Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Kathryn L. Colborn^{1*}, Emanuele Giorgi², Andrew J. Monaghan³, Eduardo Gudo⁴, Baltazar Candrihno⁵, Tatiana J. Marrufo⁴, James M. Colborn⁶

¹Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora,

CO, USA,

² Lancaster Medical School, Lancaster University, UK,

³National Center for Atmospheric Research, Boulder, CO, USA,

⁴Instituto Nacional de Saude, Maputo, Mozambique,

⁵National Malaria Control Program, Maputo, Mozambique,

⁶Clinton Health Access Initiative, Boston, MA, USA

*Corresponding author: Kathryn Colborn, 13001 E. 17th Place, Room C3011, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; email: <u>Kathryn.Colborn@ucdenver.edu</u>; phone: 303-946-3578

1 Model formulation

Let Y_{it} be random variable of the number of reported malaria cases for children under 5 years in district \mathcal{R}_i and epidemiological week t. We assume that conditionally on a Gaussian spatio-temporal random effect S_{it} , the Y_{it} are mutually independent Poisson variables with mean

$$\lambda_{it} = m_{it} \exp\{d_{it}^{\dagger}\beta + S_{it}\}$$

where d_{it} is a vector of spatio-temporal explanatory variables with associated regression coefficients β .

Let $S_t^{\top} = (S_{1t}, \ldots, S_{nt})$ denote the collection of the random effects associated to each of the n = 142 districts in Mozambique in week t. We then assume S_t to follow a multivariate Gaussian distribution with mean zero and covariance matrix Σ such that

$$[\Sigma]_{ij} = \frac{\sigma^2}{|\mathcal{R}_i||\mathcal{R}_j|} \int_{\mathcal{R}_i} \int_{\mathcal{R}_i} \exp\{-\|x_i - x_j\|/\phi\} \, dx_i dx_j$$

where $|\mathcal{R}_j|$ is the area encompassed by the boundaries of district \mathcal{R}_i . We approximate the above integral using a numerical integration procedure based on a 1 km² regular grid covering the whole of Mozambique, which yields

$$[\Sigma]_{ij} \approx \frac{\sigma^2}{N_i N_j} \sum_{\tilde{x}_i \in \mathcal{R}_i} \sum_{\tilde{x}_j \in \mathcal{R}_i} \exp\{-\|\tilde{x}_i - \tilde{x}_j\|/\phi\},\tag{1}$$

where \tilde{x} are the points on the grid and N_i are the number of points \tilde{x} falling within \mathcal{R}_i .

We model the temporal correlation between the $Y_i t$ using an autoregressive process of the first order, i.e.

$$S_t = \rho S_{t-1} + W_t, \quad -1 < \rho < 1$$

where W_t is the temporal innovation following a multivariate Gaussian distribution with mean zero and covariance matrix give by (1).

From the above assumptions, it follows that the log-density of the joint distribution of the S_t is given by

$$\log f(S_1, \dots, S_T) = \log f(S_1) + \sum_{t=2}^T f(S_t | S_{t-1}),$$
(2)

where

$$\log f(S_1) = -\frac{1}{2} \left[n \log\{2\pi\} + \det\{(1-\rho^2)^{-1}\Sigma\} + (1-\rho^2)S_1^{\top}\Sigma^{-1}S_1 \right]$$

and

$$\log f(S_t|S_{t-1}) = -\frac{1}{2} \left[n \log\{2\pi\} + \det\{\Sigma\} + (S_t - \rho S_{t-1})^\top \Sigma^{-1} (S_t - \rho S_{t-1}) \right], \quad t = 1, \dots, T.$$

2 Priors specification

We assume the following set of independent priors:

- σ^2 follows a Gaussian distribution left truncated in 0, with mean 1 and variance 10^4 ;
- ρ is uniform in the interval (-1, 1);
- finally, we use a uniform prior for ϕ over the discrete set

$$\phi_i = 17 + i \times \frac{5}{19}, \quad i = 0, \dots, 19.$$
 (3)

The use of a discrete prior for ϕ allows us to make the implementation of the Monte Carlo Markov chain (MCMC) faster by pre-computing the covariance matrix in (1) for all the pre-defined values ϕ_i .

We remind that, in fitting the model, the regression coefficients β are fixed at their maximum likelihood estimate from a standard Poisson model.

3 Implementation of the Markov chain Monte Carlo algorithm for Bayesian inference

We developed an MCMC to simulate from the posterior distributions of σ^2 , ρ , ϕ and (S_1, \ldots, S_T) by updating each of these in turn as follows.

- 1. ϕ : we use a Metropolis Hastings (MH) procedure and propose a new value ϕ_{prop} given the current value ϕ_{curr} based on a discretized Gaussian distribution with mean ϕ_{curr} and variance 4.
- 2. σ^2 : we use an MH procedure and propose a new value σ_{prop}^2 on the log-scale by simulating from a Guassian distribution with mean $\log{\{\sigma_{curr}^2\}}$ with variance h which is adaptively tuned in order to obtain a acceptance rate of 23.4%.
- 3. ρ : we use an MH procedure on the transformed scale $\log\{(1 + \rho)/(1 \rho)\}$ using a Gaussian proposal with mean $\log\{(1 + \rho_{curr})/(1 \rho_{curr})\}$ and variance h which we tune in the same way as for σ^2 .
- 4. (S_1, \ldots, S_t) : we use a Hamiltonian Monte Carlo algorithm based on the leapfrog method (Neal, 2011, pages 121-122) by generating the number of steps and their size from two uniform distributions within the intervals (0.0001, 0.15) and (2, 51), respectively.

We run the MCMC for 110,000 iterations with a burnin of 10,000 samples and retaining every tenth sample to obtain a final set of 10,000 samples.

Figures 1 and 2 show trace plots and correlograms of the posterior samples form the MCMC for the best model M3, defined in the main manuscript, which is based on a hold-out sample of 26 weeks. The results show a good mixing of the samples, thus indicating convergence of the MCMC.

References

NEAL, R. M. (2011). MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo, S. Brooks, A. Gelman, G. Jones & X.-L. Meng, eds., chap. 5. Chapman & Hall, CRC Press, pp. 113–162.

Figure 1: Trace plots (left panels) and correlograms (right panels) of the posterior samples for σ^2 (upper panels), ϕ (central panels) and ρ (lower panels).

Series S.1

Figure 2: Trace plots and correlograms of three randomly selected components of the spatio-temporal random effects S_{it} .

Figure 3: Histograms of the poster samples for σ^2 , ρ and ϕ . The discrete posterior distribution of ϕ is visualized as a bar plot.