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Supplementary Information Text 

Section I. The minimum flow rate for jetting  

In the absence of an electric field, a liquid jet tends to break up into droplets due to the Rayleigh-

Plateau instability. The fate of the dispensed jet over a distance of L depends on the relative importance of 

two timescales: the dispensing time from the nozzle to the substrate, 𝜏௙~𝐿/𝑈, where U is the characteristic 

average velocity of dispensing, and the breakup timescale for viscous liquids 𝜏ఓ~2𝜇𝑎଴/𝛾 , where 𝜇,

𝛾 and 𝑎଴ denote the viscosity, surface tension of the liquid, and the nozzle radius, respectively (1). The 

viscous timescale is employed when the Ohnesorge number, Oh= 𝜇ଶ/𝜌𝛾𝑎଴, denoting the viscous effects 

relative to the surface tension and inertial effects, is larger than 1. Thus, a continuous jet is dispensed, 

provided 𝜏௙ < 𝜏ఓ which is equivalent to the capillary number 𝐶𝑎 = 𝜇𝑈/𝛾 > 𝐿/2𝑎଴; otherwise, a train of 

drops is observed.   

For a given liquid, at a fixed separation and nozzle size, increasing the flow rate triggers the transition 

from dripping to jetting. Above a critical flow rate 𝑄௖ = 𝜋𝛾𝑎଴𝐿/2𝜇, which is proportional to the capillary 

velocity 𝛾/𝜇, a pinned liquid jet with a “bridge” shape forms (2). 

Section II. The electrostatics of the leaky dielectric liquid jet  

The liquid for the jet is characterized by both dielectric and conductive electrical responses; thus it is 

referred to as a leaky dielectric (3). The permittivity of the inner jet, 𝜀௜, varies from 1.68×10-10 F/m to 

3.71×10-10 F/m, depending on the liquids we used (Materials and Methods). The permittivity of the 

surrounding outer liquid,  𝜀௢ , is 8.85×10-12 F/m and 1.77×10-11 F/m for ambient air and silicone oil 

respectively. The electrical conductivity of the inner jet, 𝐾௜, ranges from 10-8 S/m to 10-4 S/m, which are at 

least four orders of magnitude higher than that of the surrounding dielectric liquids, 𝐾௢=10-12 S/m (4). The 

charge per unit area at the interface is 𝜎 = 𝜀௢𝐸௢
௡ − 𝜀௜𝐸௜

௡, where the superscript n denotes the normal 

component of the electric field, and the subscripts, i and o, denote the inner and outer liquids respectively. 



 3 / 13 
 

Based on charge conservation 𝐾௢𝐸௢
௡ = 𝐾௜𝐸௜

௡, we then have 𝜎 = (𝜀௢ − 𝜀௜
௄೚

௄೔
)𝐸௢

௡~𝜀௢𝐸௢
௡ (5-7), provided 

𝐾௢ ≪ 𝐾௜.  

Assuming a slender shape where the jet radius a is much smaller than its length L, the normal 

electric stress across the jet interface can be approximated as ଵ

ଶ
(𝜀௜ − 𝜀௢)𝐸ଶ ≈

ଵ

ଶ
𝜀௜𝐸ଶ (8-9), since 𝜀௜ 

is at least one order of magnitude larger than 𝜀௢. Thus, the electrocapillary number describing the ratio 

of the electric stress to the capillary stress can be estimated as ℰ௖ = 𝜀௜𝐸
ଶ𝑎଴/γ, where 𝑎଴ is the 

nozzle radius.  

 

Section III. The derivation of the governing equation of an axisymmetric liquid bridge in an axial 

electric field  

Applying Newton’s second law of motion to an element of the liquid bridge, as shown in Fig. 1a, the 

axial balance is among viscous, surface tension, gravitational, tangential electrostatic stress and inertial 

effects (10-14). At steady state, we have  

      
3𝜇

𝑎ଶ
(𝑎ଶ𝑣ᇱ)ᇱ − (

𝛾

𝑎
)ᇱ + 𝜌𝑔 +

𝜎𝐸௧

𝑎
= 𝜌𝑣𝑣ᇱ                                                S1 

where 𝑎(𝑥) denotes the local radius and 𝑣(𝑥) is the velocity along the axial direction 𝑥; 𝜌, 𝛾, 𝜎 and 𝑔 

are density, surface tension, surface charge density of the liquid, and gravitational acceleration respectively; 

()ᇱ denotes “𝑑()/𝑑𝑥”, 𝜎𝐸௧ ≅ 𝜎𝐸 is the tangential electric stress along the liquid interface (3, 8, 15).  

Since the flow rate is kept a constant, and 𝑄 = 𝜋𝑣𝑎ଶ,  

2𝑎𝑎ᇱ𝑣 + 𝑎ଶ𝑣ᇱ = 0 

Taking  

                        𝑣′ = −
2𝑄

𝜋𝑎ଷ
𝑎ᇱ,     𝑣′′ = (−

2𝑄

𝜋
)(−3

(𝑎ᇱ)ଶ

𝑎ସ
+

𝑎ᇱᇱ

𝑎ଷ
)                                                  S2 
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The Eq. S1 becomes (10-13)   

𝛾

𝑎ଶ
𝑎ᇱ +

6𝜇𝑄

𝜋𝑎ସ
(3(𝑎ᇱ)ଶ − 𝑎𝑎ᇱᇱ) +

2𝑎ᇱ

𝑎
൬−

6𝜇𝑄

𝜋𝑎ଷ
𝑎ᇱ൰ + 𝜌𝑔 +

𝜎𝐸௧

𝑎
= −

2𝜌𝑄ଶ

𝜋ଶ𝑎ହ
𝑎ᇱ                S3 

𝛾

𝑎ଶ
𝑎ᇱ +

6𝜇𝑄

𝜋𝑎ସ
((𝑎ᇱ)ଶ − 𝑎𝑎ᇱᇱ) + 𝜌𝑔 +

𝜎𝐸௧

𝑎
= −

2𝜌𝑄ଶ

𝜋ଶ𝑎ହ
𝑎ᇱ                           S4 

The left-hand side terms correspond to pressure, viscous effects, gravitational body forces and tangential 

electric stress respectively, and the right-hand term is the inertial term.  

If the pressure (governed by surface tension), gravitational and inertial terms are neglected (10), Eq. 

S4 becomes 

                                     
6𝜇𝑄

𝜋𝑎ସ
((𝑎ᇱ)ଶ − 𝑎𝑎ᇱᇱ) +

𝜎𝐸௧

𝑎
= 0                                                              S5 

We non-dimensionalize the above equation as follows:  

                                          𝑥∗ =
𝑥

𝑎଴
   and   𝑎∗ =

𝑎

𝑎଴
                                                                     S6 

The corresponding boundary conditions are 𝑎/𝑎଴ = 1 at 𝑥 = 0 and 𝑎/𝑎଴ = ∞ at 𝑥 = 𝐿/𝑎଴, where 

𝐿/𝑎଴ is the dimensionless distance from the nozzle to the stagnation surface.  

Now we drop the notation * and then we have  

                                                           (𝑎ᇱ)ଶ − 𝑎𝑎ᇱᇱ +
𝑎ଷ

𝐾ଵ
ଶ = 0,                                                                    S7 

where 𝐾ଵ
ଶ =

6𝜇𝑄

𝜋𝜎𝐸௧𝑎଴
ଷ ~

6𝜇𝑄𝐿

𝜋𝜀௢𝐸ଶ𝑎଴
ସ , since 𝜎𝐸௧~𝜀௢𝐸௡𝐸௧~𝜀௢

𝑎଴

𝐿
𝐸ଶ  (8)                                      

Let 𝑎ᇱ = 𝑑𝑎/𝑑𝑥 = 𝐴(𝑎), then  

                         𝑎ᇱᇱ =
𝑑

𝑑𝑥
൬

𝑑𝑎

𝑑𝑥
൰ =

𝑑𝑎

𝑑𝑥

𝑑

𝑑𝑎
൬

𝑑𝑎

𝑑𝑥
൰ = 𝐴

𝑑𝐴

𝑑𝑎
                                                             S8 
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Thus, Eq. S7 becomes  

                                                2𝐴ଶ − 𝑎
𝑑(𝐴ଶ)

𝑑𝑎
= −

2𝑎ଷ

𝐾ଵ
ଶ                                                                S9 

                                          −
2𝐴ଶ

𝑎ଷ
+

1

𝑎ଶ

𝑑(𝐴ଶ)

𝑑𝑎
=

2

𝐾ଵ
ଶ                                                                  S10 

or 

                                                
𝑑

𝑑𝑎
(
𝐴ଶ

𝑎ଶ
) =

2

𝐾ଵ
ଶ                                                                                S11 

so that 

                                                    
𝐴ଶ

𝑎ଶ
=

2

𝐾ଵ
ଶ 𝑎 + 𝑐ଵ                                                                        S12 

Now,  

(1) if 𝑐ଵ = 0, 𝑎ᇱ =
𝑑𝑎

𝑑𝑥
= ඨ

2𝑎ଷ

𝐾ଵ
ଶ ,     𝑑 ൬𝑎ି

ଵ
ଶ൰ = ±

1

√2𝐾ଵ

𝑥 + 𝑐ଶ, 

and we find 

                                        𝑎 = (±
1

√2𝐾ଵ

𝑥 + 𝑐ଶ)ିଶ                                                                     S13 

From the boundary conditions, we can deduce 𝑐ଶ = 1, and ±
ଵ

√ଶ௄భ

௅

௔బ
+ 1 = 0 , thus  

𝑎 = (1 −
1

√2𝐾ଵ

𝑥)ିଶ, at 
𝐿

𝑎଴
= √2𝐾ଵ   which is 𝛽 =

1

√2𝐾ଵ

𝐿

𝑎଴
= 1                                   S14 

Alternatively, 
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(2) if 𝑐ଵ ≠ 0,
𝑎′

𝑎
= ±ඨ

2𝑎

𝐾ଵ
ଶ + 𝑐ଵ,

𝑑𝑎

𝑎ඥ𝑎 + 𝑐ଵ𝐾ଵ
ଶ/2

= ±
√2

𝐾ଵ
𝑑𝑥 , 

 For 𝑐ଵ > 0, 𝑎 =
𝐾ଵ

ଶ𝑐ଵ/2

𝑠𝑖𝑛ℎଶ ቆ± √𝑐ଵ
2

(𝑥 + 𝑐ଶ)ቇ

                                                                             S15 

Let 𝑐ଷ = 𝐾ଵ
ଶ𝑐ଵ/2,  𝑐ସ = √௖భ

ଶ
𝑐ଶ, then from the boundary conditions, we have    

𝑠𝑖𝑛ℎଶ(𝑐ସ) = 𝑐ଷ ;     
𝑠𝑖𝑛ℎ𝑐ସ

√2𝐾ଵ

𝐿

𝑎଴
± 𝑐ସ = 0   which is    𝛽𝑠𝑖𝑛ℎ𝑐ସ ± 𝑐ସ = 0                                  S16 

This cannot be solved unless β < 1, suggesting 𝑎଴ < 𝑎௠௜௡, which is not consistent with the experimental 

observations.  

For 𝑐ଵ < 0,    

𝑎 =
𝐾ଵ

ଶ𝑐ଵ

2
൭ቆtan ቆ±

√𝑐ଵ

2
𝑥 + 𝑑ଵቇቇ

ଶ

+ 1൱         with 𝑑ଵ =
ඥ𝑐ଵ𝐾ଵ/2

2
𝑐ଶ                                  S17 

From the boundary conditions, we can deduce  

ඨ
1

1 + (tan 𝑑ଵ)ଶ
= cos 𝑑ଵ = ඨ

𝑐ଵ𝐾ଵ
ଶ

2
;                                                                                              S18 

ට𝑐ଵ𝐾ଵ
ଶ

2

√2𝐾ଵ

𝐿

𝑎଴
+ 𝑑ଵ =

𝜋

2
  which is  (cos 𝑑ଵ) 𝛽 + 𝑑ଵ =

𝜋

2
                                                                S19 

The solution exists with  β > 1, 𝐿/𝑎଴ > √2𝐾ଵ and it is consistent with the experimental results.  
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Section IV. The scaling of cosଶ 𝑑ଵ and 𝛽 

The minimum jet radius corresponds to the derivative of the solution  𝑎ᇱ = 0 , thus we deduce the 

minimum jet radius 𝑎௠௜௡ = cosଶ𝑑ଵ, where 𝑑ଵ is the root of the Eq. S18. Based on our experimental 

parameters, the range of 𝛽 is from 2 to 10 (𝛽 > 1). We find that 𝑎௠௜௡~cosଶ𝑑ଵ~𝛽ିଶ (Fig. S3), leading 

to 𝑎௠௜௡/𝑎଴~2𝐾ଵ
ଶ𝑎଴

ଶ𝐿ିଶ (𝛽 > 1). 

Section V. The charge transport for coiling and whipping jets 

The whipping instability occurs simultaneously with the transition of charge transport from conduction 

to convection. When the bridge is straight with a sufficiently large radius, the bulk current is purely by 

conduction and the bridge is stable against whipping (16). The measured total current I scaled by the 

estimated conduction current 𝐼/𝐼௖௢௡ௗ௨௖௧௜௢௡ for a coiling jet, is close to 1, where 𝐼௖௢௡ௗ௨௖௧௜௢௡ = 𝜋𝐸𝐾𝑎ଶ, 

and 𝐾 is the electrical conductivity of the liquid (Fig. S4) (6), suggesting the charges are conducted for 

coiling jets. For whipping jets, 𝐼/𝐼௖௢௡ௗ௨௖௧௜௢௡ is much larger than 1.  

Section VI. The enhanced stability of a liquid bridge at close separation between electrodes 

One hypothesis for the enhanced stability against the whipping instability at small separation between 

electrodes is that the space charges neutralize partial charges at the jet surfaces, and the repulsion between 

surface charges is therefore suppressed (17). This mechanism is ruled out for our experiments, since the 

breakdown field strength of the surrounding dielectric liquid in our cases, silicone oil, is ~15.4 kV/mm (18), 

which is much higher than the field strength we applied, ~ 0.1 kV/mm. The field strength to trigger 

whipping in our experiments is also much lower, 0.9 kV/mm, in (17), since we operate in a liquid-liquid 

system with a lower interfacial tension than a liquid-air system. Therefore, the slow decrease in the neck 

radius of the liquid bridge 𝑎௠௜௡ under a close separation L, leading to a slow increase in surface charge 

density σ~𝜀௢𝐸௡~ඥ2𝛾/𝜀௢𝑎௠௜௡ (6), thus contributing to the stabilization against the whipping instability. 
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Table S1. The measured viscosities of various working liquids.  

 

Composition of liquid Viscosity (Pa.s) 

Lecithin from soy bean 7.5 

Glyercin  1.41 

1 wt% water in glyercin  1.14 

2 wt% water in glyercin 0.93 

5 wt% water in glyercin 0.56 
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Fig. S1. Optical microscope images show the whipping structures of electrified liquid jets. a) A glycerin jet 
that whips chaotically in paraffin oil with 2% Span 80. b) A whipping lecithin jet forms a wave-like 
structure with a constant opening angle α in silicone oil of viscosity 10 mPa·s, similar to the structure 
observed in (19).  
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Fig. S2. Plot of the normalized jet radius 𝑎 𝑎଴⁄  against the axial distance 𝑥. a) Silicone oil jets (with 
viscosity of 3 Pa·s and 6 Pa·s) dispensed in air: separation L=0.5 m, Q=85 ml/hr. b) Silicone oil jets (with 
viscosity of 3 Pa·s and 6 Pa·s) dispensed in silicone oil of 20 mPa.s; separation L=0.014 m, Q=1 ml/hr. The 
nozzle size for the data in both plots is 0.92 mm.  
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Fig. S3. A log-log plot of the experimental parameter 𝛽 =
ଵ

√ଶ௄భ

௅

௔బ
 against the numerical value of cosଶ 𝑑ଵ, 

where 𝑑ଵ is the root of Eq. S18.The range of 𝛽 is from 2 to 10, covering all of our experiments. All data 
points collapse onto a solid line representing a power-law fit with an exponent of -2, implying 
cosଶ 𝑑ଵ~𝛽ିଶ.  
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Fig. S4. a) Experimentally measured current I scaled with 𝐼௖௢௡ௗ௨௖௧௜௢௡ as a function of the applied voltage 
for different interfacial tensions: 𝛾=2 mN/m (red) and 𝛾=6.7 mN/m (blue). b) A plot of the measured  
𝑎௠௜௡ against the applied E. The dashed line indicates the scaling between 𝑎௠௜௡ and E, 𝑎௠௜௡~𝐸ିଶ; the 
solid line represents the 𝑎~(2𝑄𝜎/𝐸𝐾)ଵ/ଷ  below which 𝐼௖௢௡ௗ௨௖௧௜௢௡ = 𝜋𝐸𝐾𝑎ଶ  is smaller than 
𝐼௖௢௡௩௘௖௧௜௢௡ = 2𝜎𝑄/𝑎 (10). Here 𝑄=20 ml/h, 𝛴=410-5 S/m, 𝛾=2 mN/m. 
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Movie S1. A high-speed video showing the dynamic behaviors “jetting”, “coiling” and “whipping” 
of an electrified liquid filament, respectively. The applied voltage increases from 0 kV to 1.5 kV. 
A liquid filament of a solution of lecithin with a viscosity of 𝜇=7.5 Pa.s is extruded from a nozzle 
with a radius of 𝑎଴=0.92 mm at a fixed flow rate 𝑄=10 ml/h into a bath of silicone oil with a 
viscosity of 𝜇=10 mPa·s.  
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