Spatio-temporal modelling of weekly malaria incidence in children under 5 for early epidemic detection in Mozambique

Kathryn L. Colborn^{1*}, Emanuele Giorgi², Andrew J. Monaghan³, Eduardo Gudo⁴, Baltazar Candrihno⁵, Tatiana J. Marrufo⁴, James M. Colborn⁶

¹Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora,

CO, USA,

2 Lancaster Medical School, Lancaster University, UK,

³National Center for Atmospheric Research, Boulder, CO, USA,

4 Instituto Nacional de Saude, Maputo, Mozambique,

5 National Malaria Control Program, Maputo, Mozambique,

6 Clinton Health Access Initiative, Boston, MA, USA

* Corresponding author: Kathryn Colborn, 13001 E. 17th Place, Room C3011, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; email: Kathryn.Colborn@ucdenver.edu; phone: 303-946- 3578

1 Model formulation

Let Y_{it} be random variable of the number of reported malaria cases for children under 5 years in district \mathcal{R}_i and epidemiological week t . We assume that conditionally on a Gaussian spatio-temporal random effect S_{it} , the Y_{it} are mutually independent Poisson variables with mean

$$
\lambda_{it} = m_{it} \exp\{d_{it}^{\top} \beta + S_{it}\}
$$

where d_{it} is a vector of spatio-temporal explanatory variables with associated regression coefficients β .

Let $S_t^{\perp} = (S_{1t}, \ldots, S_{nt})$ denote the collection of the random effects associated to each of the $n = 142$ districts in Mozambique in week t . We then assume S_t to follow a multivariate Gaussian distribution with mean zero and covariance matrix Σ such that

$$
[\Sigma]_{ij} = \frac{\sigma^2}{|\mathcal{R}_i||\mathcal{R}_j|} \int_{\mathcal{R}_i} \int_{\mathcal{R}_i} \exp\{-||x_i - x_j||/\phi\} dx_i dx_j
$$

where $|\mathcal{R}_j|$ is the area encompassed by the boundaries of district \mathcal{R}_i . We approximate the above integral using a numerical integration procedure based on a 1 km^2 regular grid covering the whole of Mozambique, which yields

$$
[\Sigma]_{ij} \approx \frac{\sigma^2}{N_i N_j} \sum_{\tilde{x}_i \in \mathcal{R}_i} \sum_{\tilde{x}_j \in \mathcal{R}_i} \exp\{-\|\tilde{x}_i - \tilde{x}_j\|/\phi\},\tag{1}
$$

where \tilde{x} are the points on the grid and N_i are the number of points \tilde{x} falling within \mathcal{R}_i .

We model the temporal correlation between the Y_it using an autoregressive process of the first order, i.e.

$$
S_t = \rho S_{t-1} + W_t, \quad -1 < \rho < 1
$$

where W_t is the temporal innovation following a multivariate Gaussian distribution with mean zero and covariance matrix give by (1) .

From the above assumptions, it follows that the log-density of the joint distribution of the *S^t* is given by

$$
\log f(S_1, \dots, S_T) = \log f(S_1) + \sum_{t=2}^{T} f(S_t | S_{t-1}),
$$
\n(2)

where

$$
\log f(S_1) = -\frac{1}{2} \left[n \log\{2\pi\} + \det\{ (1 - \rho^2)^{-1} \Sigma\} + (1 - \rho^2) S_1^\top \Sigma^{-1} S_1 \right]
$$

and

$$
\log f(S_t|S_{t-1}) = -\frac{1}{2} \left[n \log\{2\pi\} + \det\{\Sigma\} + (S_t - \rho S_{t-1})^\top \Sigma^{-1} (S_t - \rho S_{t-1}) \right], \quad t = 1, \dots, T.
$$

2 Priors specification

We assume the following set of independent priors:

- σ^2 follows a Gaussian distribution left truncated in 0, with mean 1 and variance 10^4 ;
- ρ is uniform in the interval $(-1, 1)$;
- finally, we use a uniform prior for ϕ over the discrete set

$$
\phi_i = 17 + i \times \frac{5}{19}, \quad i = 0, \dots, 19. \tag{3}
$$

The use of a discrete prior for ϕ allows us to make the implementation of the Monte Carlo Markov chain (MCMC) faster by pre-computing the covariance matrix in $[\mathbb{I}]$ for all the pre-defined values ϕ_i .

We remind that, in fitting the model, the regression coefficients β are fixed at their maximum likelihood estimate from a standard Poisson model.

3 Implementation of the Markov chain Monte Carlo algorithm for Bayesian inference

We developed an MCMC to simulate from the posterior distributions of σ^2 , ρ , ϕ and (S_1, \ldots, S_T) by updating each of these in turn as follows.

- 1. ϕ : we use a Metropolis Hastings (MH) procedure and propose a new value ϕ_{prop} given the current value ϕ_{curr} based on a discretized Gaussian distribution with mean ϕ_{curr} and variance 4.
- 2. σ^2 : we use an MH procedure and propose a new value σ_{prop}^2 on the log-scale by simulating from a Guassian distribution with mean $\log{\{\sigma_{curr}^2\}}$ with variance *h* which is adaptively tuned in order to obtain a acceptance rate of 23.4%.
- 3. ρ : we use an MH procedure on the transformed scale $\log\{(1+\rho)/(1-\rho)\}\)$ using a Gaussian proposal with mean $\log\{(1 + \rho_{curr})/(1 - \rho_{curr})\}$ and variance *h* which we tune in the same way as for σ^2 .
- 4. (S_1, \ldots, S_t) : we use a Hamiltonian Monte Carlo algorithm based on the leapfrog method (Neal, 2011) pages 121-122) by generating the number of steps and their size from two uniform distributions within the intervals (0*.*0001*,* 0*.*15) and (2*,* 51), respectively.

We run the MCMC for 110,000 iterations with a burnin of 10,000 samples and retaining every tenth sample to obtain a final set of 10,000 samples.

Figures $\overline{1}$ and $\overline{2}$ show trace plots and correlograms of the posterior samples form the MCMC for the best model M3, defined in the main manuscript, which is based on a hold-out sample of 26 weeks. The results show a good mixing of the samples, thus indicating convergence of the MCMC.

References

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In *Handbook of Markov Chain Monte Carlo*, S. Brooks, A. Gelman, G. Jones & X.-L. Meng, eds., chap. 5. Chapman & Hall, CRC Press, pp. 113–162.

Figure 1: Trace plots (left panels) and correlograms (right panels) of the posterior samples for σ^2 (upper panels), ϕ (central panels) and ρ (lower panels).

Series S.1

Figure 2: Trace plots and correlograms of three randomly selected components of the spatio-temporal random effects S_{it} .

Figure 3: Histograms of the poster samples for σ^2 , ρ and ϕ . The discrete posterior distribution of ϕ is visualized as a bar plot.