
 

 

 

 

 

 

Figure S1. Characterization of Mmi1 constructs. (A) Coomassie-stained SDS-PAGE of 
purified constructs. Schematic diagrams of YTH and USR-YTH constructs are shown in Fig. 1A. 
∆N corresponds to residues 347–488, ∆C is 327–483 and ∆N∆C is 347–483. (B) Circular 
dichroism spectra for the constructs shown in panel (A). (C) Nano differential scanning fluorimetry 
using intrinsic fluorescence. Left: The ratio of tryptophan fluorescence at 350 nm and 330 nm as 
a function of temperature. Right: The first derivative of the same data. The peaks are used to derive 
the melting temperatures (Tm) shown.   
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Figure S2. SEC-MALS with QELS analysis of YTH and USR-YTH constructs. Size exclusion 
coupled to multi angle light scattering (SEC-MALS) using quasi elastic light scattering (QELS) 
shows that the Mmi1 constructs used are monomeric and monodisperse in solution. (A) Calculated 
molecular weights (from MALS) for indicated samples with elution peaks represented by 
normalized refractive index as a function of retention volume on an in-line Superdex 75 increase 
10/300gl gel filtration column. Calculated molecular weights (Mr) in kDa were as follows: YTH: 
19.6 (theoretical 18.6), USR-YTH: 28.3 (theoretical 23.5), USR-YTH+7-mer RNA: 26.2 
(theoretical 25.6), USR-YTH+11-mer RNA: 27.2 (theoretical 26.9). (B) Hydrodynamic radii (Rh) 
calculated using in-line dynamic light scattering (QELS module). The Rh value calculated for YTH 
(2.2 nm) is close to the theoretical Rh of a protein with the same number of residues (1). USR-
YTH has a larger Rh (2.8 nm) consistent with a more elongated non-structured region. USR-YTH-
RNA complexes have a slightly reduced Rh (2.6 nm) consistent with longer retention time on the 
gel filtration column. This could be due to a compaction of the unstructured region on RNA-
binding.    
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Figure S3. Crystal packing in Mmi1 crystal structures in the presence and absence of RNA 
could stabilize the conformation of the low-complexity region. (A) Cartoon representation 
highlighting residues involved in hydrogen bonding or hydrophobic interactions in the apo Mmi1 
structure (A) or bound to 7-mer RNA (B). Residues marked with asterisks and colored in grey are 
from neighboring molecules.  
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Figure S4. Alignment of Mmi1 YTH domain crystal structures. (A) PDB coordinates 5DNO, 
5DNP, 5HFZ, 5EIM, 5EIP, 5H8A and the three structures from this study (marked with asterisks) 
were included in the analysis. Where multiple chains existed in the asymmetric unit, coordinates 
were split into separate files before alignment. All structures were aligned against the YTH domain 
structure co-crystallized with 11-mer DSR RNA since this contained the longest polypeptide chain. 
(B) Root mean squared deviations in Å per residue from alignment shown in panel (A). Grey lines 
at the C-terminus denote deviations in structures that are not RNA-bound. (C) Plot of average 
normalized B-factor per residue for structures in this study. Average B-factor for a given residue 
was normalized to the overall average B-factor. The C-terminal region that is line broadened in 
the presence of RNA in NMR studies is marked with a hash symbol.   
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Figure S5. The low-complexity region is unaltered in the presence of longer RNAs. (A–B) 
2D-NMR analysis of a USR-YTH construct bound to a 7-mer DSR sequence or a 19-mer DSR 
containing RNA. (A) Overlay of 1H-15N BEST-TROSY spectra. (B) Nearest neighbor chemical 
shift perturbation (CSP) maps (bottom). Regions showing large chemical shift differences (above 
0.1 ppm; red) or line broadening (yellow) are mapped onto the crystal structure of the Mmi1 YTH 
domain (top). (C) Cartoon representation of co-crystal structure of Mmi1 residues 301–488 with 
an 11-mer RNA (CUUUAAACCUA). Rotated view shows that there are no further contacts 
outside the UNAAAC motif. (D) Structural alignment of the co-crystal structures of Mmi1 
residues 301–488 bound to 7-mer and 11-mer RNAs (colored in grey and blue respectively).  
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Figure S6. Evolutionary relationships of YTH domain-containing proteins. Unrooted 
phylogram of a non-exhaustive list of 1,097 YTH domain-containing proteins shows that Mmi1 
occupies a distinct outgroup amongst otherwise structurally conserved domains in eukaryotes. 
Phylograms were constructed using a MUSCLE (2) sequence alignment and FastTree (3), then 
annotated both manually and using the iTOL server (4). Protein members of branches were 
inspected for conservation of m6A-binding (see Fig. S7). Three major lineages of ‘canonical’ 
m6A-binding proteins were identified as expected (YTHDF1, YTHDC1 and YTHDC2 
homologues). The phylogram for members of these m6A-binding clades is colored blue. YTH 
domains with DSR binding modes like Mmi1 (as indicated by sequence analysis) are in red. 
Different taxonomies are shaded. Where m6A-binding residues were not conserved, organisms 
were examined for the conservation of the METTL3 methyltransferase complex (not found in 
Schizosaccharomyces). In Angiosperms, some species have the conserved methylation machinery, 
m6A-reading YTH domains, and YTH domains in CPSF30-like proteins, as well as divergent YTH 
domains. Pezizomycotina yeasts do not have a conserved methylation machinery and based on 
sequence analysis (Fig. S7) may also have a divergent RNA binding mechanism.              
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Figure S7. YTH domain sequence alignments. (A) Sequence alignments of Schizo-
saccharomycetes (Sp, Schizosaccharomyces pombe; Sj, S. japonicus; So, S. octosporus; Sc, S. 
cryophilus) show that parts of the USR are highly conserved in this genus. Alignments were 
performed in Jalview implementing Clustal omega (5, 6). Two other YTH domains that are in the 
outgroup in the phylogenetic tree (Pl: Paracoccidioides lutzii and If: Isaria fumosorosea) (Fig. S6) 
do not show high conservation to Mmi1 upstream of the YTH domain. The core YTH fold 
tryptophan (W) residues are highlighted in yellow. These define the m6A-binding pocket but are 
also important for the YTH fold and are universally conserved in the YTH-domain superfamily. 
The tyrosine (Y) residues highlighted (magenta) form the Mmi1 DSR-binding platform on the 
conserved YTH fold. These residues are conserved in P. lutzii but not in I. fumosorosea. Residues 
highlighted in green are key residues in the m6A binding pocket that have diverged in Mmi1. K375 
in S. pombe blocks access to the pocket and this is asparagine (Q) in P. lutzii and I. fumosorosea 
which could block substrate binding in the same manner. Similarly, a phenylalanine (F) in P. lutzii 
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(at position H426 in Mmi1) could also disrupt RNA-binding. (B) Pezizomycotina yeasts examined 
in this study possess YTH domains that may have a divergent RNA binding mechanisms, different 
from both m6A and DSR binding. Shown are sequence alignments of Mmi1 with, Neurospora 
tetrasperma (Nt) and Chaetomium thermophilum (Ct), and the m6A-binding Homo sapiens (Hs) 
YTHDC1 and YTHDF1. Key residues are labelled as described in (A).  



 

 

 
Figure S8. Most YTH domains have a proximal disordered region. Profiles of predicted 
disorder per residue are shown for S. pombe Mmi1, and human YTHDF1, YTHDC1 and 
YTHDC2. These represent distinct clades of YTH domain-containing proteins (Fig. S6). The 
profiles were created using DISOPRED3 for the entire uniprot entry (7). Regions with confidence 
scores above 0.5 (horizontal grey dashed line) can be considered disordered. Plots are aligned by 
the location of the YTH domain (shaded purple). 
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Table S1 – Data collection and refinement statistics for USR-YTH Mmi1 crystallography 

Data Collection Mmi1(327–488) 
 
(PDB 6FPP) 

Mmi1(301–488) 
+ 7mer RNA 
(PDB 6FPQ) 

Mmi1(301–488) 
+ 11mer RNA 
(PDB 6FPX) 

Wavelength (Å) 0.97631 0.96772 0.97953 
Space group C 2 P 65 P 32 

Unit cell parameters    
       a, b, c (Å) 122.04, 58.30, 53.77 77.41, 77.41, 66.21 105.33, 105.33, 66.71 
       α, β, γ (°) 90.0, 114.7, 90.0 90.0, 90.0, 120.0 90.0, 90.0, 120.0 
Resolution range (Å) 51.6–1.93 (1.98–1.93)* 47.11–1.42 (1.47–1.42) 91.22–1.97 (2.02–1.97) 
Unique reflections 25,919 (1,906) 42,567 (4,135) 58,703 (4,049) 
<I /σ(I)>  7.7 (1.7) 13.6 (1.6) 8.5 (1.6) 
Rmerge 0.078 (0.459) 0.084 (1.159) 0.076 (0.588) 
CC1/2 0.996 (0.790) 0.999 (0.548) 0.994 (0.869) 
Completeness (%) 99.9 (99.6) 99.9 (99.6) 99.8 (97.0) 
Multiplicity 3.2 (3.1) 7.7 (7.0) 5.1 (4.7) 
    

Refinement (residues 331–485) (residues 315–488) (residues 312–488) 
Resolution (Å) 51.6–1.93 (2.00–1.93) 47.11–1.42 (1.45–1.42) 45.61–1.97 (2.02–1.97) 
Reflections used 25,882 (2,840) 42,527 (2,805) 58,635 (4,101) 
Rwork/Rfree (%) 19.0 / 23.8 14.3/16.8 20.0/23.5 
Ramachandran favored 
region (%) 

97.2 98.9 98.0 

Ramachandran outliers (%) 0.0 0.0 0.0 
No. of non-hydrogen atoms    
       Protein  2,557 1,518 4,193 
       Water 215 229 220 
       Ligands (incl. RNA) 25 159 600 
Average B-factors    
       Macromolecules  25.4 18.5 55.1 
       Water 34.7 33.3 49.2 
       Ligands 48.0 22.1 79.8 
r.m.s. deviations    
      Bond lengths (Å) 0.003 0.017 0.015 
      Bond angles (°) 0.56 1.59 1.42 

1DLS i03 beamline 
2ESRF ID30-A3 beamline 
3DLS i02 beamline 
* Values in parentheses refer to the highest-resolution shell 
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