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1 Model formulation

Let Yit be random variable of the number of reported malaria cases for children under 5 years in district Ri

and epidemiological week t. We assume that conditionally on a Gaussian spatio-temporal random e↵ect Sit,

the Yit are mutually independent Poisson variables with mean

�it = mit exp{d>it� + Sit}

where dit is a vector of spatio-temporal explanatory variables with associated regression coe�cients �.

Let S>
t = (S1t, . . . , Snt) denote the collection of the random e↵ects associated to each of the n = 142 districts

in Mozambique in week t. We then assume St to follow a multivariate Gaussian distribution with mean zero

and covariance matrix ⌃ such that

[⌃]ij =
�2

|Ri||Rj |

Z

Ri

Z

Ri

exp{�kxi � xjk/�} dxidxj

where |Rj | is the area encompassed by the boundaries of district Ri. We approximate the above integral using

a numerical integration procedure based on a 1 km
2
regular grid covering the whole of Mozambique, which

yields

[⌃]ij ⇡
�2

NiNj

X

x̃i2Ri

X

x̃j2Ri

exp{�kx̃i � x̃jk/�}, (1)

where x̃ are the points on the grid and Ni are the number of points x̃ falling within Ri.

We model the temporal correlation between the Yit using an autoregressive process of the first order, i.e.

St = ⇢St�1 +Wt, �1 < ⇢ < 1

where Wt is the temporal innovation following a multivariate Gaussian distribution with mean zero and

covariance matrix give by (1).

From the above assumptions, it follows that the log-density of the joint distribution of the St is given by

log f(S1, . . . , ST ) = log f(S1) +

TX

t=2

f(St|St�1), (2)

where

log f(S1) = �1

2

⇥
n log{2⇡}+ det{(1� ⇢2)�1

⌃}+ (1� ⇢2)S>
1 ⌃

�1S1

⇤

and

log f(St|St�1) = �1

2

⇥
n log{2⇡}+ det{⌃}+ (St � ⇢St�1)

>
⌃

�1
(St � ⇢St�1)

⇤
, t = 1, . . . , T.

2 Priors specification

We assume the following set of independent priors:

• �2
follows a Gaussian distribution left truncated in 0, with mean 1 and variance 10

4
;

• ⇢ is uniform in the interval (�1, 1);

• finally, we use a uniform prior for � over the discrete set

�i = 17 + i⇥ 5

19
, i = 0, . . . , 19. (3)
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The use of a discrete prior for � allows us to make the implementation of the Monte Carlo Markov chain

(MCMC) faster by pre-computing the covariance matrix in (1) for all the pre-defined values �i.

We remind that, in fitting the model, the regression coe�cients � are fixed at their maximum likelihood

estimate from a standard Poisson model.

3 Implementation of the Markov chain Monte Carlo algorithm for
Bayesian inference

We developed an MCMC to simulate from the posterior distributions of �2
, ⇢, � and (S1, . . . , ST ) by updating

each of these in turn as follows.

1. �: we use a Metropolis Hastings (MH) procedure and propose a new value �prop given the current value

�curr based on a discretized Gaussian distribution with mean �curr and variance 4.

2. �2
: we use an MH procedure and propose a new value �2

prop on the log-scale by simulating from a

Guassian distribution with mean log{�2
curr} with variance h which is adaptively tuned in order to obtain

a acceptance rate of 23.4%.

3. ⇢: we use an MH procedure on the transformed scale log{(1 + ⇢)/(1 � ⇢)} using a Gaussian proposal

with mean log{(1 + ⇢curr)/(1� ⇢curr)} and variance h which we tune in the same way as for �2
.

4. (S1, . . . , St): we use a Hamiltonian Monte Carlo algorithm based on the leapfrog method (Neal, 2011,

pages 121-122) by generating the number of steps and their size from two uniform distributions within

the intervals (0.0001, 0.15) and (2, 51), respectively.

We run the MCMC for 110,000 iterations with a burnin of 10,000 samples and retaining every tenth sample

to obtain a final set of 10,000 samples.

Figures 1 and 2 show trace plots and correlograms of the posterior samples form the MCMC for the best

model M3, defined in the main manuscript, which is based on a hold-out sample of 26 weeks. The results show

a good mixing of the samples, thus indicating convergence of the MCMC.
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Figure 1: Trace plots (left panels) and correlograms (right panels) of the posterior samples for �2
(upper

panels), � (central panels) and ⇢ (lower panels).
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Figure 2: Trace plots and correlograms of three randomly selected components of the spatio-temporal random

e↵ects Sit.
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Figure 3: Histograms of the poster samples for �2
, ⇢ and �. The discrete posterior distribution of � is visualized

as a bar plot.
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