, N = 360 at 15% connection density, Fig. S13). All three edge centralities spanned
several others of magnitude. ENC and weighted EBC were significantly but not strongly
correlated (Pearson correlation coefficient r = 0.03), while a strong correlation was found
between ENC and binary EBC (r = 0.67).

We found ENC to be more uniformly distributed across connections compared to both
types of EBC (Fig. S13D). For instance, the top 15% most used connections were respon-
sible for 59%, 76% and 83% of communication routes in navigation, binary shortest paths
and weighted shortest paths, respectively (Fig. S13E). When ranking connections based on
weight, we found the top 1% highest weighted connections to mediate 24% of weighted short-
est paths; with the top 18% highest weighted connections responsible for 60% of weighted
shortest paths (Fig. S13F). In contrast, the distribution of communication routes in binary
shortest paths and navigation is, unsurprisingly, independent from connection weights.

The edge-based analysis of navigation centrality reiterates that navigation routing pro-
motes a more resource-efficient distribution of the information traffic load than shortest
paths, at the level of both nodes and connections.

10



0.1 0.3 0.5
Connection Density

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

io

A

Empirical
Rewired
Repositioned

0.1 0.3 0.5
Connection Density

0.2

0.4

0.6

0.8

1

B
in

ar
y 

E
ffi

ci
en

cy
 R

at
io B

0.1 0.3 0.5
Connection Density

0.2

0.4

0.6

0.8

1

W
ei

gh
te

d 
E

ffi
ci

en
cy

 R
at

io C

0.1 0.3 0.5
Connection Density

0.2

0.4

0.6

0.8

1

D
is

ta
nc

e 
E

ffi
ci

en
cy

 R
at

io D

(a) N = 256
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(b) N = 512
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(c) N = 1024

Figure S1: Navigation performance of human connectomes with different parcellation
resolutions. (A-D) Success ratio (SR), binary efficiency ratio (EbinR ), weighted efficiency
ratio (EweiR ) and distance efficiency ratio (EdisR ) at different connection density thresholds.
Empirical measures (red) for group-averaged connectomes were compared to 1000 (N =
256), 500 (N = 512) and 100 (N = 1024) rewired (green) and spatially repositioned (blue)
null networks. Shading indicates 95% confidence intervals.
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Figure S2: The performance of navigation routing in human SC stratified by shortest paths
hop counts (N = 360 at 15% connection density). Blue boxplots indicate the quartiles of
efficiency ratios of navigation paths benchmarked against shortest paths with matching hop
count. Barplots show the number of shortest paths for a given hop count, with colors
indicating the proportion of successful (green) and failed (red) navigation paths. Shortest
paths computed over Ldis (A) and Lbin (B).
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Figure S3: Navigation performance of the human connectome compared to cost-preserving
null networks (group-averaged, N = 360, at 15% connection density). (A-D) Success ratio
(SR), binary efficiency ratio (EbinR ), weighted efficiency ratio (EweiR ) and distance efficiency
ratio (EdisR ) at several connection density thresholds. Curves show measures obtained for the
human connectome (red), 104 rewired (green) and cost-preserving rewired (yellow) null net-
works. Shading indicates 95% confidence intervals. (E) Distributions of relative network cost
(costnull/costemp) and different navigation performance measures (columns) of ensembles of
cost-preserving null networks, for several parcellation resolutions (rows). Cost-preserving
ensembles consisted of 104 null networks for N = 256, 360, 512 and 500 null networks for
N = 1024. Dashed red lines indicate empirical network cost and navigation performance
measures. Cost-preserving null networks approximate connectome cost to an error margin of
0.1%. The human connectome remained significantly more navigable than cost-preserving
rewired null networks across all parcellation resolutions and navigability measures.
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Figure S4: Navigation performance as a function of noise added to node centroid coor-
dinates. Each node’s three spatial coordinates were independently corrupted with additive
Gaussian noise with zero mean and standard deviation (SD) that ranged between 0 and 60
(horizontal axis). (A) Navigation performance obtained by guiding navigation routing based
on distances computed on the noisy coordinates. (B) Correlation between node distances
computed on the original and noisy coordinates, as a function of standard deviation.
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(a) N = 256
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(b) N = 360
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(c) N = 512
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(d) N = 1024

Figure S5: Human connectome navigation performance computed for different distance
measures and streamline count normalizations, for several parcellation resolutions (a-d).
Results in the main text (blue curves) were computed using the Euclidean distance between
node centroids and connectomes without normalization of streamline counts. (A-D) Curves
show the Success ratio (SR), binary efficiency ratio (EbinR ), weighted efficiency ratio (EweiR )
and distance efficiency ratio (EdisR ) obtained from variations of the original configuration,
for several connection density thresholds. The variations are: distance scaling of streamline
counts (“Dis”, orange curves); volume scaling of streamline counts (“Vol”, yellow curves);
maximum voxel distance as the distance measure between nodes (“Max”, purple curves);
and minimum voxel distance as the distance measure between nodes (“Min”, green curves).
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Figure S6: Connectome navigability of representative male and female individuals from
each of the three age brackets investigated. Navigation performance was benchmarked
against three null network models. Navigation performance was evaluated with respect
to the success ratio (SR), binary efficiency ratio (EbinR ), weighted efficiency ratio (EweiR ) and
distance efficiency ratio (EdisR ) (horizontal axis). The vertical axis shows the navigation per-
formance of empirical (red), cost-preserving topologically randomized (yellow), topologically
randomized (blue) and spatially randomized (green) null networks. Boxplots indicate the
quartiles of performance measures obtained for null networks, with crosses denoting outliers.
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(a) N = 256
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(b) N = 360
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(c) N = 512
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(d) N = 1024

Figure S7: Influence of age on connectome navigability for several parcellation resolutions
(a-d). Navigation performance was evaluated for each individual and the average perfor-
mance within each of three age brackets was computed as a function of connection density.
(A-D) Success ratio (SR), binary efficiency ratio (EbinR ), weighted efficiency ratio (EweiR ) and
distance efficiency ratio (EdisR ) averaged across individual age: 22–25 (red), 26–30 (green)
and 31–35 (blue) years, at different connection density thresholds. Shading indicates 95%
confidence intervals.
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(b) N = 360
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(d) N = 1024

Figure S8: Influence of sex on connectome navigability for several parcellation resolutions
(a-d). Navigation performance was evaluated for each individual and the average of male and
female navigability was assessed as a function of connection density. (A-D) Success ratio
(SR), binary efficiency ratio (EbinR ), weighted efficiency ratio (EweiR ) and distance efficiency
ratio (EdisR ) averaged across female (blue) and male (red) participants, at different connection
density thresholds. Shading indicates 95% confidence intervals.
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Figure S9: Navigation performance of non-human connectomes compared to cost-
preserving rewired null networks. Distributions of relative network cost (costnull/costemp)
and different navigation performance measures (columns) of 5000 cost-preserving null net-
works, for the macaque (top row) and mouse (bottom row connectomes). Dashed red lines
indicate empirical network cost and navigation performance measures. Cost-preserving null
networks approximate connectome cost to an error margin of 0.1%. The null hypothesis
of equality in navigation performance between the cost-preserving null networks and the
empirical connectomes could not be rejected for the mouse and macaque (P >0.05).
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Figure S10: Navigation performance (EbinR ) of progressively rewired connectome topologies
(at 15% connection density). The EbinR of rewired topologies was normalized by the empirical
value found for the human connectome. Curves indicate the mean values (inner line) and 95%
confidence intervals (outer shadow) obtained from several runs of the rewiring routines. (A)
Normalized EbinR of clusterized and randomized networks for 100 runs of the randomization-
clusterizing procedure and different parcellation resolutions. Dashed lines show performance
peaks (vertical axis) and number of connection swaps (horizontal axis), with red indicating
the values obtained for the empirical brain. (B) Normalized EbinR obtained from direct
optimization of the connectome’s empirical EbinR , as a function of connection swap attempts,
for 50 (N = 2560), 50 (N = 360) and 30 (N = 512) independent runs of the rewiring
routine.
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Figure S11: Optimization of the navigability of the human connectome (at 15% connec-
tion density) via progressive rewiring of empirical topology. Perturbations of connectome
topology were carried out by random connection swaps that (i) preserved original network
cost; (ii) resulted in an increase of given navigation performance measure; and (iii) preserved
the original node degree distribution. Navigation measures obtained by topology rewiring
were normalized by empirical values found for the human connectome. Curves indicate the
mean values (inner line) and 95% confidence intervals (outer shadow) of 50 (N = 256, light
blue), 50 (N = 360, dark blue) and 30 (N = 512, green) independent optimization runs.
(A,C,E,G) Normalized navigation performances for 2 × 106 connection swap attempts.
(B,D,F,H) Number of successful connection swaps as a function of the number of swap
attempts. Successful swaps simultaneously satisfied conditions (i), (ii) and (iii).
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Figure S12: Comparison between navigation (NC) and binary betweenness (BC) node
centralities for N = 360 at 15% connection density. Centrality values are logarithmically
scaled. NC (A) and BC (B) projected onto the cortical surface. (C) NC (right) and BC
(left) sorted from highest to lowest values (D) Relationship between the cumulative sum
of centrality measures and degree. The horizontal axis is a percentage ranking of nodes
from highest to lowest degree (e.g., for N = 360, the 10% most connected nodes are the 36
nodes with highest degree). Solid curves (left-hand vertical axis) represent the cumulative
sum of BC (red) and NC (green) over all nodes ordered from most to least connected,
divided by the total number of communication paths in the network, indicating the fraction
of communication paths mediated by nodes. Blue dots (right-hand vertical axis) show the
original degree associated with each percentage of most connected nodes.
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Figure S13: Comparison between edge navigation centrality (ENC), weighted edge be-
tweenness centrality (EBC) and binary EBC (group-averaged connectome, N = 360, at
15% connection density). (A-C) Matrix representation of logarithmically scaled edge cen-
trality values. (D) Edge centrality distributions for navigation (green), binary shortest
paths (blue) and weighted shortest paths (red), sorted from highest to lowest values. (E)
Fraction of communication paths mediated by connections. Connections were sorted ac-
cording to their centrality values. The vertical axis shows the cumulative sum of centrality
measures divided by the total number of communication paths in the network. (F) Fraction
of communication paths mediated by connections, with connections sorted by weight. The
vertical axis shows the cumulative sum of centrality measures divided by the total number
of communication paths in the network.
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Figure S14: Correlation between FC and network communication measures (group-
averaged connectome, N = 360, at 15% connection density). Correlations were computed
for successful navigation paths. The navigation distance of nodes i, j was defined as the log
of the sum of connection distances along the navigation path from i to j. (A) Whole brain
correlations between FC and Euclidean distance (blue), weighted shortest paths (orange),
binary shortest paths (yellow) and navigation distance (green). (B) Scatter plot between
navigation distances and FC for all brain regions. Green line indicate the linear fit between
the two measures. (C) FC correlations stratified for structurally connected and unconnected
node pairs. (D-F) Right hemisphere equivalent of panels A-C.
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Figure S15: Structure of navigation paths between non rich club nodes (N = 360 at 15%
connection density). Top, middle and bottom rows depict, respectively, short- (Euclidean
distance from source to target nodes dst 650 mm), medium- (50 mm< dst 6100 mm) and
long-range paths (dst >100 mm). Columns show paths 2 to 5 hops long. For each panel, the
horizontal axis shows the average distance to the target, while the vertical axis shows the
average degree (and standard deviation) of nodes along the path. The red dashed line marks
the cut-off degree k = 80 for the binary rich club (computed as in [38]). Navigation paths
follow a “zoom-out/zoom-in” structure, proceeding allowing sequences of low-, high- and low-
degree nodes. This path structure is facilitated by a heterogeneous degree distribution and
high clustering coefficient. First, information travels via peripheral connections around the
locally clustered vicinity of the source. Once it reaches a high-degree node, it is forwarded
towards the target via long-range connections, quickly traversing large distances in a small
number of hops. Finally, once at the destination’s vicinity, the information again makes use
of local clustering to home in on the target. This mechanism for information transfer is in
line with the notion of the brain as a small world network that balances integration—high-
degree nodes forming long-range connections that provide quick access to different parts of
the brain—and segregation—specialized, locally clustered, information processing modules
responsible for specific tasks. The rich club of highly interconnected hubs is predominantly
used for long-range paths, while short- and medium-range communication takes place mostly
via peripheral routes.
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(a) N = 68 (b) N = 512 (c) N = 1024

Figure S16: Cortical surface parcellation (left hemisphere). (A) Input low-resolution
parcellation delineating 68 cortical regions. Output high-resolution parcellations with 512
(B) and 1024 (C) regions. All output sub-regions are contiguous, tile-shaped and have
approximately the same surface area, while respecting the anatomical boundaries defined
by the original 68 region atlas.
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Figure S17: Distribution of raw (A) and log-transformed (B) navigation path lengths
between all pairs of nodes (N = 360 at 15% connection density threshold).
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Figure S18: Exploration of navigation and distance-based shortest paths using minimum
voxel distance (group-averaged connectome, N = 360 at 15% connection density). (A)
Distribution of minium voxel distances between node pairs. (B) Distribution of hop counts in
navigation and distance-based shortest paths. (C) Distribution of path lengths in navigation
and distance-based shortest paths. (D) Example of a distance-based shortest path and
navigation path between structurally connected nodes.
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