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SUPPLEMENTARY NOTE 1: DERIVATION OF THE THREE-PHOTON COR-

RELATION EXPRESSED IN SPHERICAL HAR-

MONICS

Here we derive the three-photon correlation t(k1, k2, k3, α, β), as defined in Fig. 1b of

the main text, as a function of the three-dimensional intensity in Fourier space, I(k) =

|FT [ρ(x)]|2, which is expanded using a spherical harmonics basis. The following derivation

follows Kam [1], but further generalizes it to the full three-photon correlation.

The triple correlation t(k1, k2, k3, α, β) is the orientational average 〈〉ω of the product

between three intensities I(k) that lie on the intersection between the Ewald sphere and the

3D Fourier density,

t(k1, k2, k3, α, β)I(k) = 〈Iω (k?1(k1, 0)) · Iω (k?2(k2, α)) · I∗ω (k?3(k3, β))〉ω . (1)

Here, without loss of generality, the three vectors k1
?, k2

? and k3
? are the projection onto

the Ewald sphere of the three photons k1 = (k1, 0, 0), k2 = k2(cosα, sinα, 0) and k3 =

k3(cos β, sin β, 0) in the detector plane. The photons positions are chosen as one arbitrary

realization of the triplet (k1, k2, k3, α, β), characterized by the angles α and β between the

vectors and distances to the detector k1, k2 and k3, respectively (see Fig. 1b in main text).

For the orientational average 〈〉ω it is assumed that in the experiment the orientation of the

molecule is unknown and uniformly sampled. Note that the orientational average can either

be expressed as an average over all rotations of Iω(k) for fixed k1,2,3 (our approach) or as an

average over all rotations of the vectors k1,2,3,ω for a fixed I(k).

Next, I(k) is decomposed into spherical shells with radius k and each shell is expanded
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using a spherical harmonics basis [2],

I (k) =
∑
lm

Alm (k)Ylm (θ, ϕ) . (2)

The coefficients Alm(k) describe the intensity function on the respective shells and are non-

zero only for even l ∈ {0, 2, 4, ..., L} because of the symmetry of I(k) = I(−k) (Friedel’s

law). In this description, a 3D Euler rotation ω of I(k) is expressed by transforming the

spherical harmonics coefficients according to Arot
lm(k) =

∑
mm′D

l
mm′A

unrot
lm′ (k), using the ro-

tation operators Dl
m′m which are composed of elements of the Wigner D-matrix as defined,

e.g., in Ref. [2], yielding the rotated intensity,

Iω (k) =
∑
lmm′

Alm (k)Ylm′ (θ, ϕ)Dl
m′m (ω) . (3)

Inserting the spherical harmonics expansion of the rotated intensity Iω (k), evaluated at

positions k?1, k?2 and k?3 on the Ewald sphere (θi = cos−1(
kiλ

4π
)), into the expression for the

three-photon correlation, Supplementary Eq. 1, yields

t(k1, k2, k3, α, β){Alm(k)} =
∑
l1 l2 l3

∑
m1m2m3

∑
m′

1m
′
2m

′
3

Al1m1 (k1)Al2m2 (k2)A
∗
l3m3

(k3)

×Yl1m′
1

(θ1(k1), 0) · Yl2m′
2

(θ2(k2), α) · Y ∗l3m′
3

(θ3(k3), β)

×
〈
Dl1
m1m′

1
·Dl2

m2m′
2
·Dl3

m3m′
3

〉
ω
, (4)

such that the orientational average only involves the elements of the Wigner D-matrix Dl
mm′.

Using the Wigner-3j symbols

 l1 l2 L

m1 m2 −M

 [3], the product of two rotation elements

Dl
mm′ reads
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Dl1
m1m′

1
Dl2
m2m′

2
=

l1+l2∑
L=|l1−l2|

∑
MM ′

(2L+ 1) (−1)M−M
′

×

 l1 l2 L

m1 m2 −M


 l1 l2 L

m′1 m′2 −M ′

DL
MM ′ . (5)

With the orthogonality theorem for orientational averages of the product of two Wigner D

operators, 〈
DL
MM ′Dl3∗

m3m′
3

〉
ω

=
1

2L+ 1
δl3Lδm3Mδm′

3M
′ , (6)

the three-photon correlation finally reads

t(k1, k2, k3, α, β){Alm(k)} =
∑
l1 l2 l3

∑
m1m2m3

Al1m1 (k1)Al2m2 (k2)A
∗
l3m3

(k3)

×

 l1 l2 l3

m1 m2 −m3

 ∑
m′

1m
′
2m

′
3

(−1)m3−m′
3

 l1 l2 l3

m′1 m′2 −m′3


×Yl1m′

1
(θ1(k1), 0)Yl2m′

2
(θ2(k2), α)Y ∗l3m′

3
(θ3(k3), β) . (7)

This expression only involves sums of products of three spherical harmonics coefficients

Alm(k) with known Wigner-3j symbols and spherical harmonics basis functions Ylm(θ, ϕ).

SUPPLEMENTARY NOTE 2: EFFICIENT COMPUTATION OF THE THREE-

PHOTON CORRELATION

Our method requires the fast evaluation of the three-photon correlation for a proposed

set of spherical harmonics coefficients {Alm(k)}. To that end, we vectorized Supplementary
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Eq. 7 as follows

t(k1, k2, k3, α, β){Alm(k)} =
∑
l1 l2 l3

AS(l1, l2, l3, k1, k2, k3)

× [p(l1, l2, l3, k1, k2, k3) · b(l1, l2, l3, α, β)]

= pA(k1, k2, k3) · b(α, β). (8)

using

AS(l1, l2, l3, k1, k2, k3) =
∑

m1m2m3

Al1m1 (k1)Al2m2 (k2)A
∗
l3m3

(k3)

×(−1)m3

 l1 l2 l3

m1 m2 −m3

 . (9)

The vector p contains the k-dependant Legendre polynomials and b contains the α, β-

dependant complex exponential of the spherical harmonics together with the Wigner-3j

symbol which are non-zero only form1+m2+m3 = 0 and |l1−l2| ≤ l3 ≤ l1+l2. The products

between AS and the entries of p are denoted pA. The entire three-photon correlation T is

then calculated by the matrix product

T = PA ·B, (10)

with the matrix PA ∈ RB×K3 , the matrix B ∈ RN2×B and the full three-photon correlation

matrix T ∈ RN2×K3 with the entries Tij = t((k1, k2, k3)(i), (α, β)(j)). Here, we denote

the number of non-zero index combinations (l1, l2, l3,m1,m2,m3) as B and the number of

discrete angles α, β ∈ [0, π] in one dimension as N , as further described in Supplementary

Note 5.

This vectorized expression can be calculated with a high degree of parallelism, but nev-

ertheless becomes the limiting factor in the computation. In particular, the number B of

three-photon basis functions f(l1, l2, l3,m1,m2,m3, α, β) grows quickly with B ∼ L4 (e.g.,
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B = 11, 841 for L = 10 and B = 163, 153 for L = 18) and the time to calculate the full

three-photon correlation matrix T therefore scales with K · (K + 1) · (K + 2)/6 · L4. The

number of shells K and angular resolution L required to resolve an intensity for a given reso-

lution scales linear with the object diameter and the complexity therefore scales approx. n7

with the ratio n between diameter and resolution or M2.33 with M the molecular weight. At

the same time, the computational cost is independent of the number of images or number of

photons per image, as these numbers only determine the time to assemble the three-photon

histogram. See Supplementary Note 7 on how the scaling of the computational complexity

affects our choice of spherical harmonics parameters.

In our implementation, we calculated both the entries of PA and the matrix multiplica-

tion for T with a custom CUDA kernel, which significantly improved (> 100x) the perfor-

mance over CPU-based implementations and thus rendered the optimization computation-

ally tractable.

SUPPLEMENTARY NOTE 3: IMPLEMENTATION OF THE SPHERICAL

HARMONICS EXPANSION

All Fast Spherical Harmonics Transformations were performed using the S2Kit framework

(http://www.cs.dartmouth.edu/∼geelong/sphere) [4, 5]. The same spherical harmonics ex-

pansion order L was used for all shells. For the structure determination, L = 18 was used,

which yields (2L)2 = 1296 sample points on the sphere with an even sampling in φ ∈ [0, 2π]

and θ ∈ [−π/2, π/2] direction. The angular resolution of the expansion is ∆θ = π/(2L) or

∆ϕ = 2π/(2L) respectively which in our case for L = 18 corresponds to an angular resolu-

tion of ∆θ = 5.0◦ in longitude direction and ∆ϕ = 10.0◦ in latitude direction. The density

ρ(x), expanded with a spherical harmonics basis, was Fourier transformed by applying the
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spherical Bessel transform (Hankel transform) to the coefficients according to Ref. [6–8] All

Wigner matrices were calculated as described in Ref. [9, 10] and the absolute square of the

Fourier density was calculated according to Ref. [11] by transforming the coefficients directly.

SUPPLEMENTARY NOTE 4: IMPLEMENTATION DETAILS OF THE MONTE

CARLO OPTIMIZATION

The random rotations
{
Ul ∈ R2l+1×2l+1

}
were generated using QR-decompositions of

normal-distributed matrices as described by Mezzadri [12]. The rotational variations ∆l (β)

were calculated via the basis transformation

∆l (β) = RlSl (β) R−1l (11)

with

Sl (β) =



cos (β) − sin (β) 0 ... 0

sin (β) cos (β) 0 ... 0

0 0 I2l+1−2

... ...

0 0


(12)

and random rotation matrices Rl [13]. Here, sub-matrix I2l−1 in Sl is a 2l − 1-dimensional

unity matrix.

By using the small rotational variations ∆l (β), the SO(n) is sampled ergodically. Ap-

proximately [1/(2 − 2 cos(β))]n · log(n) steps are necessary to achieve sufficient sampling

according to Ref. [13]. For the largest search space of L = 18 with a rotation dimension

of n = 37 (n = 2L + 1) and a minimum stepsize of β = 0.025 rad, 213,777 steps were

required to sample rotations in SO(37) sufficiently dense. To ensure that the search space

is exhaustively explored, we aimed at an optimization length of over 200,000 Monte Carlo
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steps. To this end, a time constant for the temperature decrease of τ = 50, 000 steps was

chosen. The initial temperature Tinit was calculated as 10% of the standard deviation of the

energy within 50 random steps away from the starting structure using the initial stepsizes.

Further, we used a factor µ = 1.01 for the adaptive stepsizes. The hierarchical approach

was implemented by distributing the initial stepsizes according to β(l) = (l− 1)π such that

spherical harmonics coefficients with larger expansion orders l are always varied with a larger

stepsize β(l) than coefficients with lower orders. Supplementary Figure 1 outlines the steps

of the structure determination using a Monte Carlo simulated annealing method.
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SupplementaryFigure 1: Structure Determination Flowchart

Flowchart outlining the simulated annealing Monte Carlo structure optimization algorithm.

The random starting structure is calculated from the inversion of the two-photon correlation.

The initial temperature of the simmulated annealing scheme is calculated from the standard

deviation of the energy within 50 random steps away from the starting structure given the

initial stepsize. During the Monte Carlo run, the temperature is exponentially decreased

and the stepsizes for individual l are modified in each step (decrease by fixed stepsize-factor

if step accepted, increase by fixed stepsize-factor if step rejected). The Monte Carlo run is

finished if the system has fully cooled down and the stepsizes fall below εstepsize.

SUPPLEMENTARY NOTE 5: EFFICIENT COMPUTATION OF THE EN-

ERGY USING HISTOGRAMS

Calculating the probability from Eq. 4 (and energy in the Monte Carlo scheme) is computa-

tionally expensive due to the typically large number of triples T . We therefore approximated

this product by grouping triplets with similar angles α, β and distances k into bins and calcu-

lated the function t(k1, k2, k3, α, β) for each bin only once, denoted tk1,k2,k3,α,β, thus markedly

reducing the number of function evaluations to the number of bins. To improve the statis-

tics for each bin, the intrinsic symmetry of the triple correlation function was also used. In

particular, all triplets were mapped into the sub-region of the triple correlation that satisfies

k1 ≥ k2 ≥ k3. Special care was taken to correct for the fact that triplets with k1 = k2 6= k3

or k1 6= k2 = k3 or k1 = k3 6= k2 occur 3 times more often than k1 = k2 = k3 and triplets
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with k1 6= k2 6= k3 occur 6 times more often. To compensate for different binsizes, each bin

was normalized by the factor k1k2k3.

In our study, the two-photon and three-photon correlations were histogrammed using sets of

scattering images ranging from 1.3× 106 to 3.3× 109 images with an average of 10 photons

per shot. We further used Kmax = 38 shells and N = 32 (∆α,∆β = 5.6◦) as bin sizes in

correlation space. At the end of this Note the choice for number of shellsKmax and its impact

on the resolution is discussed. In this work, the α and β discretization was varied e.g., to

N = 48 but without an increase in the resolution of the retrieved structures, indicating that

N = 32 is sufficiently large.

The above histogramming, required us to calculate the probability p differently. In the

triplet histogram {nk1,k2,k3,α,β}, the intensity is integrated over different shell volumes with

width ∆k each. Depending on the fluctuation of the intensity within these volumes, this

leads to different integration errors for different (k1, k2, k3)-combinations. However, this error

decreases with smaller shell distances ∆k.

To avoid this error, we compared the intensities only by the expected (α, β)-distribution of

the triplets, omitting the expected relative number of triplets per (k1, k2, k3)-combination.

Hence, the probability p from Eq. 4 was calculated as

p ({n(k1, k2, k3, α, β)} | {Alm(k)}) =
∏

k1,k2,k3

∏
α,β

(
t̃k1,k2,k3,α,β

)ñk1,k2,k3,α,β , (13)

normalizing the probabilities

t̃k1,k2,k3,α,β =
tk1,k2,k3,α,β∑
α,β tk1,k2,k3,α,β

(14)

and histogram counts

ñk1,k2,k3,α,β =
nk1,k2,k3,α,β∑
α,β nk1,k2,k3,α,β

, (15)
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for each (k1, k2, k3)-combination individually. Note that the radial shape of the intensity is

already encoded in the two-photon correlation.

SUPPLEMENTARY NOTE 6: DETAILS ON THE INVERSION OF THE

TWO-PHOTON CORRELATION

In the inversion of the two-photon correlation, the maximum L which can be extracted,

corresponding to the angular resolution of the intensity model, scales with the number of

shells Kmax (or the inverse of the shell spacing ∆k respectively) used for the two-photon

inversion (l ≤ L ≤ Kmax/2). A rotation in dimension D has D(D− 1)/2 free angles and for

D = 2l + 1 the sum over 2l2 + l free angles for l ∈ {2, 4, ..., L} yields
1

3
(L3 +

15

4
L2 +

7

2
L)

total unknown angles.

The numerical implementation of the inversion was calculated from the doublet histogram,

which itself was collected in analogy to the triplet histogram (as described later in this

Note). Also note here that doublets with k1 6= k2 occur twice as often. The coefficients

A0
lm are retrieved as real values, all calculations are in real spherical harmonics coefficients

corresponding to a real spherical harmonics basis [2, 9, 10].

SUPPLEMENTARY NOTE 7: CHOICE OF OPTIMAL SPHERICAL HAR-

MONICS PARAMETERS

Three parameters of the spherical harmonics expansion and the histogramming control the

resolution of the determined structure. First, for a maximum wave number kmax up to which

sufficient signal is detected, the number of shells Kmax that is used in the inversion of the

two-photon correlation can be chosen freely. The choice of Kmax determines both the shell
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SupplementaryFigure 2: Dependence of Resolution on SH-Parameters

Comparison of the effect on resolution of Kmax, K and L for different parameter

combinations. By increasing Kmax (35(a), 38(b), 41(c), 43(d)), higher order terms in the

spherical harmonics expansion and larger K result in increased resolution.

spacing ∆k and the maximum expansion order Lmax = Kmax/2 to which the intensity model,

used in the Monte Carlo search, is initially determined. The second parameter is the number

of shells K ≤ Kmax of the intensity model in the structure determination, which determines

the maximum wave number kcut = K ·∆k and sets an upper bound for the resolution. The

13



third parameter is the expansion order L ≤ Kmax/2 of the intensity model, which controls

the angular resolution of the intensity model. The angular resolution of the intensity does

not directly correspond to the resolution of the real-space electron density which is why the

impact of L on the resolution is indirect. However, for each wave number kcut, there is a

minimum L that is required to describe the intensity sufficiently accurately.

Here, we aimed at the optimal set of parameters (Kopt, Lopt, Kmax,opt) by which a specific

resolution is achieved with minimal computational effort (see Supplementary Note 2 for an

estimate of the computational complexity). For our parameter optimization, we further

assumed that an infinite number of photons is recorded up to the maximum wave number

kmax.

As an example, we aimed at a resolution of 3 Å. To determine the suitable parameters, we

calculated the corresponding real space resolution of intensity models with varying expansion

parameters K, L and Kmax. Supplementary Figure 2 shows the achieved resolution as a

function of L for various number of shells K for four different Kmax (35, 38, 41, 44). Note

that the maximum possible L and K increases with Kmax but due to the decrease of ∆k

the kcut (kcut = K · ∆k) of the model does not increase the same way. In all the cases,

Lopt = Kmax/2 equalled the maximum possible expansion order and Kmax and K were the

limiting parameters.

From all parameter combinations yielding a resolution close to 3 Å, Kmax = 38, K = 26

and L = 18 minimized the computational effort, with the matrix multiplication of A ∈

R163,153×17,576 with F ∈ R1024×163,153 for each Monte Carlo step was the limiting factor.

Several days were required for each structure determination run.
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SupplementaryFigure 3: Dependence of Resolution on Photons per Image

The resolution as a function of the total number of photons collected from images with 10,

25, 50 and 100 photons on average.

SUPPLEMENTARY NOTE 8: VARIATION OF THE PHOTON COUNTS

PER IMAGE

In our histogram approach, the maximum number of triplets T that can be collected from

an image with P photons is T = P · (P − 1) · (P − 2)/6. However, these triplets are not all

statistically independent; rather, starting from 3 photons, each additional photon adds only

two real numbers to the triple correlation: a new angle β (with respect to another photon)

and a new distance k to the detector center.

The sampling of the three-photon correlation is improved by either collecting more photons

per image P or by collecting more images I. However, because for each image, the orientation

(3 Euler angles) needs to be inferred, the total amount of information that remains available
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for structure determination increases with the number of photons per image. Therefore,

for every structure determination method, including ours, increasing P is preferred over

increasing I, especially at low photon counts. For larger photon counts, the ratio between

the 3 Euler angles and P becomes small and hence also the information asymmetry between

P and I.

To assess this effect, we asked how the resolution depends on the number of images I

and the photons per image P and therefore carried out additional synthetic experiments

using image sets with 10, 25, 50 and 100 average photons P per shot at different image

counts yielding different total number of photons. In Supplementary Figure 3, the achieved

resolutions are shown as a function of the number of collected photons for four different

P = [10, 25, 50, 100]. For the best achievable resolution of 3.3 Å, e.g., the total number of

required photons decreases by a factor of 100 from 3.3× 1010 to 3.3× 108 photons (and the

number of images decreased by a factor of 1000 from 3.3 × 109 to 3.3 × 106 images) when

increasing the photons per image from 10 to 100, thus substantially decreasing the data

acquisition time from over 20.000 minutes to only 30 minutes (see Fig. 3d main text).

SUPPLEMENTARY NOTE 9: STRUCTURE DETERMINATION IN THE

PRESENCE OF ADDITIONAL NON-

POISSONIAN NOISE

To asses how additional noise (beyond the Poisson noise due to low photon counts) affects the

achievable resolution, we have carried out synthetic scattering experiments including Gaus-

sian distributed photons, G(k, σ) = (2πσ2)−1/2 exp (−|k|2/2σ2) (Supplementary Fig. 4), as a

simple noise model. From the generated scattering images, intensities S(k) were determined

as described in the main text.
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SupplementaryFigure 4: Radial Intensity Distribution of Various Noise Sources

Comparison of linear cuts through the normalized intensities of noise distributed according

to Gaussian functions with widths σ = [0.5, 0.75, 1.125, 2.5]Å−1 (purple shades and black),

noise from Compton scattering (grey) and noise from the a disordered water shell of 5 Å

thickness (aqua). A cut through the Crambin intensity without noise (green) is given for

reference. Note that, due to the normalization in 3D, the noise intensities are shown at a

signal to noise ratio γ = 100%; at different signal to noise ratios, the noise intensities are

shifted vertically with respect to the Crambin intensity.

Assuming that the noise is independent of the molecular structure, the obtained intensities

S(k) = I(k) + γN(k) are a linear superposition of the molecules’ intensity I(k) and the

intensity of the unknown noise N(k). Accordingly, the noise was subtracted from S(k) in

3D Fourier space using our noise model N(k) = G(k, σ) and the estimated signal to noise

ratio γ. Since the spherical harmonics expansion of a Gaussian distribution is described by
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a single coefficient Gl=0,m=0(k) = G (k, σ) on each shell k, the noise subtraction simplified

to Anoise−free
l=0,m=0 (k) = Anoisy

l=0,m=0(k)− γG (k, σ). The noise-free intensity I(k) was then processed

as described in the main text.

As discussed in the main text, we assessed the effect of noise for different Gaussian widths

(σ = [0.5, 0.75, 1.125, 2.5]Å−1 and several signal to noise ratios γ ∈ [10%, ..., 50%]. Sup-

plementary Figure 4 compares the Crambin intensity (green) with the different Gaussian

distributions (puples shades,black) at signal to noise ratio of γ = 100%.

The Figure also shows the noise expected from Compton scattering (grey), which was esti-

mated using the Klein-Nishina differential cross-section [14]

dσ =
1

2

α2

m2

(
E ′

E

)2 [
E ′

E
+
E

E ′
− sin2 θ

]
dΩ, (16)

with the scattering angle θ, the energy of the incoming photons E, the energy of the scattered

photon E ′ = E/(1+ E
m

(1−cos θ)), the fine structure constant α = 1/137.04 and the electron

resting mass me = 511 keV/c2. As can be seen, the noise from Compton scattering (grey)

is described well by a Gaussian distributions with width σ = 2.5Å−1 (black), and thus was

used to approximate incoherent scattering.

Finally, we also estimated the noise from the disordered fraction of the water shell by av-

eraging the intensities of 100 Crambin structures with different 5 Å-thick water shells. The

resulting intensity (aqua) is similar to the reference intensity with fewer signal in the interme-

diate regions (0.2Å−1 < k < 1.0Å−1) and more signal in the center and the high-resolution

regions (k > 1.0Å−1). Since the noise of the water shell depends on the structure of the

biomolecule, potentially combined with ordered water molecules, it is unlikely to be well

described by our simple Gaussian model. Therefore, simple noise subtraction will be chal-

lenging, and more advanced iterative techniques will be required.
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SUPPLEMENTARY NOTE 10: PROCESSING EXPERIMENTAL SCAT-

TERING IMAGES

SupplementaryFigure 5: Retrieved Intensity and Electron Density of a Coliphage Virus

(a) Averaged intensity retrieved from 7350 images of the coliphage PR772 imageset [15]

using three-photon correlations sampled with 3× 1012 triplets. (b) Corresponding electron

density after phase retrieval. (c) Three orthogonal planar slices through the retrieved

electron density.

We have tested the structure determination with the coliphage PR772 image-set recorded at

LCLS [15] to demonstrate that our method can handle the heterogeneities of real experimen-

tal data. The images contain a small beamstop which distorts the three-photon correlation
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as follows,

tk1,k2,k3,α,β =
〈
〈Iω,ϕ(k1)Iω,ϕ(k2)Iω,ϕ(k3)〉ω

〉
ϕ

(17)

= 〈Iω(k1)Iω(k2)Iω(k3)〉ω 〈Bϕ(k1)Bϕ(k2)Bϕ(k3)〉ϕ .

Here, we described the underlying intensity Iω,ϕ as the product of the full intensity Iω(k)

and the beamstop Bϕ(k). The second average over ϕ is only along a circle and expresses the

three-photon correlation bk1,k2,k3,α,β of the beamstop only. The distortion of the two-photon

correlation is similar and we have corrected both correlations with the respective beamstop

correlations.

The available 14700 coliphage images contain over 400,000 photons per image on aver-

age. To demonstrate that our method can handle much fewer photons per image, we have

down-sampled the images by generating individual photons, and triplets respectively, using

rejection sampling (see Methods) of the intensity distribution given by the dense images.

This allows us to generate, in principle, only three photons per image, however at a need

for many more images. In order to achieve sufficient sampling with the limited number of

images, we used 1200 photons per image on average, which is the same as reusing images

multiple times. The specific number of photons in each image was scaled proportional to the

integral over the entire image, i.e., the total number of scattered photons for each image. For

the correlation we used K = 38 shells corresponding to ∆q = 0.004−1 and for the structure

determination we used an expansion limit of L = 12. No symmetry was imposed on the

intensity and the missing intensity in the center of the beamstop was completed using a fit

of the adjacent shells with a Gaussian.

In order to calculate the resolution of the retrieved densities using Fourier shell correlations,
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we calculated two independent two- and three-photon correlations from 7350 images of the

coliphage virus each. From each of the two correlation, we determined 20 independent

intensities and averaged them before phasing (see Supplementary Fig. 5a) and then also

averaged 8 phased electron densities (see Supplementary Fig. 5b and c). Despite the large

conformational inhomogeneities in the data set as mentioned by Hosseinizadeh et al. [16],

the icosahedral symmetry of the virus is clearly visible in the xz-plane. Notably, this sym-

metry is a result of our reconstruction — in contrast to previous reconstructions [16], where

the icosahedral symmetry of the particle was imposed. From the Fourier shell correlation

0.01 0.02 0.03 0.04 0.05 0.06
Wave Number k [1/Å]

0.0

0.2

0.4

0.6

0.8

1.0

FS
C

FSC

628.3 314.2 209.4 157.1 125.7 104.7
Radial Resolution [Å]

SupplementaryFigure 6: Fourier Shell Correlation of the Retrieved Densities

Fourier shell correlation (FSC) between two independent structure determinations from

7350 images each. We achieved a resolution of 11.7 nm when using a standard 0.143 FSC

cutoff and a 12.3 nm resolution using a 0.5 cutoff. The maximum achievable resolution

based on the maximum scattering angle is 9 nm.
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between the two retrieved electron densities, we calculated a resolution of 11.7 nm, which is

close to the maximum achievable resolution of 9 nm (see FSC in Supplementary Fig. 6). We

attribute the slightly lower resolution to the fact that we have not imposed any symmetry

during reconstruction.

SUPPLEMENTARY NOTE 11: PROCESSING IMAGES WITH MULTIPLE

PARTICLES

Structure determination approaches are usually limited by the total number of single

molecule shots that can be recorded. Remarkably, our method can process images with

multiple illuminated particles because the two- and three-photon correlations of these im-

ages are connected to the correlations of the single particle shots. In order to show this

relation, here, we derive the connection for the two-particle case.

The intensity of an image containing two randomly oriented particles I2(k) is the superpo-

sition of the the individual particle intensities’ with the relative orientation being random,

I2(k) = 〈I(k) + Iω(k)〉ω (18)

= I(k) + 〈Iω(k)〉

= I(k) + I1(k).

The two-photon correlation then reads,

c
(2)
k1,k2,α

= 〈I2(K1)I2(K2)〉 >ω (19)

=
〈
I(K1)I(K2) + I(K1)I

1(k2) + I1(k1)I(K2) + I1(k1)I
1(k2)

〉
>ω

= c
(1)
k1,k2,α

+ 3I1(k1)I
1(k2)

and the three-photon correlation of the two-particle case is calculated as,
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t
(2)
k1,k2,k3,α,β

= 〈I2(K1)I2(K2)I2(K3)〉ω (20)

=
〈
(I(K1) + I1(k1))(I(K2) + I1(k2))(I(K3) + I1(k3))

〉
ω

= < I(K1)I(K2)I(K3) + I1(k1)I(K2)I(K3) + I(K1)I
1(k2)I(K3) + I(K1)I(K2)I

1(k3) +

×I1(k1)I1(k2)I(K3) + I1(k1)I(K2)I
1(k3) + I(K1)I

1(k2)I
1(k3) + I1(k1)I

1(k2)I
1(k3) >ω

= t
(2)
k1,k2,k3,α,β

+ I1(k2)c
(1)
k1,k3,β

+ I1(k1)c
(1)
k2,k3,(α−β) + I1(k3)c

(1)
k1,k2,α

+ 4I1(k1)I
1(k2)I

1(k3)

The expressions above is readily generalize to the N-particle case and the only remaining

unknowns are the mixture ratios γi for the Ni-particles, i.e. the fraction of images containing

Ni particles. These ratios are equivalent to the ratios between the integrated intensities of the

individual images which identifies the total number of particle in each image and therefore

can be calculated from the experimental data without additional effort.

SUPPLEMENTARY NOTE 12: NOTE ON EWALD CURVATURE

In the initial version of this paper, the computationally expensive structure determination

runs were carried out with a planar approximation of the Ewald sphere, i.e., λ = 0 Å. How-

ever, we expected that the structure results would only slightly change in presence of the

Ewald curvature, because the entire Fourier intensity is still fully sampled. With the inclu-

sion of the Ewald curvature in both the theory and the implementation of the algorithms,

as presented in this paper, we have re-performed the synthetic scattering experiments at a

beam wavelength of 2.5 Å and determined the structure from both 3.3× 109 and 3.3× 108

images. For our maximum wave number of kmax the curvature of the Ewald sphere leads

to a deviation from the plane by θ = 65◦. Both structure determination runs gave similar

resolutions as for the planar case ( 3.3 Å and 3.7 Å) and we concluded that the results
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presented in this paper are not affected by the additional Ewald curvature.
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SupplementaryFigure 7: Calculation of Electron Densities and Resolution

Flowchart outlining how electron densities are calculated from the scattering images. The

resolution and its error is calculated from the average of 20 phased electron densities.
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SupplementaryFigure 8: Evaluation of Phasing Errors for Crambin

Comparison between the intensity shell correlation (ISC) of the retrieved intensities before

the phasing was done (a) and the ISC calculated from the phased electron densities (b).

The 0.5 cutoff is given to estimate the quality of the respective intensites. The phasing

leads to a moderate decrease of the threshold-crossing by ca. 0.3 Å.
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