Molecular signature of progenitor cells isolated from young and

adult human hearts

Ann-Sophie Walravens¹, Maarten Vanhaverbeke¹, Lara Ottaviani¹, Hilde Gillijns¹, Sander Trenson¹, Nina Vanden Driessche¹, Aernout Luttun¹, Bart Meyns, Paul Herijgers, Filip Rega, Ruth Heying, Maurilio Sampaolesi², and Stefan Janssens^{*1}

Supplemental data information

Figure S1

Figure S1. Gene expression levels of *IGF-1* and *IGF-2R* of young and adult c-kit^{pos} CPCs and CDCs

c-kit^{pos} yCPC (n=8), c-kit^{pos} aCPC (n=9), yCDC (n=7) and aCDC (n=7). Results are geometric mean with 95% CI, Kruskal-Wallis test for non-normally distributed data, *p<0.05. CPC, cardiac progenitor cell; CDC, cardiosphere-derived cell.

Figure S2

Figure S2. Gene expression confirmation of *IL1B, IL8* and *TGFB1* of adult c-kit^{pos} CPCs and young and adult CDCs

Confirmation of gene expression of *IL1B, IL8* and *TGFB1* comparing yCDC (n=4) and aCDC (n=4). Results are shown as mean±SEM. CDC, cardiosphere-derived cell.

Figure S3. Characterization of exosomes derived from adult and young c-kit^{pos} CPCs and CDCs.

(A) Nanoparticle analysis of c-kit^{pos} CPCs (c-kit^{pos} yCPC, n=3; c-kit^{pos} aCPC, n=3) and CDCs (yCDC, n=2; aCDC, n=2)-derived nanoparticles to determine size distribution and concentration. Depicted is the nanoparticle analysis of a representative exosome sample of each group. Each image shows 6 technical replicates of that sample. CPC, cardiac progenitor cell; CDC, cardiosphere-derived cell. (B) Normalized expression levels of miR-22-3p, miR-146a-3p and miR-210-3p present in young (n=4) and adult (n=5) CDC-derived exosomes. CDC, cardiosphere-derived cell.

Figure S4 A

🗌 c-kit^{pos} yCPC SWAP 🔳 c-kit^{pos} aCPC SWAP 🔝 yCDC SWAP 📓 aCDC SWAP

В

🗌 c-kit^{pos} yCPC SWAP 📕 c-kit^{pos} aCPC SWAP 📓 yCDC SWAP 📓 aCDC SWAP

Figure S4. Phenotypical and functional differences between c-kit^{pos} CPCs and CDCs are independent from culture conditions.

(A) Normalized expression levels of *CD117*, *CD105* and *CD90* in c-kit^{pos} CPCs (young, n=2; adult, n=2) and CDCs (young, n=2; adult, n=2) after culture in their counterpart expansion medium for at least 2 passages. Results are mean±SEM. CPC, cardiac progenitor cell; CDC, cardiosphere-derived cell. (B) Analysis of network formation 6 hours after culture on Matrigel® of c-kit^{pos} yCPCs (n=2), c-kit^{pos} aCPCs (n=2), yCDCs (n=2) and aCDCs (n=2). Quantification of number of nodes, junctions, meshes, segments and branches normalized to analysed area. Results are mean±SEM. SWAP, CDCs cultured in c-kit^{pos} expansion medium and c-kit^{pos} CPCs

cultured in CDC expansion medium and fibronectin-coated culture plates; CPC, cardiac progenitor cell; CDC, cardiosphere-derived cell.

Table S1. Overview of monocional antibodies used for now cytometry						
Monoclonal antibody	Fluorochrome	Incubation Temp.	Supplier (catalog N°)			
CD117 (1:100)	APC	4°C	DAKO (C7244)			
CD105 (1:100)	APC	4°C	BD Pharmingen (562404)			

Table S1. Overview of monoclonal antibodies used for flow cytometry

APC indicates allophycocyanin.

CD90 (1:200)

Table S2. Overview of primary antibodies, secondary antibodies and amplification methods used for immunofluorescence stainings of cells

Target	Primary Antibody	Secondary Antibody	Amplification
α -sarcomeric actinin	Abcam (1:100)	RAM-Biotin (1:200)	TSA
F-actin (phalloidin)	Molecular Probes (1:50)	-	-

RT

BD Pharmingen (559869)

RAM indicates rabbit anti-mouse; TSA, tyramide signal amplification.

APC

Table S3. Detailed clinical characteristics of the patients

	Cardiovascular risk factors						
Patient	Age	Gender	Hypertension	Diabetic	Hyperlipidaemia	Smoking	Aetiology
yCPC1	2,5 y	М	N/A	N/A	N/A	N/A	ASD
yCPC2	14 y	F	N/A	N/A	N/A	N/A	ASD
yCPC3	9 m	F	N/A	N/A	N/A	N/A	VSD
yCPC4	7 m	F	N/A	N/A	N/A	N/A	AVSD
yCPC5	8,5 m	М	N/A	N/A	N/A	N/A	AVSD
yCPC6	5,5 m	М	N/A	N/A	N/A	N/A	VSD
yCPC7	6 d	F	N/A	N/A	N/A	N/A	VSD
yCPC8	4 m	F	N/A	N/A	N/A	N/A	Tetralogy of Fallot
yCPC9	3 d	F	N/A	N/A	N/A	N/A	TGA
yCPC10	3 m	F	N/A	N/A	N/A	N/A	VSD
yCPC11	2 m	F	N/A	N/A	N/A	N/A	VSD
yCPC12	5 d	F	N/A	N/A	N/A	N/A	TGA
yCPC13	3 m	F	N/A	N/A	N/A	N/A	Tetralogy of Fallot
yCPC14	2.5 m	F	N/A	N/A	N/A	N/A	Tetralogy of Fallot
yCPC15	4 m	М	N/A	N/A	N/A	N/A	AVSD
aCPC1	80 y	F	Yes	Pre- diabetic	Yes	No	MVP/MVR ± CABG
aCPC2	70 y	М	Yes	No	Yes	Ex-	MVP/MVR ±
aCPC3	53 y	М	Yes	Pre- diabetic	Yes	smoker Ex- smoker	CABG MVP/MVR ± CABG
aCPC4	57 y	М	Yes	No	Yes	Ex-	Other
aCPC5	81 y	М	Yes	No	Yes	No	Complex
aCPC6	73 y	М	Yes	Diabetic	No	Active	valvular disease MVP/MVR ± CABG
aCPC7	73 y	М	Yes	Diabetic	Yes	No	AVP/AVR ± CABG

aCPC8	68 y	М	Yes	Diabetic	Yes	Ex-	Complex
aCBC9	75 v	F	Ves	Pro-	Ves	smoker	Valvular disease
201 05	75 y	I	103	diabetic	103	NO	valvular disease
aCPC10	80 y	М	No	No	Yes	No	AVP/AVR ±
	-						CABG
aCPC11	84 y	F	Yes	No	Yes	No	Complex
00040	70		N/		N/	-	valvular disease
aCPC12	79 y	IVI	Yes	NO	Yes	EX-	AVP/AVR ±
aCPC13	74 v	F	Yes	Yes	Yes	No	Complex
	<i>,</i> , , ,		100	100	100		valvular disease
aCPC14	62 y	F	Yes	No	Yes	Ex-	MVP/MVR ±
						smoker	CABG
aCPC15	65 y	F	Yes	Yes	Yes	Yes	AVP/AVR ±
+CDC46	02.4	F	Vaa	No	Vaa	No	CABG
aCPC16	82 y	F	res	INO	res	INO	Complex valvular disease
aCPC17	79 v	F	Yes	No	No	No	MVP/MVR +
	,	•					CABG
aCDC1	70 y	М	Yes	Pre-	Yes	No	MVP/MVR ±
				diabetic			CABG
aCDC2	47 y	М	No	Unknown	Yes	Active	AVP/AVR ±
aCDC2	61 1	F	No	No	Vee	No	
acdes	бгу	Г	INO	INO	res	INO	
aCDC4	77 v	М	Yes	No	No	Active	Complex
	,						valvular disease
aCDC5	75 y	F	Yes	No	Yes	No	Complex
				_		_	valvular disease
aCDC6	65 y	М	Yes	Pre-	No	Ex-	MVP/MVR ±
20007	56 v	F	No	No	Vec	No	
acber	50 y	I	NO	NO	163	NO	CABG
aCDC8	49 y	М	No	No	No	No	AVP/AVR ±
	-						CABG
aCDC9	60 y	М	Yes	No	Yes	No	Complex
	11		N1/A	N1/A	N1/A	N1/A	valvular disease
YCDC1	11 m	IVI	N/A	N/A	N/A	N/A	AVSD
yCDC2	4 d	М	N/A	N/A	N/A	N/A	TGA
yCDC3	5 m	Μ	N/A	N/A	N/A	N/A	Tetralogy of
vCDC4	10 v	М	N/A	N/A	N/A	N/A	ASD
VCDCE	4 m	F	NI/A	NI/A	NI/A	NI/A	Totralogy of
усрез	4 11	Г	N/A	N/A	N/A	N/A	Fallot
yCDC6	1,5 m	F	N/A	N/A	N/A	N/A	Tetralogy of Fallot
yCDC7	3 m	М	N/A	N/A	N/A	N/A	Tetralogy of Fallot

CPC indicates cardiac progenitor cell; CDC, cardiosphere-derived cell; y, years; m, months; d, days; M, male; F, female; ASD, atrial septal defect; VSD, ventricular septal defect; AVSD, atrioventricular septal defect; TGA, transposition of the great arteries, MVP/R, mitral valve repair/replacement; AVP/R, aortic valve repair/replacement; CABG, coronary artery bypass grafting; N/A, Not Applicable