

## Supplementary Information for

## Metastable quasicrystal-induced nucleation in a bulk glass-forming liquid

Güven Kurtuldu<sup>1,\*</sup>, Karl F. Shamlaye<sup>1</sup> and Jörg F. Löffler<sup>1,\*</sup> <sup>1</sup> Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

<sup>\*</sup>Güven Kurtuldu, <sup>\*</sup>Jörg F. Löffler Email: <u>guven.kurtuldu@mat.ethz.ch</u>, <u>joerg.loeffler@mat.ethz.ch</u>

## This PDF file includes:

Figs. S1 to S6 Table S1 References for SI reference citations



**Fig. S1.** Diffraction pattern of Mg<sub>51</sub>Zn<sub>20</sub>-type phase. Selected area diffraction patterns of the microstructure in as-cast Mg<sub>64</sub>Zn<sub>27</sub>Yb<sub>9</sub> shown in Figure 2c along (*A*) [201], (*B*) [250] and (*C*) [034] zone axes of Mg<sub>51</sub>Zn<sub>20</sub>-type phase (orthorhombic, Immm, a = 14.083 Å, b = 14.486 Å, c = 14.025 Å) (1) with modified lattice parameters (a = 13.707 Å, b = 14.819 Å, c = 14.047 Å).



**Fig. S2.** Mg–Zn–Yb compositions. Mg–Zn–Yb ternary diagram indicating compositions for: QC and metallic glass-forming alloys found in this study; QC-forming alloys investigated by Mitani and Ishimasa (2); binary approximant phases: Mg<sub>51</sub>Zn<sub>20</sub> (3, 4), Zn<sub>17</sub>Yb<sub>3</sub> (5); and constructed cluster lines binding Zn<sub>17</sub>Yb<sub>3</sub> to Mg and eutectic composition Mg<sub>71.1</sub>Zn<sub>28.9</sub> (6) to Yb. The approximant phase Mg<sub>29</sub>Zn<sub>60</sub>Yb<sub>11</sub> "3" and the iQC phase Mg<sub>38</sub>Zn<sub>54</sub>Yb<sub>8</sub> "2" follow the cluster line between Zn<sub>17</sub>Yb<sub>3</sub> and Mg. The Mg<sub>69</sub>Zn<sub>27</sub>Yb<sub>4</sub> alloy composition (see arrow) is located near the intersection of these two cluster lines and forms a BMG.



**Fig. S3.** XRD pattern of a Mg<sub>69</sub>Zn<sub>27</sub>Yb<sub>4</sub> bulk metallic glass. XRD pattern taken with Cu K $\alpha$  radiation from the cross-sectional surface of a Mg<sub>69</sub>Zn<sub>27</sub>Yb<sub>4</sub> rod cast to 1 mm diameter.



**Fig. S4.** XRD pattern of stable equilibrium state. XRD pattern taken with Cu K $\alpha$  radiation for a Mg<sub>69</sub>Zn<sub>27</sub>Yb<sub>4</sub> alloy solidified at a cooling rate of 20 K/min using DSC. Diffraction peaks are indexed as Mg (hexagonal, P63/mmc, space group 194, a=b=3.2107 Å, c=5.2061 Å) and Mg<sub>13.2</sub>Zn<sub>29.3</sub>Gd<sub>3.5</sub>-type Mg<sub>29</sub>Zn<sub>60</sub>Yb<sub>11</sub> phase (hexagonal, P63/mmc, space group 194, a=b=14.8053 Å, c=8.8256 Å). Rietveld analysis was performed using reference Mg crystal structure (ICDD reference code 04-003-5224, a=b=3.2040 Å, c=5.2070 Å) and Mg<sub>13.2</sub>Zn<sub>29.3</sub>Gd<sub>3.5</sub> crystal structure (ICDD reference code 04-009-2178, a=b=14.6330 Å, c=8.7610 Å).



Fig. S5. XRD pattern of metastable state. XRD pattern taken with Mo K $\alpha$  radiation for a Mg<sub>69</sub>Zn<sub>27</sub>Yb<sub>4</sub> alloy solidified at a cooling rate of 100 K/s using FDSC. Diffraction peaks are indexed as hexagonal Mg and primitive-type iQC; see Table S1.



**Fig. S6.** Temperature profiles for studying the metastable-to-stable transition. The effect of temperature and time on the metastable-to-stable phase transition was investigated by designing FDSC experiments using the illustrated temperature profiles.  $Mg_{69}Zn_{27}Yb_4$  melt is solidified at a cooling rate of 100 K/s, which results in formation of metastable QC and Mg phases. Cooling is interrupted at 240°C and the temperature of the metastable solid is increased to isothermal treatment temperatures (305, 315, 325°C) at a rate of 1,000 K/s. The metastable solid is then held at these temperatures for various time intervals (0–70 s), which generates a metastable-to-stable phase transition. Finally, the alloy is melted at a rate of 1,000 K/s.

**Table S1.** XRD peak positions for metastable state. Peak positions (2 $\theta$ , *d*) and normalized peak intensities of hexagonal Mg and Mg–Zn–Yb primitive-type iQC formed during solidification in FDSC at a rate of 100 K/s, determined from XRD data (see Fig. S5). Peaks for the QC phase are indexed following the work of Elser (7) and distances are calculated using the six-dimensional lattice parameter  $a_{6D} = 7.46$ Å.

| Index<br>(QC) | Index<br>(Mg) | 2θ (Mo) | d <sub>measured</sub> (Å) | d <sub>calculated</sub> (Å) | ∆ <i>d</i> (Å) | Intensity |
|---------------|---------------|---------|---------------------------|-----------------------------|----------------|-----------|
| (111000)      |               | 9.23    | 4.416                     | 4.425                       | 0.009          | 7         |
| (111100)      |               | 10.49   | 3.888                     | 3.833                       | 0.055          | 7         |
|               | (100)         | 14.74   | 2.771                     |                             |                | 9         |
|               | (002)         | 15.78   | 2.589                     |                             |                | 13        |
| (211111)      |               | 16.41   | 2.490                     | 2.491                       | 0.001          | 55        |
|               | (101)         | 16.72   | 2.444                     |                             |                | 69        |
| (221001)      |               | 17.23   | 2.372                     | 2.369                       | 0.003          | 100       |
| (222100)      |               | 19.46   | 2.103                     | 2.088                       | 0.015          | 9         |
| (311111)      |               | 20.40   | 2.007                     | 2.015                       | 0.008          | 9         |
| (222121)      | (102)         | 21.62   | 1.895                     | 1.882                       | 0.013          | 5         |
|               | (110)         | 25.66   | 1.600                     |                             |                | 4         |
| (332002)      | (103)         | 28.02   | 1.468                     | 1.464                       | 0.004          | 23        |
| (333101)      | (200)         | 29.72   | 1.386                     | 1.390                       | 0.004          | 7         |
| (422211)      | (112)         | 30.19   | 1.365                     | 1.368                       | 0.003          | 8         |
|               | (201)         | 30.92   | 1.339                     |                             |                | 5         |
| (422212)      | (004)         | 31.96   | 1.297                     | 1.307                       | 0.010          | 2         |
| (333222)      |               | 32.99   | 1.252                     | 1.243                       | 0.009          | 3         |
| (443110)      |               | 35.00   | 1.182                     | 1.182                       | 0.000          | 1         |
| (444000)      |               | 37.39   | 1.109                     | 1.106                       | 0.002          | 2         |

## References

- Higashi I, Shiotani N, Uda M, Mizoguchi T, Katoh H (1981) The crystal structure of Mg51Zn20. *J Solid State Chem* 36(2):225–233.
- Mitani T, Ishimasa T (2006) A metastable icosahedral quasicrystal in the Zn-Mg-Yb alloy system. *Philos Mag* 86(3–5):361–366.
- Uchida M, Matsui Y (2002) The pseudocubic approximant Mg51Zn20 interpreted as a modulated crystal. *Philos Mag a Phys Condens Matter Struct Defects Mech Prop* 82(4):831–839.
- Villars P, Cenzual K eds. Mg51Zn20 Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition – 2012" in SpringerMaterials (http://materials.springer.com/isp/crystallographic/docs/sd\_1826458).
- Villars P, Cenzual K eds. Yb3Zn17 (Zn73.42Yb12.52) Crystal Structure: Datasheet from "PAULING FILE Multinaries Edition – 2012" in SpringerMaterials

(http://materials.springer.com/isp/crystallographic/docs/sd\_0251112).

 Villars P, Okamoto H eds. Mg-Zn Binary Phase Diagram 0-100 at.% Zn: Datasheet from "PAULING FILE Multinaries Edition – 2012" in SpringerMaterials

(http://materials.springer.com/isp/phase-diagram/docs/c\_0904724).

 Elser V (1985) Indexing problems in quasicrystal diffraction. *Phys Rev B* 32(8):4892–4898.