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SI Appendix: Two-Way Mixed-Effects Methods for Joint Associa-
tion Analysis Using Both Host and Pathogen Genomes

Supplementary Text

1 Two-Way Mixed-Effects Model for Association Analysis S2

1.1 One-Organism Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2

1.1.1 GRM Based on Biallelic Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S2

1.1.2 Extension to Multiallelic Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S3

1.2 Gaussian ATOMM: Two-Organism Linear Mixed Model . . . . . . . . . . . . . . . . . . . . . S8

1.3 Binomial-like ATOMM: Extension to non-Gaussian Phenotype . . . . . . . . . . . . . . . . . S9

2 Parameter Estimation by Solution of Estimating Equations S10

2.1 System of Estimating Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S10

2.2 Numerical Solution of Estimating Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . S11

3 Score Tests for Assessing Genetic Effects S12

3.1 Marginal Effect of H or P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12

3.2 Joint Effect of H and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S12

3.3 Gene × Gene Interaction Between H and P . . . . . . . . . . . . . . . . . . . . . . . . . . . . S13

3.4 Effect of H or P Allowing for Interaction Between H and P . . . . . . . . . . . . . . . . . . . S13

3.5 Retrospective Score Tests For the Binomial-like Trait . . . . . . . . . . . . . . . . . . . . . . . S14

4 Characterization of Xanthomonas Strains S15

4.1 Isolation of Xanthomonas Strains from Natural Populations of A. thaliana . . . . . . . . . . . S15

4.2 Phylogenetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S15

4.3 Testing the Pathogenicity of X. arboricola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S15

4.4 DNA Extraction, Genome Sequencing and Bioinformatics Analysis . . . . . . . . . . . . . . . S16

4.5 Comparative Genome Analysis of X. arboricola and Analysis of the Effector Repertoire Com-

position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S16

5 Phenotypic Models for QDR in A. thaliana–X.arboricola Study S17

5.1 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S17

5.2 Assessing Misfit of the Model with i.i.d. Random Effects (Model 2) . . . . . . . . . . . . . . . S19

5.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S19

6 Multiple Testing Adjustment for Gene Ontology Analysis S21

Supplementary Figures and Tables S24

S1
1710980115



Supplementary Text

1 Two-Way Mixed-Effects Model for Association Analysis

An overview of the ATOMM method is provided in the paper. Here, we provide a detailed and self-

contained description of our method, with some materials repeating from the paper if necessary. In Section

1.1, we overview the classical one-organism mixed-effects model and then propose an extension of the genetic

relatedness matrix (GRM) that allows triallelic (or multiallelic) variants. In Section 1.2, we develop a two-

way mixed-effects model for two-organism association analysis and describe the corresponding computational

components. For ease of presentation, we focus mainly on the linear mixed model (LMM) for a quantitative

trait, meaning the response is multivariate Gaussian. The extension of LMM to generalized linear mixed

model (GLMM) with a non-Gaussian trait is described in Section 1.3, with a particular focus on a binomial-

like trait.

1.1 One-Organism Linear Mixed Model

Suppose we observe both genotype and phenotype data from n individuals, where each individual represents

an inbred host line or a haploid pathogen strain. Let Yir denote the quantitative trait measured on individual i

and replicate r, where i = 1, . . . , n indexes the host line or pathogen strain and r = 1, . . . , k indexes replicates

within each individual. In the genetic association study of a quantitative trait, Yir is typically modeled as

conditionally multivariate normal:

Yir = Xirβ +Gtest
i γ + ηi + εir, where εir ∼ i.i.d. N(0, σ2

e), (1)

where Xirβ represents the fixed effects of covariates, Gtest
i γ is the effect of the genetic variant currently

being tested, ηi is the additive polygenic random effect of other variants in the genome not currently being

tested (i.e., background variants), and εir is i.i.d. Gaussian noise. The most common type of Gtest
i is a single

nucleotide polymorphism (SNP), in which Gtest
i is encoded as either 0 or 1 for inbred lines i = 1, . . . , n.

We refer to Gtest
i of this type as a “biallelic” variant. For a bacterial organism such as X. arboricola, its

genome consists of core regions that are shared among all strains and dispensable regions that are present

in only a subset of the sampled strains. In such a case, we also consider another type of Gtest
i that takes

three possible values, Gtest
i ∈ {0, 1, D}, where D is an additional genotype status representing “Deletion”.

This essentially treats the “deletion” or “not of a site” as a 3rd type allele. Without loss of generality, we

refer to Gtest
i of this type as a “triallelic” variant. In equation (1), we could replace the term Gtest

i γ by

γD1{Gtest
i =D} + γ11{Gtest

i =1} in that case, where 1 represents an indicator vector.

1.1.1 GRM Based on Biallelic Variants

In the case that all background variants are biallelic, the model for ηi, i.e., the additive polygenic effect of

the variants in the genome for individual i, is written as
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ηi =

m∑
l

αl
Gil − fl√
fl(1− fl)

, for all i = 1, . . . , n, (2)

where l indexes the variant in the genome, Gil ∈ {0, 1} is the genotype of individual i at variant l, fl is the

allele frequency of variant l, Gil−fl√
fl(1−fl)

is the standardized genotype of individual i at variant l, and the αl’s

are i.i.d. random effects independent of G satisfying

E(αl) = 0 and Var(αl) =
1

m
σ2
a, for all l = 1, . . . ,m. (3)

Let η = (η1, . . . , ηn)T , where n is the number of individuals in the study. Under regularity conditions

sufficient for a Central Limit Theorem (CLT) as m → ∞, the model equations (2) and (3) lead to the

following asymptotic approximation for large m:

η|G ∼MVN (0, σ2
aK), (4)

where K is the GRM with (i, j)th entry

K(i, j) =
1

m

m∑
l=1

(Gil − fl)(Gjl − fl)
fl(1− fl)

, for all i, j = 1, . . . , n. (5)

In practice, the allele frequency, fl, is unknown and we choose to use the sample average, f̂l, in place of fl in

(5). We focus on only biallelic variants (i.e., Gil ∈ {0, 1}) in the host A. thaliana genome, so the proposed

GRM lends itself well to this context. Combining (1), (4) and (5) yields the one-organism LMM with two

variance components:

E(Y |X,Gtest) = Xβ + (Gtest ⊗ 1k)γ and Var(Y |X,Gtest) = σ2
eI + σ2

a

(
K ⊗ 1k1

T
k

)
, (6)

where Y , X, Gtest are vectorized versions of Yir, Xir and Gtext
i , respectively, 1k denotes a vector of length

k with every element equal to 1, and I is an nobs × nobs identity matrix with nobs = nk. Model (6) has four

unknown parameters among which γ is the association parameter of interest and β, σ2
a, σ2

e are the nuisance

parameters.

1.1.2 Extension to Multiallelic Variants

In the pathogen X. arboricola genome, a large number of the genetic variants we consider are effectively

triallelic. This is because different strains of pathogen X. arboricola tend to have different genomic regions

present. These regions form what is called the dispensable genome. The presence of the dispensable genome

leads to many SNPs exhibiting three possible states among the sampled strains, i.e., Gil ∈ {0, 1, D} for

individual i = 1, . . . , n. In such a case, the allele frequency, fil, in the expression (5) is not well defined, so

a more general model for ηi is needed.

Recall that the vector of trait phenotypes Y = (Y1, . . . , Ynobs
)T can be modeled as conditionally multivariate

normal:

Y = Xβ +ZGtestγ +Zη + ε, where ε ∼MVN (0, σ2
eI), (7)
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where Z is the nobs × n incidence matrix, Xβ represents the fixed effects of covariates, Gtestγ is the effect

of the genetic variant currently being tested, η = (η1, . . . , ηn)T is the additive polygenic random effect of

other variants in the genome not currently being tested (i.e., background variants). In the case when all

background variants are triallelic, we propose to decompose the additive polygenic random effect, ηi, of

individual i into two orthogonal parts,

ηi = ηiS + ηiD, for all i = 1, . . . , n, (8)

where ηiS is the random effect due to SNP alleles, ηiD is the random effect due to deletion or not of sites, where

both ηiS and ηiD have similar structure as (2) and (3). Specifically, let l = 1, . . . ,m index the background

variant, and let fls ∈ (0, 1) be the frequency of state s ∈ {0, 1, D} at variant l, where fl1 + fl0 + flD = 1. We

write

ηiD =

m∑
l=1

αlD
1{Gil=D} − flD√
flD(1− flD)︸ ︷︷ ︸

def
=Ail

, (9)

and

ηiS =

m∑
l=1

αlS

(
1√

1− flD
1{Gil=1} − pl√
pl(1− pl)

)
1{Gil 6=D}︸ ︷︷ ︸

def
=Bil

, with pl
def
= P

(
1{Gil=1}|1{Gil 6=D}

)
=

fl1
1− flD

, (10)

for all i = 1, . . . , n, where 1{Gil=s} denotes the indicator function for s ∈ {0, 1, D}, Ail, Bil are the standard-

ized genotypes of individual i at variant l, and αlS , αlD are both i.i.d. random effects (to be specified later)

for variant l = 1, . . .m. We note that by construction, n−1/2(A1l, . . . , Anl)
T and n−1/2(B1l, . . . , Bnl)

T are or-

thonormal vectors in Rn for all l = 1, . . . ,m, if we plug in f̂lD = n−1
∑n
i=1 1{Gil=D}, f̂l1 = n−1

∑n
i=1 1{Gil=1},

and p̂l = f̂l1
1−f̂lD

for flD, fl1 and pl, respectively.

Now similarly as in (3), we make the modeling assumptions that α1S , . . . , αmS are i.i.d. random effects

with

E(αlS) = 0, Var(αlS) =
1

m
σ2
S , for l = 1, . . . ,m,

α1D, . . . , αmD are i.i.d. random effects with

E(αlD) = 0, Var(αlD) =
1

m
σ2
D, for l = 1, . . . ,m,

and α1S , . . . , αmS , α1D, . . . , αmD are mutually independent and independent ofG. If we let ηS = (η1S , . . . , ηnS)T

and ηD = (η1D, . . . , ηnD)T , then under regularity conditions sufficient for a CLT, we obtain the following

asymptotic approximation for large m:

ηS |G ∼MVN (0, σ2
SMS), ηD|G ∼MVN (0, σ2

DMD), and ηS ⊥ ηD|G, (11)

where MD and MS are variations on the biallelic GRM (5) that are constructed from (9) and (10).
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A parallel explanation. We could write (7) as

Y = Xβ+Gtestγ+Z

(
I − 1

n
11T

)
GDWD︸ ︷︷ ︸

def
=A

αD+Z

[(
I − 1

n
11T

)
GSWS

]
� [(I −GD)VD]︸ ︷︷ ︸

def
=B

αS +ε, (12)

where � denotes Hadamard product, Z is the nobs×n incidence matrix, GD is the n×m genotype incidence

matrix with (i, l)th entry equal to 1{Gil=D}, GS is the n×m genotype incidence matrix with (i, l)th entry

equal to 1{Gil=1}, WD is the m × m diagonal with (l, l)th entry equal to 1√
flD(1−flD)

, WS is an m × m

diagonal matrix with (l, l)th entry equal to 1√
pl(1−pl)

, VD is a length-m vector with lth entry equal to

1√
1−flD

, αD = (α1D, . . . , αmD)T , αS = (α1S , . . . , αmS)T , and we make modeling assumptions that ε, αD

and αS are independent,

E(αD) = 0, Var(αD) =
σ2
D

m
I, E(αS) = 0, Var(αS) =

σ2
S

m
I, E(ε) = 0, Var(ε) = σ2

eI.

Then the model equation (12) implies

Var(Y |X,Gtest,Z,GD,GS) = σ2
DMD + σ2

SMS + σ2
eI,

where

MD =
1

m
Z(I − 1

n
11T )GDW

2
DG

T
D(I − 1

n
11T )ZT =

1

m
ZAATZT , and MS =

1

m
ZBBTZT .

For parsimony, we take σ2
S = σ2

D and call it σ2
a/2. With some bookkeeping, the model equations (8), (9),

(10) and (11) reduce to

η ∼MVN (0, σ2
aK), (13)

where K = (MS +MD)/2 is the GRM based on triallelic variants, with (i, j)th entry

K(i, j) =
1

2m

m∑
l=1

−1{Gil 6=Gjl} +
∑

s∈{0,1,D}

1− fls
fls

1{Gil=Gjl=s}

 , for all i, j = 1, . . . , n. (14)

The factor of 2 in (14) is to ensure that E(Kii) = 1 under the assumption that Gil follows a 3-class categorical

distribution. Finally, in the general case when the background variants consist of both biallelic and triallelic

variants, we construct the empirical GRM using the weighted average of (5) and (14), where the weight is

proportional to the number of corresponding variants, and the sample frequencies are used in place of the

true allele frequencies to construct K.

More generally, if all m genetic variants had δ alleles, δ ≥ 2, then we could use equation (13) with K having

(i, j)th entry

K(i, j) =
1

(δ − 1)m

m∑
l=1

(
−1{Gil 6=Gjl} +

δ∑
s=1

1− fls
fls

1{Gil=Gjl=s}

)
. (15)

Note that in the case δ = 2, equation (15) reduces to the commonly-used biallelic GRM given in (5).

From the viewpoint of modeling genotypes, a connection between equation (14) and kinship estimation is
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given in the following theorem:

Theorem 1.1. Fix a genetic variant l ∈ {1, . . . ,m}. Assume that for individuals i = 1, . . . , n, Gil follows a

3-class categorical distribution with occurrence frequencies 0 < fls < 1 for s ∈ {0, 1, D}, where fl0+fl1+flD =

1. Let φ(i, j) denote the kinship coefficient between individuals i and j. Consider a class of linear estimators

of the form

φ̂(i, j) = βl41{Gil 6=Gjl} +
∑

s∈{0,1,D}

βls1{Gil=Gjl=s}, (16)

where βl4 ∈ R and βls ∈ R for s ∈ {0, 1, D}. If φ(i, j) = δ > 0, then as δ → 0, the minimum-variance

unbiased estimator (MVUE) in the class (16) is

φ̂∗(i, j)→ −1

2
1{Gil 6=Gjl} +

∑
s∈{0,1,D}

1− fls
2fls

1{Gil=Gjl=s}.

Proof. Consider a pair of individuals, i, j, and their alleles at variant l, Gil, Gjl. For simplicity, we drop the

index l in the proof. By definition, the probability for the event {Gi and Gj are identical by descent} is

φ(i, j). By (16), we have

E[φ̂(i, j)] = β4E1{Gi 6=Gj} +
∑

s∈{0,1,D}

βsE1{Gi=Gj=s}

= β4 [1− φ(i, j)]
(
1− f2

0 − f2
1 − f2

D

)
+

∑
s∈{0,1,D}

βs
{
φ(i, j)fs + [1− φ(i, j)] f2

s

}

= φ(i, j)

 ∑
s∈{0,1,D}

βsfs(1− fs)− β4

1−
∑

s∈{0,1,D}

f2
s


︸ ︷︷ ︸

Part I

+
∑

s∈{0,1,D}

βsf
2
s + β4

1−
∑

s∈{0,1,D}

f2
s


︸ ︷︷ ︸

Part II

.

Since we are interested in the unbiased estimator, we set E[φ̂(i, j)] = φ(i, j) 6= 0. This implies Part I = 1

and Part II = 0. So, (β0, β1, βD, β4) satisfies the following equations
∑
s∈{0,1,D} βsfs(1− fs)− β4

(
1−

∑
s∈{0,1,D} f

2
s

)
= 1,∑

s∈{0,1,D} βsf
2
s + β4

(
1−

∑
s∈{0,1,D} f

2
s

)
= 0.

(17)

Simplifying (17) gives 
β0f0 + β1f1 + βDfD = 1,

β4 = −β0f
2
0 + β1f

2
1 + βDf

2
D

1− f2
0 − f2

1 − f2
D

.
(18)

For the variance of φ̂(i, j), we have

Var[φ̂(i, j)] = E[φ̂2(i, j)]− E[φ̂(i, j)]2

=
∑

s∈{0,1,D}

β2
sE1{Gi=Gj=s} + β2

4E1{Gi 6=Gj} − φ
2(i, j)

=
∑

s∈{0,1,D}

β2
s

{
φ(i, j)fs +

[
1− φ(i, j)f2

s

]}
+ β2

4 [1− φ(i, j)]
(
1− f2

0 − f2
1 − f2

D

)
− φ2(i, j)

(19)
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Plugging (18) into (19), we obtain

Var[φ̂(i, j)] = φ(i, j)
∑

s∈{0,1,D}

β2
sfs+[1− φ(i, j)]

 ∑
s∈{0,1,D}

β2
sf

2
s +

(
β0f

2
0 + β1f

2
1 + βDf

2
D

)2
1− f2

0 − f2
1 − f2

D

−φ2(i, j). (20)

In order to find φ̂∗(i, j), the MVUE of the form (16), we seek to solve the following optimization problem:

min
β0,β1,βD∈R

Var[φ̂(i, j)]

subject to β0f0 + β1f1 + βDfD = 1,
(21)

where the second line follows from (18). We note that there does not exist a single φ̂∗(i, j) that uniformly

solves (21) for all φ(i, j) ∈ [0, 1]. Instead, we consider the following boundary case when φ(i, j) = δ → 0.

Then (20) simplifies to

Var[φ̂(i, j)] =

 ∑
s∈{0,1,D}

β2
sf

2
s

+

1−
∑

s∈{0,1,D}

f2
s

−1 ∑
s∈{0,1,D}

βsf
2
s

2

+O(δ). (22)

We apply the Langrange multiplier method to solve the constrained optimization (21). Specifically, define

H(β0, β1, βD, λ) =

1−
∑

s∈{0,1,D}

f2
s

 ∑
s∈{0,1,D}

β2
sf

2
s

+

 ∑
s∈{0,1,D}

βsf
2
s

2

− λ

 ∑
s∈{0,1,D}

βsfs − 1

 .

(23)

Setting the partial derivatives to zero gives0 = ∂H
∂βs

= 2Cf2
s βs + 2Ef2

s − λfs, for s ∈ {0, 1, D},

0 = ∂H
∂λ =

∑
s∈{0,1,D} βsfs − 1,

where

C
def
= 1−

∑
s∈{0,1,D} f

2
s ,

E = E(β0, β1, βD)
def
=
∑
s∈{0,1,D} βsf

2
s .

(24)

Since fs 6= 0, the first equation in (24) implies

2Cβsfs + 2Efs = λ, for s ∈ {0, 1, D}. (25)

Combining this with the second equation in (24) and the definitions of C and E, we obtain
∑
s∈{0,1,D} (2Cβsfs + 2Efs) =

∑
s∈{0,1,D} λ,∑

s∈{0,1,D}
(
2Cβsf

2
s + 2Ef2

s

)
=
∑
s∈{0,1,D} λfs,

⇒

2C + 2E = 3λ,

2CE + 2E(1− C) = λ,
⇒

C = λ,

E = λ
2 .

(26)

Now pluggging (26) back into (25) yields

βs =
λ− 2Efs

2Cfs
=

1− fs
2fs

, for s ∈ {0, 1, D}.

Note that the constrained optimization (22) is equivalent to the unconstrained optimization (23) up to a
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small factor O(δ) = o(1). Therefore, the minimizer of (22) under the constraint (21) is

β∗s =
1− fs

2fs
+ o(1), for s ∈ {0, 1, D}.

By (18) and (16), this implies that the MVUE in this case is

φ̂∗(i, j) =− 1

2
1{Gil 6=Gjl} +

∑
s∈{0,1,D}

1− fls
2fls

1{Gil=Gjl=s} + o(1).

Theorem 1.1 elucidates that the Ki,j we propose in (14) is an unbiased estimate of φ(i, j), and would have

close to the minimum variance if the true kinship coefficient φ(i, j) were close to 0. This property seems

desirable because the levels of relatedness are often low in natural populations, and the presence of non-

zero relatedness increases only the variance of φ̂∗(i, j) but not its bias (in the case when (f0, fs, fD) is

known).

1.2 Gaussian ATOMM: Two-Organism Linear Mixed Model

We now have all the ingredients necessary to describe the conditionally Gaussian version of ATOMM. Suppose

we observe both genotype and phenotype data from n host-pathogen pairs. For simplicity, we ignore the

replicates for the moment. Let Yij denote the trait value measured on host-pathogen pair (i, j), where

i = 1, · · · , nh indexes the host inbred line, and j = 1, · · · , np indexes the pathogen strain, with nhnp = n.

We propose to model Yij as

Yij︸︷︷︸
Response

= Xijβ︸ ︷︷ ︸
Covariates

+Gh,test
i γ1 +Gp,test

j γ2 +Gh,test
i Gp,test

j γ3︸ ︷︷ ︸
Fixed Effects of Interest

+ ηhi + ηpj + ηhpij︸ ︷︷ ︸
Random Effects

+ εij︸︷︷︸
i.i.d. Noise

, (27)

whereXijβ represents covariate effects, Gh,test
i γ1 is the effect of the host genetic variant being tested, Gp,test

j γ2

is the effect of the pathogen genetic variant being tested, Gh,test
i Gp,test

j γ3 is the interaction effect between the

tested host variant and the tested pathogen variant, ηhi , η
p
i and ηhpij are additive polygenic random effects (to

be specified later) of other variants not currently being tested, and εij is assumed i.i.d. N(0, σ2
e). Motivated

by the features of the A. thaliana and X. arboricola genomes, we consider Gh,test
i ∈ {0, 1}, i.e., each host

variant has two possible genotype states, whereas either Gp,test
j ∈ {0, 1} or Gp,test

j ∈ {0, 1, D}, depending

on whether the pathogen genetic variant under consideration is biallelic or triallelic. In the latter case, we

replace the term Gp,test
j γ2 by γ2,D1{Gp,test

j =D} + γ2,11{Gp,test
j =1}, and we replace the term Gh,test

i Gp,test
j γ3 by

γ3,DG
h,test
i 1{Gp,test

j =D} + γ3,1G
h,test
i 1{Gp,test

j =1} in equation (27). Here the encoding of the genotypic values

is appropriate for genetic variants of inbred A. thaliana lines or haploid X. arboricola strains. With little

modification, our method can easily extend to other encoding of genotypic values, e.g., for diploid individuals,

depending on the specific host/pathogen organisms in the study.

To model the random effects, let ηh = (ηh1 , . . . , η
h
nh

)T represent the host additive polygenic random effects,

ηp = (ηp1 , . . . , η
p
np

)T be the pathogen additive polygenic random effects, and ηhp = (ηhp11 , . . . , η
hp
1np

, . . . ,

ηhpnh1, . . . , η
hp
nhnp

)T be the host-pathogen additive-by-additive interaction random effects. Following the same
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lines as in Sections 1.1.1 and 1.1.2, we propose the model:

ηh ∼MVN (0, σ2
hKh), ηp ∼MVN (0, σ2

pKp), and ηhp ∼MVN (0, σ2
hpKhp), (28)

where Kh is the host GRM described in Section 1.1.1, Kp is the pathogen GRM described in Section 1.1.2,

and Khp is the covariance matrix for the host-pathogen interaction effects. We propose to model Khp

as

Khp = Kh ⊗Kp, (29)

where ⊗ denotes the Kronecker product. This choice of Khp can be derived as above using Fisher’s infinites-

imal approach. Specifically, let ηhpij denote the interaction random effect for host i and pathogen j. In the

simplest case where host and pathogen variants both are biallelic, we propose

ηhpij =

mh∑
k=1

mp∑
l=1

βlk
(Ghki − fhk )√
fhk (1− fhk )

(Gplj − f
p
l )√

fpl (1− fpl )
, for all i = 1, . . . , nh, j = 1, . . . , np,

where βlk are i.i.d. random effects with E(βlk) = 0, Var(βlk) = m−1
h m−1

p σ2
hp. If we let ηhp = (ηhp11 , . . . , η

hp
1np

, . . . ,

ηhpnh1, . . . , η
hp
nhnp

)T , then under regularity conditions sufficient for a CLT, we obtain the asymptotic ap-

proximation η ∼ MVN (0, σ2
hpKhp) for large mh · mp, where Khp = Kh ⊗ Kp. Similarly, we also use

η ∼ MVN (0, σ2
hpKhp) with Khp = Kh ⊗ Kp when the pathogen genome containing both biallelic and

triallelic variants, where in that case, we take Kp to be the weighted average of (5) and (14), with the weight

proportional to the number of corresponding variants.

By (27), (28) and (29), the vectorized version of the full model, ignoring replicates, would be

Y |X,Gh,test,Gh,test ∼MVN (µ,Σ), where

µ = Xβ +
(
Gh,test ⊗ 1np

)
γ1 +

(
1np ⊗Gp,test

)
γ2 +

(
Gh,test ⊗Gp,test

)
γ3,

Σ = σ2
h[Kh ⊗ (1np1Tnp

)] + σ2
p[(1np1Tnp

)⊗Kp] + σ2
hp(Kh ⊗Kp) + σ2

2I.

(30)

There are four variance components in the model, with the covariance matrices, Kh, Kp, Khp, reflecting

the polygenic effects of host, pathogen, and their interactions, respectively. We use sample allele frequencies

in place of fl and fls, s ∈ {0, 1, D} to estimate Kh, Kp and Khp.

1.3 Binomial-like ATOMM: Extension to non-Gaussian Phenotype

In situations when the phenotype of interest is non-Gaussian, one could still apply the Gaussian ATOMM

though one might expect the mean to be related to the variance. Alternatively, one can extend (30) by taking

a quasi-likelihood approach to circumvent the necessity of specifying a full probability model. Specifically,

instead of specifying the full distribution as in (27), we consider a semi-parametric model for Y by specifying

only the first two conditional moments. For example, our motivating A. thaliana–X. arboricola dataset has

a binomial-like response, yij ∈ {0, 1, 2, . . . , k} (here, k = 4), so one could consider the following model for

the mean
E(Y |X,Gh,test,Gp,test) = kµ where

logit (µ) = Xβ + (Gh,test ⊗ 1np
)γ1 + (1na

⊗Gp,test)γ2 + (Gh,test ⊗Gp,test)γ3,
(31)
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and for the variance

Var(Y |X,Gh,test,Gp,test) = σ2
tMΣM , where

Σ = ξ1Kh ⊗ (1np1Tnp
) + ξ2

(
1nh

1Tnh

)
⊗Kp + ξ3Khp + (1− ξ1 − ξ2 − ξ3)I,

(32)

where M is a diagonal matrix with ith diagonal element equal to
√
kµi(1− µi); (ξ1, ξ2, ξ3) parameterizes the

proportion of total variance explained by each component and 0 ≤ ξi ≤ 1, i = 1, 2, 3, 0 ≤ ξ1 + ξ2 + ξ3 ≤ 1; Σ

is pre- and post-multiplied by the diagonal matrix M so that the conditional variance of Yi is kµi(1−µi)σ2
t ;

and σ2
t is an additional unknown parameter for dispersion.

The model specified in (31) and (32) is a natural generalization of the two-way mixed-effects LMM (30) to the

two-way mixed-effects GLMM. Using the quasi-likelihood framework, model (32) can be further generalized

to allow other types of trait, such as a binary or Poisson-like trait. In general, one can choose a suitable

link function and a diagonal matrix M of the form M = diag{
√
V (µ1), · · · ,

√
V (µn)} where the variance

function V (·) is chosen based on the conditional variance of Yi in the corresponding exponential family.

In situations in which the phenotype is non-Gaussian, GLMM seems to better reflect the nature of the phe-

notype distribution. In the A. thaliana–X. arboricola analysis, we found that the variance-mean relationship

for QDR resembles the binomial variance function with dispersion allowed, V (µ) = 4µ(1 − µ)σ2. However,

a Gaussian linear approximation usually works well in practice [2, 3, 13]. In fact, the linear model on a

binary or binomial phenotype finds broad use in GWAS and has been shown to be rather robust to model

misspecification. On the other hand, a careful use of a logistic link function and variance function could

potentially increase power, especially when covariate effects are large [12]. In Section 3.5, we compare these

two approaches by assessing the association results in the A. thaliana–X. arboricola dataset.

2 Parameter Estimation by Solution of Estimating Equations

Following a similar approach to that of Jiang et al. [12] and Zhong et al. [25], parameter estimation for the

quasi-likelihood model (30) can be performed under either the full model given in (30) or under the null

hypothesis

H0 : γ1 = γ2 = γ3 = 0. (33)

In the context of the score tests for association that we perform, it is the parameter values estimated under

the null that are needed. We therefore present a scheme for parameter estimation under the null for the

binomial-like ATOMM (Section 1.3). From that, the procedure for the Gaussian ATOMM (Section 1.2)

follows naturally, because the quasi-likelihood model for Gaussian ATOMM has similar expressions to those

in (31) and (32), except that we replace the logistic link by the identity function and set M = I.

2.1 System of Estimating Equations

In the null model, the parameters to be estimated are β, σ2
t , ξ1, ξ2 and ξ3. For the binomial-like model, we

have specified only first and second moments, rather than specifying the entire distribution. We therefore use

an estimating equation approach [12, 25] for parameter estimation under the null. In this approach, the fixed

effects are estimated using quasi-likelihood, with additional estimating equations constructed for the variance
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components, based on setting observed values of certain quadratic forms equal to their expectations. The

resulting estimating equations for the fixed effects β and variance components σ2
t , ξ1, ξ2, ξ3 can be written

as

XTMΣ−1M−1(Y − kµ) = 0,

σ2
t = n−1(Y − kµ)TM−1Σ−1M−1(Y − kµ),

σ−2
t (Y − kµ)TM−1Σ−1[Kh ⊗ (1np

1Tnp
)− I]Σ−1M−1(Y − kµ) = tr

{
Σ−1[Kh ⊗ (1np

1Tnp
)− I]

}
,

σ−2
t (Y − kµ)TM−1Σ−1

[
(1nh

1Tnh
)⊗Kp − I]Σ−1M−1(Y − kµ) = tr

{
Σ−1[(1nh

1Tnh
)⊗Kp − I

]}
,

σ−2
t (Y − kµ)TM−1Σ−1(Khp − I)Σ−1M−1(Y − kµ) = tr

[
Σ−1 (Khp − I)

]
.

(34)

We solve the above equations and take the solutions, β̂0, σ̂t,0, ξ̂1,0 ,ξ̂2,0 and ξ̂3,0, as the null estimates. Here,

the subscript “0” means that estimation is under the null (33). Because the system (34) involves non-linear

equations, a closed form solution is not known in general. We take a numerical search approach [12, 25] to

solve for β̂0, σ̂t,0, ξ̂1,0 ,ξ̂2,0 and ξ̂3,0.

2.2 Numerical Solution of Estimating Equations

Our computational strategy involves two loops: the outer loop searches over the variance component pa-

rameter (ξ1, ξ2, ξ3), and the inner loop solves the quasi-score equations for the fixed effects given the current

value of (ξ1, ξ2, ξ3).

Given the variance component estimate, (ξ̂1, ξ̂2, ξ̂3), the resulting β̂ and σ̂2
t can be obtained by solving the

first two equations in system (34). For the Gaussian ATOMM, the β̂ and σ̂2
t have closed-form expression. For

the Binomial-like ATOMM, the score equation for β is itself a set of nonlinear equations where nonlinearity

originates from the fact that M and µ are functions of β. In this case, we use a modified Newton-Raphson

algorithm with Fisher scoring [15] to find a convergence value of β̂. At each step of the Newton-Raphson

algorithm, β̂ is iteratively updated by

β̂(t+1) = β̂(t) +
(
XTMΣ−1MX

)−1 [
XTMΣ−1M−1(Y − kµ)

] ∣∣
β=β̂(t) .

Once a limiting value of β̂ is obtained, we plug it into the second equation of (34) and solve to obtain a

closed-form expression for σ̂2
t , and then plug both β̂ and σ̂2

t into the last three equations of (34).

In the outer loop, we search for the value of the variance component parameter, (ξ̂1, ξ̂2, ξ̂3), that solves

the last three equations in (34). We define an objective function, f(ξ1, ξ2, ξ3), to be the total sum of the

absolute difference between two sides of the last three equations in (34). The function f(ξ1, ξ2, ξ3) is then

to be minimized in the simplex {(ξ1, ξ2, ξ3) : 0 ≤ ξi ≤ 1 for i = 1, 2, 3, and 0 ≤ ξ1 + ξ2 + ξ3 ≤ 1} using the

Nelder-Mead simplex algorithm [18]. Heuristically, we choose to restart the simplex search twice in order to

obtain a better convergence behavior. The search is stopped when either (a) the reduction in the objective

function is less than 10−2, or (b) the number of updates exceeds 5,000, whichever occurs first. We denote

the output by (ξ̂1,0, ξ̂2,0, ξ̂3,0). Note that for the Gaussian ATOMM, (ξ̂1,0, ξ̂2,0, ξ̂3,0) actually represents the

profile MLE of (ξ1, ξ2, ξ3) under the null hypothesis.
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3 Score Tests for Assessing Genetic Effects

For association studies with two organisms, there are several hypothesis tests of interest depending on the

specific goal. Given a pair of genetic variants, one from the host genome (call this variant H) and the other

from the pathogen genome (call this variant P), ATOMM has the option to test for (a) marginal effect of

H or P, (b) gene × gene interaction between H and P, (c) effect of H or P allowing for interaction between

H and P, and (d) joint effect of H and P. We present a series of score tests based on the binomial ATOMM

(31) and (32), where the analogy for Gaussian ATOMM (30) follows naturally.

3.1 Marginal Effect of H or P

One can screen the host or pathogen genome to assess the marginal effect of each individual variant. The

marginal association test (e.g., for a host variant) is defined as

H0 : γ1 = 0, versus HA : γ1 6= 0,

with constraint γ2 = γ3 = 0. The corresponding score statistic is

Tmarginal =
1

σ̂2
t,0

(Y − kµ̂0)TM̂−1
0 Σ̂−1

0 M̂0G[
GTM̂0Σ̂

−1
0 M̂0G−GTM̂0Σ̂

−1
0 M̂0W (W TM̂0Σ̂

−1
0 M̂0W )−1W TM̂0Σ̂

−1
0 M̂0G

]−1

GTM0Σ̂
−1
0 M−1

0 (Y − kµ̂0),

(35)

where in (35) we set G = Gh,test⊗ 1np
, W = X with X being covariates, and the quantities with subscript

“0” denote the null estimates obtained by plugging in the null estimates, β̂0, σ̂2
t,0, ξ̂1,0, ξ̂2,0, ξ̂3,0 described

in Section 2. Under the null, Tmarginal follows a χ2
1 distribution. The marginal association of a pathogen

variant can be assessed similarly, in which we test the null H0 : γ2 = 0 against HA : γ2 6= 0 with constraint

γ1 = γ3 = 0. The form of marginal association test is similar to that derived from a standard single-organism

LMM [1, 13] except that in our case we account for the polygenic effects in the mixed model arising for both

organisms as well as their interaction.

3.2 Joint Effect of H and P

A joint test serves as a useful tool to detect overall association due to either the host or pathogen main

effects or their interaction. Instead of beginning with a scan of main effects as in typical GWAS, one could,

in principle, begin with a scan of all possible host-pathogen SNP-pair effects using the joint tests, for which

the null hypothesis is

H0 : γ1 = γ2 = γ3 = 0,

versus

HA : γi 6= 0 for some i.

(36)

The corresponding test statistic is the same as in (35), except that we set G = (Gh,test⊗1np , 1nh
⊗Gp,test,

Gh,test ⊗Gp,test) and W = X. By definition, G here is either an n × 3 or an n × 5 matrix, depending on
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whether the variant P is biallelic (i.e., Gp,test ∈ {0, 1}n) or triallelic (i.e., Gp,test ∈ {0, 1, D}n). The joint

test (36) is built upon the same null model as the marginal test, so the estimates, β̂0, σ̂t,0, ξ̂1,0, ξ̂2,0 and ξ̂3,0,

remain the same as in Section 3.1. Under H0, Tjoint follows either χ2
3 or χ2

5, respectively.

The joint test could, in some cases, lead to increased flexibility and power to detect association signal when

the variant pair exhibits negligible marginal effects, but strong joint effects. On the other hand, power could

be severely compromised by the multiple comparison penalty for the large number of hypothesis tests and by

the spending of extra degrees of freedom to test interaction effects in cases when the most important effects

are marginal effects.

3.3 Gene × Gene Interaction Between H and P

To identify whether the additive main effects of the variant pair are modified by an additional interaction,

a G × G interaction test, for which the null hypothesis is

H0 : γ3 = 0, versus HA : γ3 6= 0.

The test statistic is the same as in (35), except that we set G = Gh,test ⊗Gp,test, W = (X, Gh,test ⊗ 1np ,

1nh
⊗ Gp,test), and the estimates, β̂0, σ̂2

t,0, Σ̂−1
0 , µ̂0, M̂0, are recalculated under H0 : γ3 = 0, instead of

γ1 = γ2 = γ3 = 0, as described in Section 2. The resulting test statistic has a χ2
1 or χ2

2 null distribution

depending on whether the variant P is biallelic or triallelic. In principle, for this particular score test,

one needs to refit the null variance component, (ξ1, ξ2, ξ3), for each host-pathogen variant pair. However,

considering that most variant pairs have only small genetic effects, we choose to instead compute (ξ̂1, ξ̂2, ξ̂3)

under the global null (36) only once per genome screen (at least at the initial stage of analysis). The fixed

effects β and total variance σ2
t are refit for every host-pathogen variant pair though.

The ability to test the interaction effect separately from the main effects can be particularly useful in the

A. thaliana–X. arboricola data analysis. The interaction test reveals how a particular host variant responds

differently for different pathogen variants. Furthermore, compared to the joint test, the interaction test has

fewer degrees of freedom, thereby retaining more statistical power.

3.4 Effect of H or P Allowing for Interaction Between H and P

To assess the genetic association of a given (say, host) variant, one can alternatively jointly test the marginal

effect and its interaction with a pathogen variant. This test might help to identify genes that would not be

identified by a standard marginal test. More precisely, we focus on

H0 : γ1 = γ3 = 0, versus HA : γ1 6= 0 or γ3 6= 0, (37)

without constraint on γ2. The derived statistic is similar to (35) where we now set W = (X, 1nh
⊗Gp,test),

G =
(
Gh,test ⊗ 1np

, Gh,test ⊗Gp,test
)
, and recalculate the estimates, β̂0, σ̂2

t,0, Σ̂−1
0 , µ̂0, M̂0, under the null

H0 : γ1 = γ3 = 0. To reduce the computational burden, we choose to compute the variance component,

(ξ̂1, ξ̂2, ξ̂3), under the global null (36) once per genome scan.

Equation (37) treats the pathogen marginal effect as a nuisance parameter, and treats both the host marginal
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effect and the interaction effect as the parameters of interest. If a host variant influences the phenotype

through interaction with a given pathogen variant, then allowing for the interaction in the association effect

could increase the power to detect the association signal at this host variant.

3.5 Retrospective Score Tests For the Binomial-like Trait

In the A. thaliana–X. arboricola data analysis, we found that the marginal p-values from the Gaussian model

are well-calibrated, whereas the marginal p-values from the prospective binomial-like model exhibit mod-

est genome-wide inflation (SI Appendix, Fig. S10). Note that the test statistic (35) from the binomial-like

mixed model is constructed by assessing the null variance of the score function, (Y − kµ̂0)TM̂−1
0 Σ̂−1

0 M̂0G,

prospectively, i.e., treating the phenotype Y as random. Furthermore, the variance of Y relies on the mean

via the binomial-like variance function. Hence the resulting test might be moderately sensitive to misspeci-

fication of the mean model of Y such as omitting some important explanatory variables, and this could be

a possible explanation for the modest genome-wide inflation. We refer to the test statistic constructed by

modeling the phenotype Y as random as the “prospective” test.

To overcome the apparent lack of robustness of the prospective test under the Binomial-like model, we

construct a corresponding retrospective score test, in which we model the (say, host) genotype Gh,test as

random, conditional on the phenotype Y and the covariates X. Specifically, following our earlier work [12,

22], we use the retrospective statistic,

T retro
marginal =

1

σ2
g

(Y − kµ̂0)TM̂−1
0 Σ̂−1

0 M̂0G
h,test

[
(Y − kµ̂0)TM̂−1

0 Σ̂−1
0 M̂0K̂hM̂0Σ̂

−1
0 M̂−1

0 (Y − kµ̂0)
]−1

(
Gh,test

)T
M0Σ̂

−1
0 M−1

0 (Y − kµ̂0),

(38)

to test for association under the Binomial-like model for a host variant with genotype Gh,test. Under the

null hypothesis (35), T retro
marginal follows a χ2

1 distribution. The statistic (38) can be viewed as assessing the

null variance of the score function, (Y − kµ̂0)TM̂−1
0 Σ̂−1

0 M̂0G
h,test, in a retrospective manner based on the

following population genetic model for biallelic Gh,test under the null:

E0(Gh,test|Y ,X) = αX,

Var0(Gh,test|Y ,X) = σ2
gKh.

We could apply an analogous retrospective test to the pathogen instead of the host.

In the case of an inbred line or haploid organism, we consider two possible estimators of σ2
g . The first is

given by a generalization of the sample variance [20]:

σ̂2
g = (nh − 1)−1

(
(Gh,test)T K̂−1

h Gh,test − (Gh,test)T K̂−1
h 1nh

(1Tnh
K̂−1
a 1nh

)−11Tnh
K̂−1
h Gh,test

)
, (39)

if the matrix K̂h is non-singular. If K̂h is singular, for example, in the case of no missing genotypes

at any variants being considered in the estimator (5) (with f̂l used in place of fl), we take σ̂2
g = (nh −

1)−1(Gh,test)T K̂−h G
h,test, where K̂−h is the Moore-Penrose generalize inverse. See [20] for details. The

second estimator of σ2
g we consider is given by

σ̌2
g = p̌(1− p̌), where p̌ = (1Tnh

K̂−1
h 1nh

)−11Tnh
K̂−1
h Gh,test. (40)
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(Note that in both estimators of σ2
g , we implicitly assume E0(Gh,test|Y ,X) = p1 instead of αX.) In

diploid organisms, the analogue of estimator σ̂2
g in equation (39) is recommended in preference to analogue

of estimator σ̌2
g because the analogue of σ̂2

g does not require Hardy-Weinberg equilibrium. However, in an

inbred line or haploid organism, no such consideration applies, and the general relationship between mean

and variance of a binary random variable, given by σ2 = µ(1 − µ), necessarily holds. The estimator σ̂2
g

does not make use of this information. In our data analysis, when we perform retrospective association tests

on variants in the X. arboricola genome, we find that σ̂2
g is numerically unstable for several X. arboricola

variants (SI Appendix, Fig. S11). This is probably due to the relatively small sample size (np = 22), and the

fact that we have some strain pairs with K̂h(i, j) close to 1, so for SNPs for which one of these strain pairs

does not agree, σ̂2
g becomes highly inflated. In contrast, σ̌2

g continues to perform reasonably in this context.

When testing a triallelic variant, we use a version of equations (38) and (40) extended to multi-allelic variants

(see [11] for details).

4 Characterization of Xanthomonas Strains

4.1 Isolation of Xanthomonas Strains from Natural Populations of A. thaliana

The 12 US strains of Xanthomonas were isolated from three locations (Lake Michigan College, LMC, latitude

= 42◦5′24.41′′N, longitude = 86◦23′36.27′′W; Michigan Extension, ME & MEDV, latitude = 42◦5′33.72′′N,

longitude = 86◦21′22.76′′W; North Liberty, NL, latitude = 41◦32′24.88′′N, longitude = 86◦25′32.86′′W).

The 12 French strains of Xanthomonas were isolated from four locations (Brendaouez, BRE, latitude =

48◦36.909′N, longitude = 4◦25.129′WLa Forest Landerneau, FOR, latitude = 48◦25.560′N, longitude =

4◦18.413′W; Meurchin, MEU, latitude = 50◦29.947′N, longitude = 2◦53.633′E; Ploudiry, PLY, latitude =

48◦27.502′N, longitude = 4◦8.383′W). The 24 strains of Xanthomonas were first identified based on the colony

morphology. The 12 US strains were then sequenced for a 16S fragment with the 799f primer, whereas the

12 French strains were sequenced for a rpoD fragment [7].

4.2 Phylogenetic Analysis

To identify the phylogenetic position of the 24 Xanthomonas strains in our study, we first built a phylogeny

based on the rpoD housekeeping gene by using 76 Xanthomonas strains whose genomes were available in

GenBank. A phylogenetic tree showed that the 24 studied strains belong to the X. arboricola complex (SI

Appendix, Fig. S6). To verify whether the phylogenic relationship of the Xanthomonas strains was robust,

we also performed a MLST phylogeny based on rpoD, gyrB, atpD, and glnA housekeeping genes (5865 bp).

MLST also supported that the 24 strains belong to the X. arboricola complex (SI Appendix, Fig. S7).

4.3 Testing the Pathogenicity of X. arboricola

Because X. arboricola has been mainly described as a bacterial pathogen of woody plants, we tested whether

the 24 studied strains were pathogenic on A. thaliana. To do so, we inoculated four lines of A. thaliana

(Col-0, Kas-1, Pro-0 and VED-10) with: (i) four strains isolated from walnut tree [4], with the strains

CFBP2528 and CFBP7179 described as pathogenic on walnut and the strains CFBP7634 and CFBP7651
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reported to be non-pathogenic and to lack the T3SS; (ii) four strains used in our study (two strains lacking

the hrp/hrc cluster, LMC P73 and FOR F23, and two strains with the hrp/hrc cluster, MEDV 37 and

MEU M1). Following the protocol described in [10], our pathogenic assay revealed that all the strains tested

were pathogenic on A. thaliana, and that significant phenotypic variation in the response to X. arboricola

was found among the four A. thaliana lines (SI Appendix, Fig. S8).

4.4 DNA Extraction, Genome Sequencing and Bioinformatics Analysis

DNA of the X. arboricola strains was extracted according to the Qiagen Gentra Puregene protocol for gram-

negative bacteria. The only modification was to keep the samples on ice for the protein precipitation for 2

hours instead of 5 minutes. DNAseq was performed at the Argonne National Laboratory. DNAseq libraries

were prepared according to Illumina’s protocol using the Illumina’s TruSeq DNAseq Library Preparation

and Illumina Mate Pair Library Preparation kits. DNAseq experiments were performed on an Illumina

HiSeq2000 using a paired-end read length of 2 × 150 pb. The X. arboricola sequences were assembled using

A5 pipeline [21] and aligned using progressiveMauve [6]. SNPs were compiled from the progressiveMauve

alignments using a custom Python script.

Structural annotation for all X. arboricola assembled genomes was performed by using the EuGene-PP

pipeline [19] in a Galaxy environment [5]. Functional annotation was conducted after converting the assem-

bled genomes in proteomes with InterPro algorithm [16]. OrthoMCL analysis [14] was performed to cluster

the ortholog and paralog protein families by using 80% as match cut-off in ortholog clustering. Statistics for

the annotated genomes are shown in the SI Appendix, Table S4.

4.5 Comparative Genome Analysis of X. arboricola and Analysis of the Effector

Repertoire Composition

Eight strains isolated from crops (CFBP2528, CFBP7179, CFBP7634, CFBP7651, CITA44, IVIA2626.1,

NCPPB1832 and NCPPB1630) were also selected for comparative genomics analysis because of their close

relationship with the 24 studied strains.

To characterize the type III secretion system (T3SS) repertoire, a list of protein sequences for the hrp/hrc

cluster and the T3SS effectors were established by using the bacterial type III secretion system database

previously published https://biocomputer.bio.cuhk.edu.hk/T3DB/ [23] and the effectors sequences de-

scribed in [9] and [24]. The protein sequence databases for both effectors and hrp/hrc cluster (Dataset1 and

Dataset2) were blasted against each genome by using the NCBI BLAST + suite.makeblastdb command line

tool that creates a BLAST database for several FASTA files. Detailed information about this process is

available at http://www.ncbi.nlm.nih.gov/books/NBK279690/. We assigned an effector to a given allele

present in the database when: i) its protein sequence could be aligned for over 80% of the length of the

sequence present in the database, and ii) it displayed a homology level > 85%. Sequences for the same

effector were considered as different allelic forms if their homology identity was < 90%.

The 24 strains isolated from A. thaliana and the eight crop strains listed above were analyzed for their effector

repertoire composition and for the presence of the hrp/hrc cluster. Firstly, only three strains (MEDV A37,

MEU M1 and NL P 126) isolated from A. thaliana carried a hrp/hrc cluster (SI Appendix, Table S2). Among
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the crop strains, results were coherent with those already published in the literature. Strains CFBP 7634 and

CITA 44 lacked the hrp/hrc cluster [4, 8] and strains CFBP 2528, CFBP 7651, CFBP 7179, NCPPB1630 and

IVIA2626.1 carried the hrp/hrc cluster (SI Appendix, Table S2). Secondly, T3SS effector distribution was

related with the presence/absence of the hrp/hrc cluster. Only the strains lacking the hrp/hrc cluster carry

the avirulence genes AvrXccA1 and AvrXccA2 (SI Appendix, Table S3). On the other hand, hrp/hrc-positive

strains contain the AvrBs2 effector and displayed a variable effector composition. Natural strains NL P126

and MEDV A37 had six and four T3SS effectors respectively, while the strain MEU M1 only carried two

effectors (SI Appendix, Table S3). Finally, strains isolated from crop plants were those with the higher

number of effector genes (SI Appendix, Table S3).

5 Phenotypic Models for QDR in A. thaliana–X.arboricola Study

In this section, we provide the results for a variety of other phenotypic models for QDR. Such models serve

as exploratory data analyses before we perform association analyses. For ease of comparison, we adjust for

person effects by regressing them out prior to the analysis. In addition to the ATOMM model applied to the

full data set, we consider the following five models: (1) a fixed-effects model that includes indicators for each

of the 22 X. arboricola strains, the 130 A. thaliana lines, and their interactions as predictors; (2) a standard

random-effects model with GRMs Kh and Kp in (30) replaced by identity matrices; (3) ATOMM applied

to the subset of the data obtained by removing seven strains with minimal marginal effects (SI Appendix,

Figure S3, 6 US strains and 1 France strain FOR F26); (4) a fixed-effects model obtained by grouping similar

X. arboricola strains together; and (5) ATOMM with a pathogen country of origin indicator as a fixed effect.

We included plant random effects in all of the above models. The details of the model formulations considered

are described below.

5.1 Model Formulation

1. Fixed-effects model:

Y |host-pathogen pairs ∼ N (µ,Σ), where (41)

µ = β01 +

129∑
i=1

λi1host i +

21∑
j=1

βj1pathogen j +

129∑
i=1

21∑
j=1

ηij1host i and pathogen j ,

Σ = σ2
jJ + σ2

eI,

where λi is the marginal effect of host line i, βj is the marginal effect of pathogen strain j, ηij denotes

the interaction effect between host line i and pathogen strain j, J is a covariance matrix with Jk` = 1 if

k and ` represents two leaves from the same plant, and 0 otherwise, σ2
j is variance of the plant random

effect, and σ2
e is the variance of i.i.d. environmental noise.

2. i.i.d. Random-effects model:

Y |host-pathogen pairs ∼ N (µ, σ2
tΣ), where (42)

µ = β01,
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Σ = ξhZhZ
T
h + ξpZpZ

T
p + ξhpZhpZ

T
hp + ξJJ + (1− ξh − ξp − ξhp − ξJ)I,

where Zh, Zp, and Zhp are the incidence matrices that map the observed QDR to host lines, to

pathogen strains, and to host-pathogen pairs, respectively; J is the same covariance matrix as before,

σ2
t is the total residual variance, and ξh, ξp, ξhp, ξJ represent the proportion of the variance explained

by host, pathogen, host-pathogen and plant i.i.d. random effects, respectively.

3. ATOMM null model:

Y |host-pathogen pairs ∼ N (µ, σ2
tΣ), where (43)

µ = β01,

Σ = ξhZhKhZ
T
h + ξpZpKpZ

T
p + ξhpZhp(Kh ⊗Kp)Z

T
hp + ξJJ + (1− ξh − ξp − ξhp − ξJ)I,

where all notation is the same as before, and Kh, Kp are GRMs for host and for pathogen (see

Sections 1.1.1 and 1.1.2), respectively. In the full analysis, we fit the above model to nsubset = 32,960

observations. As suggested by a reviewer, we also fit the above model to the subset of the data

(nsubset = 22,478) obtained by considering only the following 15 strains:

• US strains: LMC P47, LMC P73, MEDV P26, LMC P25, MEDV A37, MEDV P39;

• France strains: MEU M1 , FOR F21, FOR F23, PLY 3, PLY 2, FOR F20, PLY 9, PLY 1, PLY 4.

4. Fixed-effects group membership model:

Y |strain membership ∼ N (µ,Σ),where (44)

µ =

4∑
i=1

2∑
j=1

γij1host group i and pathogen group j ,

Σ = σ2
jJ + σ2

eI,

where all notation is the same as before, γij represents the effect on QDR of paring a host from

A. thaliana group i with a pathogen from X. arboricola group j.

There are different ways to group X. arboricola strains. One natural choice is to group X. arboricola

strains into US vs. France groups. Another possibility, as suggested by a reviewer, is to group X. ar-

boricola strains based on association peaks in the separate A. thaliana GWA mapping (SI Appendix,

Figures S12 and S13). However, the separate analyses have poor power to detect association due to

their small sample sizes, and we do not observe informative similarity among association peaks that

would enable us to assemble strains into groups. Therefore, we choose the first grouping scheme (i.e.

US vs. France) and include the group membership as the fixed effect in the model (44) (Fig 2 and

section Population Structure and Effects in the main paper).

5. ATOMM + fixed-effects pathogen group membership model:

Y |host-pathogen pairs ∼ N (µ, σ2
tΣ), where (45)

µ = β01 + β11US strain,

Σ = ξhZhKhZ
T
h + ξpZpK

′
pZ

T
p + ξhpZhp(Kh ⊗K ′p)Z2

hp + ξJJ + (1− ξh − ξp − ξhp − ξJ)I,
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where all notation is the same as before, and K ′p is the modified pathogen GRM after accounting

for pathogen group membership indicators (i.e., we use group-specific MAF in the calculation of the

GRM).

5.2 Assessing Misfit of the Model with i.i.d. Random Effects (Model 2)

We consider the problem of assessing the misfit of Models 2 and 3 defined in the previous subsection.

Consider a larger model (call it Model 4), that has both Models 2 and 3 as sub-models. Specifically, Model

4 has everything that is in Model 3 (ATOMM), plus additional i.i.d. random line effects, i.i.d. random strain

effects, and i.i.d. random interactions. Because Model 2 is a sub-model of Model 4, then in principle, we

could assess the goodness of fit of Model 2 by comparing its maximized log-likelihood to that of Model 4.

Similarly, because Model 3 is a sub-model of Model 4, we could in principle assess the goodness of fit of Model

3 by comparing its maximized log-likelihood to that Model 4. Let li denote the maximized log-likelihood of

Model i, i = 2, 3, 4. Then since Models 2 and 3 are sub-models of Model 4, it is always true that l2 ≤ l4 and

l3 ≤ l4. Furthermore, the goodness of fit test statstic for Model 2 is T2 = 2 ∗ (l4 − l2) ≥ 0 which follows a χ2

with 3 degrees of freedom under the null hypothesis that Model 2 is the true model. (Similarly, the goodness

of fit test statistic for Model 3 is T3 = 2 ∗ (l4 − l3) ≥ 0, which follows a χ2 with 3 degrees of freedom under

the null hypothesis that Model 3 is the true model.) A major difficulty is that for our data, Model 4 has 8

variance components, which makes it computationally challenging to fit. However, it turns out that in our

data analysis, we could still reject Model 2 with p-value < 4× 10−4 based only on l2 and l3. The reason is

that, since T2 and T3 are both always nonnegative, T2 ≥ T2−T3 = 2∗ (l3− l2), so we can compare 2∗ (l3− l2)

to a χ2 distribution with 3 degrees of freedom to obtain an upper bound of 4× 10−4 on the p-value for T2.

(We could, of course, do the mirror image analysis for T3, except that in our data analysis, T3 − T2 < 0, so

the upper bound on the p-value for T3 is 1.)

5.3 Model Comparison

In what follows, we refer to the fixed-effects model of equation (41) as Model 1, the i.i.d. random-effects

model of equation (42) as Model 2, and the ATOMM model as Model 3, where all three models are fit to

the full data.

Of the three models, Model 3 (ATOMM model) is the most preferred by the BIC model selection criterion

(SI Appendix,Table S5), indicating that it is the most appropriate one to use for statistical inference such as

association mapping.

Model 1 (fixed effects model) is of interest because it captures the full genetic effects of host line and

pathogen strain. In other words, in Model 1, the proportion of variance explained by host line effects

accounts for both additive polygenic and epistatic effects of line; the proportion of variance explained by

pathogen strain effects similarly accounts for both additive polygenic and epistatic effects of strain; and the

proportion of variance explained by host-pathogen interaction effects similarly accounts for all line-strain

genetic interaction effects. (Recall that there are no dominance effects in this pathosystem because the host

is a diploid inbred organism and the pathogen is a haploid organism.) Thus, it is potentially interesting to

compare the estimated proportions of variance from Model 1 to those from Model 3, in which only additive

genetic effects are modeled. One major drawback to Model 1, though, is that with 2,860 fixed effects in
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the model (including intercept), there is a severe problem of bias-variance trade-off, with the result that the

standard errors for the parameters of interest are quite large, thus limiting the comparison somewhat.

However, in SI Appendix, Table S5, it is notable that the proportion of variance explained by the full genetic

effects of strain is estimated at 52% in Model 1, while the proportion of variance explained by the additive

polygenic effects of strain is estimated at 44% in Model 3, showing that QDR is highly heritable with respect

to the pathogen and that nearly all of the strain effect is attributable to additive polygenic effects of variants

in the X. arboricola genome, so that the responses to related strains tend to be similar.

From the extremely poor value of the BIC model selection criterion for Model 1 relative to the other models

(SI Appendix,Table S5; lower BIC is better), we can see that Model 1 is vastly over-parameterized, so, e.g.,

not suitable for use in association mapping. Indeed, when SNP fixed effects are introduced for mapping,

only SNPs whose genotypes are orthogonal to the set of fixed covariates could possibly show any association,

so in Model 1, mapping would be impossible because any genetic variation to be tested would be completely

confounded with the fixed effects already included.

Model 2 seems to be of less interest because it forces all the line and strain effects to be non-genetic, in the

sense that, e.g., all strain effects are forced to be i.i.d. with a common variance, with all of the strain effects

uncorrelated, regardless of the fact that some pairs of strains are > 90% identical. In fact, Model 2 shows

significant misfit to the data (p-value < .0004; see section 5.2 for details). Thus, the parameter estimates

under this model may not be very meaningful.

We also add a sub-analysis (suggested by a reviewer) for a subset of 15 strains (SI Appendix, Table S6),

consisting of 7 US strains and 8 France strains, detailed in subsection 5.1. We fit the same three models

described above: Model 1 with fixed effects for each line, each strain, and each line-strain pair, Model 2

with i.i.d random effects where all GRMs are set to the identity matrix, and Model 3 which is the ATOMM

model. The results are similar to those from the full data set, except that compared to the full data set, the

sub-analysis exhibits smaller inter-strain variation, which is obviously expected because of the way the strains

were chosen — the ones with lowest values were removed, thus, automatically reducing the variation.

In the fixed-effects model, there are different ways to group X. arboricola strains. One natural choice is to

divide them into US vs. France groups, which is the grouping we have used in Figure 2. Another possibility,

as suggested by a reviewer, is to group X. arboricola strains based on association peaks in the separate A.

thaliana GWA mapping (SI Appendix, Figures S12 and S13). However, the separate analyses have poor

power to detect associations due to their small sample sizes, and we do not observe informative similarity

among association peaks that would enable us to assemble strains into groups. Therefore, we retain the first

grouping scheme (i.e., US vs. France) and include group membership as a fixed effect in the model (Fig 2).

To further investigate the polygenic nature of QDR, we fit the model (equation 45) obtained by including the

pathogen group membership indicator as the fixed effect and by modifying the pathogen GRM using group-

specific MAFs. We found that the “US strain” effect is negative, consistent with the observation that French

strains are more virulent than US strains (SI Appendix, Table S7). Furthermore, the X. arboricola random

polygenic effect still explains a considerable proportion (31.1%) of phenotypic variance after accounting for

the population effect, further demonstrating the polygenic nature of QDR (SI Appendix, Table S7).
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6 Multiple Testing Adjustment for Gene Ontology Analysis

In the Materials and Methods section of the paper we described the use of 10,000 permutation replicates

to calculate nominal p-values of enrichment for particular BP terms. We were able to use the results of

the same 10,000 replicates to also calculate p-values adjusted for multiple comparisons corresponding to the

analysis of multiple BP terms, as we now describe.

For a given BP, call it BP b, let Ob denote the Enrichmento value of BP b, and for BP b and permutation

replicate r, let Pbr denote the Enrichmentp value of BP b in permutation replicate r, where the permutation

replicates and the definitions of Enrichmento and Enrichmentp are as described in Material and Methods.

Assume that 10,000 permutation replicates have been performed and that Pbr is available for each BP term

in each replicate, while the data include Ob for each BP term. Because the multiple comparisons analysis

requires us to be able to make meaningful comparisons across BPs, we analyzed only BPs that had at

least 20 hits somewhere among the 10,000 replicates. For BP b, let mb = median(Pbr) where the median

is taken over all permutation replicates, and let sb = 1% trimmed range of Pbr, where this is also over

all permutation replicates r. For each BP in each permutation replicate, we standardize Pbr by defining

Ubr = (Pbr − mb)/sb. Then for each permutation replicate, we calculate Vr = maxb Ubr. In the data, we

calculate T = maxb(Ob −mb)/sb. Then we compare T to the empirical distribution of Vr across the 10,000

permutation replicates to obtain the p-value of the relatively most enriched BP (i.e. the BP that maximizes

(Ob −mb)/sb).
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Supplementary Figures and Tables
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Fig. S1: Hierarchical clustering of the 130 A. thaliana lines. We performed hierarchical clustering
based on the A thaliana GRM using UPGMA [17]. For the dissimilarity measure, we used d(i, j) = [1 −
ρ̂(i, j)]/2, where ρ̂(i, j) = Kh(i, j)/

√
Kh(i, i)Kh(j, j) was the estimate of the genomic correlation between

A. thaliana lines i and j, for all i, j = 1, . . . , 130. We note that the A. thaliana lines labeled with the same
country of origin tend to be clustered into the same branch.
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Fig. S2: PCA on the X. arboricola GRM. We calculated the X. arboricola GRM as proposed in
Section 1.1.2 of the SI Appendix, Supplementary Text. Panel (A) plots the eigenvalues of the X. arboricola
GRM in descending order. Panel (B) plots the top two eigenvectors of the X. arboricola GRM. The top two
eigenvectors clearly separated the US strains (in red) from the France strains (in black), except that the
strains BRE 17 and MEU M1, which originated in France, were more genetically similar to US strains than
to the other France strains.
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Fig. S3: Marginal effects of the 22 X. arboricola strains on QDR. These effects were estimated
from a linear model that included indicators for each of the 22 X. arboricola strains, the four A. thaliana
subpopulations, and their interactions as predictors, with correction for additional covariates. The hierar-
chical clustering overlaid on the left was obtained using UPGMA [17] based on the X. arboricola GRM. For
the dissimilarity measure we used d(i, j) = [1 − ρ̂(i, j)]/2, where ρ̂(i, j) = Kp(i, j)/

√
Kp(i, i)Kp(j, j) was

the estimate of the genomic correlation between strains i and j, for i, j = 1, . . . , 22.
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Fig. S4: Manhattan plot of the marginal GWAS for the A. thaliana variants. The marginal p-
values are plotted against the nucleotide locations (base pairs) on the A. thaliana reference genome (version
TAIR10). The p-values are obtained from marginal tests under the Gaussian ATOMM model.
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Fig. S5: Genome-wide scan of the A. thaliana genome based on G × G tests. The top panel is
the Manhattan plot of minimum G × G p-values of the 1,220,413 A. thaliana SNPs with MAF ≥ 0.1, where
minimum is taken so that each variant will appear only once in the plot. The bottom panel shows the gene
annotation model (retrieved from TAIR10) nearby the SNP at location 10646160 bp of chromosome 4. The
highlighed SNP (MAF = 0.16) was not among the top marginal effects (marginal p-value = .0757) but was
prioritized 2nd in the interaction analysis (G × G p-value = 5.28× 10−18). The gene AT4G19520 is known
to encode a disease resistance protein (TIR-NBS-LRR class).
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Fig. S6: Phylogeny based on rpoD housekeeping gene. Strains labeled in light green were isolated
from A. thaliana. Strains labeled in red were validated for triggering RKS1 response in A. thaliana [10].
Names of species complex are indicated.
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Fig. S7: MLST based on rpoD, gyrB, atpD, and glnA housekeeping genes (5865 bp). Strains
labeled in green were isolated from A. thaliana populations.

S30



Fig. S8: Pathogenicity of the X. arboricola strains isolated from A. thaliana vs. crop strains.
Pathogenic assays of four strains collected in natural populations of A. thaliana (two from USA: MEDV 37
& LMCP 73, two from France: MEU M1 & FOR F23) and four crop strains (two reported as pathogenic
in the literature: CFBP2528 & CFBP7179, two reported as non-pathogenic in the literature: CFBP7634 &
CFBP7651). The x-axis corresponds to four accessions of A. thaliana used in this study. ‘7dpi’ and ‘10dpi’
stand for the scoring 7 and 10 days post-inoculation. For each pathogen and each time point, we tested the
null hypothesis that the mean QDR was the same for all four accessions of A. thaliana. Significance after a
Bonferroni correction at a nominal level of 5%: * means P-value between .05 and .001; *** means P-value
less than .001.
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Fig. S9: Empirical relationship between the mean and the variance of QDR. Each point in the
figure represents a pairing of an A. thaliana line with an X. arboricola strain. We hypothesized that each
host-strain pair has its own mean and variance. This corresponds to a “full” model where host effects, strain
effects, and host-strain interaction effects are included as predictors. We calculated the sample mean and
the variance of QDR using replicates for each host-strain pair, while properly taking into account other
covariates and block effects (see Materials and Methods in the paper). The three curves shown represent
three possible values of the dispersion parameter (σ2 = 1, 2, 3).
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Fig. S10: Q-Q plots of the marginal p-values for the variants on the A. thaliana genome (A) and
X. arboricola genome (B). The observed p-values were obtained under the prospective Gaussian model
(black), prospective Binomial-like model (red), and retrospective binomial-like model (blue), respectively.
The expected p-values were from a uniform[0,1] distribution. We note that the p-values from the (prospective)
Gaussian model are well-calibrated, whereas the p-values from the prospective binomial-like model exhibit
modest genome-wide inflation. The p-values from the retrospective binomial-like model appear to be properly
calibrated.
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Fig. S11: Comparison of two estimates of σ2
g for X. arboricola variants. We consider only “core”

SNPs, i.e., SNPs that exhibit genotype states {0, 1} among the 22 strains in the study. Panel (A) shows
the histogram of σ̂2

g based on equation (39) (SI Appendix, Supplementary Text), and panel (B) shows the
histogram of σ̌2

g based on equation (40) (SI Appendix, Supplementary Text). Several SNPs exhibited abnor-
mally large values of σ̂2

g in panel (A). We found that these SNPs differentiate the two closely related strain
pairs, {FOR F26, FOR F21} and {PLY 4, PLY 1}. In contrast, the estimator σ̌2

g appears rather stable so
we chose to use this estimator in our context.
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Fig. S12: Separate Arabidopsis GWA mapping for US strains. For each of the 11 US strains
(LMC P11, LMC P25, PMC P47, LMC P73, MEDV P25, MEDV P39, MEDV A37, MEDV A40, NL P121,
NL P126, NL P172), we take the subset of the data and then perform genome-wide association analysis
for Arabidopsis SNPs. The association p-values are plotted against the SNP locations on the A. thaliana
reference genome. The p-values are obtained from classical linear mixed-effects model.
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Fig. S13: Separate Arabidopsis GWA mapping for France strains. For each of the 11 France strains
(FOR F20, FOR F21, FOR F23, FOR F26, PLY 1, PLY 2, PLY 3, PLY 4, PLY 9, MEU M1, BRE 17), we
take the subset of the data and then perform genome-wide association analysis for Arabidopsis SNPs. The
association p-values are plotted against the SNP locations on the A. thaliana reference genome. The p-values
are obtained from classical linear mixed-effects model.
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Biological Process Enrichment P-value ATG number Locus name Molecular function
regulation of cell division 118.6 ** AT5G51020 CRL - CRUMPLED LEAF not defined
chloroplast fission 90.3 ** AT5G51020 CRL - CRUMPLED LEAF not defined
malate metabolic process 68.1 ** AT5G50950 FUMARASE 2 fumarase enzyme
aerobic respiration 64.6 ** AT5G51060 RHD2 NADPH oxidase

regulation of chlorophyll 58.2 ** AT4G31920 ARR10
Arabidopsis response regulator
(ARR) protein

biosynthetic process AT5G50920 HSP93-V
protein similar to ATP-dependent
ATP-dependent Clp protease
ATP-binding subunit / ClpC

response to reactive oxygen species 55.9 ** AT5G51020 CRL - CRUMPLED LEAF not defined

mitotic recombination 54.9 ** AT5G50930
MHF1 protein with similarity to

mammalian MHF1

synapsis 54.8 ** AT5G50930 MHF1
protein with similarity to
mammalian MHF1

primary root development 50.9 **
AT4G31920 ARR10

Arabidopsis response
regulator (ARR) protein

AT5G51040 SDHAF2
succinate dehydrogenase
assembly factor 2 (SDHAF2)

root epidermal cell differentiation 37.2 ** AT5G51060 RHD2 NADPH oxidase

protein targeting to chloroplast 35.3 ** AT5G50920 HSP93-V
protein similar to
ATP-dependent Clp protease
ATP-binding subunit / ClpC

tricarboxylic acid cycle 28.7 ** AT5G50950 FUMARASE 2 fumarase enzyme
nitrate assimilation 25.4 ** AT5G50950 FUMARASE 2 fumarase enzyme

Table S1: Enrichment of biological process in the 0.01% tail of the top marginal A. thaliana SNPs. The significance of
enrichment was assessed using a null distribution based on 10,000 permutations from a procedure that takes into account LD patterns.
** means P-value less than 0.01. For each BP term, we also reported which gene corresponding to that term occurred among the top
SNP signals to result in the observed enrichment.
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Table S2: Composition of the hrp/hrc cluster of the 24 studied strains and the 8 crop strains
(in dark blue).

Table S3: Type III secretion system effector repertoire of the 24 studied strains and the 8
crop strains (in dark blue).
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Strain name Number of proteins Inparalogs Inparalogs specific Specific proteins in single copy
BRE 17 4283 183 0 124

CFBP2528 4282 203 2 43
CFBP7179 4373 202 8 100
CFBP7634 4109 183 0 120
CFBP7651 4191 161 3 100

CITA44 4020 169 0 182
FOR F20 4328 184 4 175
FOR F21 4416 181 0 63
FOR F23 4403 184 0 52
FOR F24 4388 181 0 48
FOR F26 4413 186 0 59
IVIA2626 4337 234 12 327
LMC P11 4255 167 0 109
LMC P25 4206 184 2 101
LMC P47 4146 166 0 21
LMC P73 4107 171 0 87

MEDV A37 4059 172 2 100
MEDV A40 4232 153 2 112
MEDV P25 4199 182 0 158
MEDV P39 4098 188 4 181
MEU M1 4265 208 9 272
ME P9 4173 176 0 57

NCPPB1630 4152 174 0 180
NCPPB1832 4107 141 0 103

NL P121 4192 195 2 86
NL P126 3943 163 2 219
NL P172 4169 192 5 101
PLY 1 4365 192 0 67
PLY 2 4384 212 2 41
PLY 3 4399 204 0 65
PLY 4 4439 232 2 123
PLY 9 4450 202 0 184

Table S4: Statistics for the annotated genomes of the 24 strains in our study (in red) and the
eight strains isolated from crops (in black).
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Model
Fixed-effects i.i.d. Random-effects ATOMM

Proportion of Variance due to Estimate Estimate (s.e.) Estimate (s.e.)
A. thaliana .21 (.091) .05 (.006) .02 (.014)
X. arboricola .52 (.190) .03 (.004) .44 (.121)
A. thaliana–X. arboricola Interaction .09 (.160) .05 (.005) .05 (.019)
Plant .008 (.006) .17 (.008) .09 (.036)
σ̂2
t .78 (.009) .79 (.008) 1.23 (.010)

Log-likelihood -36,940 -38,046 -38,037
BIC 103,674 76,144 76,126

Table S5: Parameter estimates under various models for QDR. For the fixed-effects model, the
proportion of variance explained by each factor is obtained based on model equation (41), and for σ̂2

T , the
observed trait variance is used. For the i.i.d. random-effects and ATOMM models, the proportions of variance
are estimated by fitting ξh, ξp, ξhp, ξJ and σ2

t in model equations (42) and (43), respectively. Note that σ̂2
t

for the ATOMM model is not directly comparable to that for the other models because it contains many
covariance terms not present in the other models.
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Model
Fixed-effects i.i.d. Random-effects ATOMM

Proportion of Variance due to: Estimate Estimate (s.e.) Estimate (s.e.)
A. thaliana .20 (.074) .06 (.007) .06 (.019)
X. arboricola .07 (.030) .02 (.004) .03 (.014)
A. thaliana–X. arboricola Interaction .21 (.057) .04 (.006) .18 (.030)
Plant .11 (.040) .18 (.009) .05 (.021)
σ̂2
t .88 (.009) .87 (.005) .89 (.010)

Log-likelihood -27,765 -29,326 -28,783
BIC 75,019 58,702 57,616

Table S6: Parameter estimates in the sub-analysis of A. thaliana–X. arboricola data. We
excluded from the analysis seven strains with minimal marginal effects (6 US strains and 1 France strain
FOR F26; see Figure S3). This retains 22,478 observations from the original 32,960 observations. For
the fixed-effects model, the proportion of variance explained by each factor is obtained based on model
equation (41), and for σ̂2

T , the observed trait variance is used. For the i.i.d. random-effects and ATOMM
models, the proportions of variance are estimated by fitting ξh, ξp, ξhp, ξJ and σ2

t in model equations (42)
and (43), respectively. Note that σ̂2

t for the ATOMM model is not directly comparable to that for the other
models because it contains many covariance terms not present in the other models.
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Estimate Under the Null: Model (43) Model (45)
Parameter Estimate (s.e.) Estimate (s.e.)
Intercept (β0) .19 (.011) .26 (.173)
Person 1 (β1) .15 (.015) .16 (.014)
Person 2 (β2) .20 (.015) .19 (.014)
US strain (β3) – -.19 (.140)
Total Residual Variance (σ2

t ) 1.23 1.18
Proportion of Residual Variance due to:
A. thaliana (ξh) .021 .033
X. arboricola (ξp) .441 .311
A. thaliana–X. arboricola Interaction (ξhp) .048 .034
Plant/Block Effect (ξJ) .093 .091
Log-likelihood -38,037 -38,030
BIC 76,157 76,154

Table S7: Parameter estimates in the A. thaliana–X. arboricola data. We fitted the two different
ATOMM models based on equations (43) and (45), respectively. In model (43), A. thaliana line effects,
X. arboricola strain effects, and their interactions were treated as random effects via the use of GRMs. In
model (43), an X. arboricola country of origin indicator was included as a fixed effect with the pathogen
GRM being modified accordingly. Note that because the pathogen GRM differs, the two models are not
nested.
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