
DMPy:
Additional File

Robert W. Smith∗ † , Rik P. van Rosmalen∗, Vitor A. P. Martins dos Santos∗†, Christian Fleck∗‡

Contents

1 Implementation and inputs for DMPy 2
1.1 Software requirements . 2

2 Parameter search 3

3 Constructing pseudo distributions 5

4 Compartmentalisation and regulation 6

5 Generating Random Metabolic Networks 7

5 References 10

6 Supplementary Figures 11

∗Laboratory of Systems & Synthetic Biology, Wageningen UR, PO Box 8033, 6700 EJ Wa-
geningen, The Netherlands.
†LifeGlimmer GmbH, 12163 Berlin, Germany
‡Corresponding author: christian.fleck@wur.nl.

1

1 Implementation and inputs for DMPy

DMPy is available from the Wageningen UR gitlab at gitlab.com/wurssb/DMPy.
Full installation instructions and examples can be found in the repository README
file.

Required input is the annotated stoichiometric model in SBML format and the name
of the organism. Existing experimental values for parameters can also be provided,
as is shown in one of the examples. Note that the use of the BRENDA database
requires a (free academic) account, the username and password will be prompted
for when required. Examples can be found in the file tests.py.

1.1 Software requirements

The easiest way to get all Python modules up and running is using the Anaconda
Python distribution (version 2.7.x) which comes with precompiled packages for
Windows, OS X or Linux. You can find it at https://www.continuum.io. Oth-
erwise, modules can be installable with pip, the Python package manager, or through
the methods described by the documentation of the module in question.

Use either conda or pip to install the following modules. Install with: pip install
$module$ or conda install $module$.

• numpy
• scipy
• libroadrunner (for simulating examples, when using conda use roadrunner

from channel -c sys-bio)
• sympy (For creating the kinetic formulas)
• matplotlib (For plotting results)
• soappy (For accessing Brenda)
• requests (For accessing Sabio-RK)
• libsbml (For reading/writing sbml, when using conda the package name is
python-libsbml from channel -c SBMLTeam)
• cython (For speeding up part of the balancing procedure, requires a C com-

piler)
• NetworkX (For generating random networks)
• pint (For converting units)

2

2 Parameter search

The parameter search step in the pipeline is implemented to aid model construc-
tion by automatically searching for parameters based on the content of the SBML
model file. For each reaction and metabolite, the notes and annotation sections of
the SBML entry are searched for identifiers. Currently this is limited to Chebi, Inchi,
Kegg Compound and Pubchem substance identifiers for metabolites and Kegg Reac-
tion, Reactome, Rhea and Sabio-RK Reaction identifiers for reactions, as these were
commonly found in the models used for testing the pipeline. However, different
identifier patterns can be implemented if required by altering the transforms input
into Algorithm 1. These identifiers, together with the names of the reactions and
metabolites, are then used to create task objects which are used as input for the pa-
rameter search as described in Algorithm 1.

The transforms inputs, implemented as Python objects, takes a set of identifiers re-
quired for certain databases and the parameters that need to be searched for, and a
Python function that retrieves parameter values from online databases using the
listed identifiers. The task inputs, also implemented as Python objects, contain
the reactions and/or metabolites we are interested in (e.g. determined by reac-
tion names or metabolite Kegg identifiers) and which parameters we wish to find
(e.g. Michaelis or equilibrium constants). The combination of tasks and transforms
can then be viewed as a graph where the transforms form paths between task objects
that need to be exhaustively searched to find all possible parameter values (Algo-
rithm 1).

After the search for parameter values, all found parameter values are filtered for
unit mismatches or if they are obtained from other strains (e.g. knock-out or knock-
in strains). Furthermore, duplicate entries are removed, if they have both the same
value and result from the same source publication, as marked by the PubMed Iden-
tifier or other source identifiers as noted in the database of origin. One can, finally,
also extend our algorithm to filter the resulting parameter sets to only include those
values obtained under specific experimental conditions (e.g. pH or temperature).
Additionally, both the PB method and values obtained from eQuilibrator can also
take into account these environmental factors [1–3].

Due to the flexibility of the approach, the parameter search could be expanded
in the future to account for different parameters, identifiers or databases as high-
lighted above. Other ways to retrieve more parameters, especially for non-model
species, could be to include results from related species. Thus, reactions from multi-
ple species are searched for at the same time. The rates that are then obtained from
increasingly distally-related species are penalised using an error penalty depend-
ing on the evolutionary distance between organisms. In order to achieve this, one
would need to incorporate a pre-step to our search algorithm to find extra reactions

3

from other species (that could be included within the transform input) and a post-
step to penalise results obtained from evolutionary-distant related species. Another
issue is when little information is known about a particular reaction. A user could
alter our algorithm to find extra information by searching for sets of products and
substrates, or through the sequence or structural similarity of catalysing enzymes.
Finally, another interesting addition would be to automatically retrieve candidates
for reaction inhibition or activation, as these are often ignored in the genome scale
metabolic model but can be important for accurately describing the system dynam-
ics.

Algorithm 1 Pseudo code for exhaustive search of parameter values

1: function PARAMETERSEARCH(tasks, trans f orms)
2: # Create exhaustive search path
3: for task← tasks do
4: possible← ∅
5: repeat
6: for trans f orm← trans f orms do
7: if requirementstrans f orm ⊆ (taskidenti f iers ∪ possible) then
8: possible← possible ∪ outputstrans f orm
9: Append trans f orm to path

10: until No new trans f orm added
11:
12: # Prune unnecessary transforms from the search path
13: repeat
14: used← {identi f ier ∈ trans f ormrequirements for trans f orm in path}
15: used← used ∪ taskwanted
16: for trans f orm← paths do
17: if trans f ormoutputs ∩ used = ∅ then
18: Remove trans f orm from path
19: until No new trans f orm removed
20:
21: # Follow path and find identifiers and parameter values
22: for trans f orm← paths do
23: if requirementstrans f orm ⊆ taskidenti f iers then
24: result← trans f orm(taskidenti f iers)
25: if result then
26: taskidenti f iers ← taskidenti f iers + resultidenti f iers
27: taskparameters ← taskparameters + resultparameters

28: return tasks

4

3 Constructing pseudo distributions

Pseudo distributions were chosen in accordance with the work of [2] where possi-
ble, which was based on the distribution of measured values in several databases.
However, some of the distributions resulted in rather large differences in scale be-
tween values causing extreme stiffness in the system, which can lead to problems
when doing the numerical simulations. Therefore, the mean was brought closer to
1 to avoid excessive stiffness in the numerical simulation. To compensate for this
change, the distribution width was increased giving the pseudo distribution less
weight during the parameter balancing phase.

Supplementary Table 1: Pseudo distributions when rates are unavailable in
databases

Parameter Distribution Mean Standard deviation
This study Lubitz et al. This study Lubitz et al.

µ Normal -880 -880 680 680
kV Log-normal 10 10 2 1
kM Log-normal 0.01 0.1 1.2 1
kI Log-normal 0.1 0.1 2 1
kA Log-normal 0.1 0.1 2 1
c Log-normal 0.1 0.1 2 1
u Log-normal 1 0.0001 1.6 1.5
keq Log-normal 1 1 2 1.5
kcat Log-normal 1 1 2 1.5
vmax Log-normal 10 0.001 2 2
A Normal 0 0 10 10
µ′ Normal -880 -880 680 680

5

4 Compartmentalisation and regulation

Compartmentalization and metabolic regulation are essential in regulating metabolism
[4, 5], and thus, a metabolic modelling framework should be able to support these
features. In Figure 4, we show how a randomly generated metabolic model can
be regulated through these effects (see next section). For all simulations, the exact
same model is used with the same parameter samples. The models were simulated
for 400 s with a pulse in one of the metabolites after 200 s. Upon addition of com-
partments of different sizes to the basic model (Supplementary Figure 4A), we can
see how the formation of a metabolite can be significantly slowed down (Supple-
mentary Figure 4B), or how the addition of regulatory interactions can tightly reg-
ulate the steady state concentration of the same metabolite (Supplementary Figure
4C). Including both compartmentalization and metabolic regulation (Supplemen-
tary Figure 4D) leads to increased dynamics of the metabolite concentration, with
decreased build up and lower variability. Additionally, we show in Supplementary
Figure 5 that in the L. lactis model produced from our pipeline that altering reg-
ulatory mechanisms impacts the dynamics observed in simulated systems. In this
instance, adding allosteric regulation has the greatest influence on system dynamics
as glucose is not readily taken up, resulting in low F6P concentrations.

6

5 Generating Random Metabolic Networks

To generate random networks, a stoichiometry matrix and flux vector need to be
created following equation (1) of the main text. To construct the stoichiometry ma-
trix S we first generate metabolites, m, and the number of reactions, n, each m par-
ticipates in is sampled from a discretised power law distribution n(x) = x3/2 where
x ∈ [1, Dmax]. In our work Dmax = 8. This means that a metabolite m could take
part in 1 to Dmax different reactions according to n(x).

To determine how metabolites regulate one another, first a participation matrix P is
constructed. Each element Pij = k ≥ 1 implies that k molecules of metabolite i, mi,
are involved in reaction nj, either as a product, or a reactant.

nj : kmi −→ . . . , or

nj : . . . −→ kmi.

If kij = 0 then mi is not involved in reaction nj.

In order to highlight how this works, we present a brief example of a network con-
taining two metabolites, m1 and m2, and two reactions, n1 and n2. The participation
matrix generated reads

P =

(
1 0
1 2

)
.

Thus, we know that the reaction scheme is either

n1 : m1 −→ ∅, or
n1 : ∅ −→ m1;
n2 : m1 −→ 2m2, or
n2 : 2m2 −→ m1, or
n2 : m1 + 2m2 −→ ∅, or
n2 : ∅ −→ m1 + 2m2.

(1)

The next step is to determine whether metabolite mi is a reactant or a product. To
do this we draw a random number pi ∼ U(0, 1). If pi ≤ 0.5 then mi is a reactant,
else pi > 0.5 and mi is a product. To ensure that each reaction has a reactant and
a product, metabolite mi+1 is a reactant if pi+1 = 1 − pi > 0.5 and a product if
pi+1 = 1− pi < 0.5. For all other metabolites, values of pi are drawn randomly to
determine whether it is a reactant or product.

7

For the sake of our example, let us say that for the first reaction, n1, p1 = 0.4 such
that m1 is a reactant of n1. Since no other metabolites participate in this reaction it
reads

n1 : m1 −→ ∅.

For our second reaction, n2, p1 = 0.6 such that m1 is a product of n1. Automatically,
m2 is forced to be a reactant of the reaction (remember these networks are randomly
generated and have no biological relevance other than in network structure). Thus,
from the possible reactions listed above, our reaction reads

n2 : 2m2 −→ m1.

Finally, to obtain the stoichiometry matrix, we change the signs of all reactants in
the participation matrix P to be negative, leading to the stoichiometry matrix S

S =

(
−1 0
1 −2

)
.

Because of the inherent randomness used when generating the networks, it can
happen that networks with unwanted properties — such as reactions without par-
ticipants — are generated. Therefore a series of additional checks is performed and
the procedure is repeated if there are any reactions without participants or when
the stoichiometry of a reaction is above a set threshold.

In addition to the stoichiometry matrix, a localization array is randomly generated
where each metabolite is assigned to a random choice of compartments, and a regu-
lation matrix where metabolites can be assigned to either inhibit or activate a certain
reaction with a certain mechanism according to equation (5) of the main text.

In order to complete equation (1) from the main text, a flux vector v is generated
following equation (3) of the main text. This can be done in the same manner as in
the main pipeline, with the parameter values being drawn from predefined distri-
butions (Supplementary Table 2).

Finally, to generate in silico measurement errors on the parameters in the model,
multiplicative noise drawn from a truncated normal distribution is multiplied to the
true parameters. These parameter distributions can then be used in the parameter
balancing method as a prior distribution.

8

Supplementary Table 2: Pseudo distributions for random metabolic networks

Parameter Distribution Mean Standard deviation
µ Normal -10 1
kV Log-normal 1 2
kM Log-normal 0.1 1.2
kI Log-normal 0.1 1.2
kA Log-normal 0.1 1.2
c Log-normal 0.1 2.0
u Log-normal 1 1.6
keq Log-normal 1 2
kcat Log-normal 1 2
vmax Log-normal 1 2
A Normal 0 2
µ′ Normal -10 2

9

References

[1] W. Liebermeister, J. Uhlendorf, and E. Klipp. Modular rate laws for enzy-
matic reactions: thermodynamics, elasticities and implementation. Bioinformat-
ics, 26:1528–1534, 2010.

[2] T. Lubitz, M. Schulz, E. Klipp, and W. Liebermeister. Parameter balancing in
kinetic models of cell metabolism. Journal of Physical Chemistry B, 114:16298–
16303, 2010.

[3] A. Flamholz, E. Noor, A. Bar-Even, and R. Milo. equilibrator - the biochemical
thermodynamics calculator. Nucleic Acids Research, 40:D770–D775, 2012.

[4] S. R. Hackett, V. R. T. Zanotelli, W. Xu, J. Goya, J. O. Park, D. H. Perlman, P. A.
Gibney, D. Botstein, J. D. Storey, and J. D. Rabinowitz. Systems-level analy-
sis of mechanisms regulating yeast metabolic flux. Science, 354(6311):aaf2786–
aaf2786, oct 2016.

[5] Annalisa Zecchin, Peter C. Stapor, Jermaine Goveia, and Peter Carmeliet.
Metabolic pathway compartmentalization: an underappreciated opportunity?
Current Opinion in Biotechnology, 34:73–81, aug 2015.

[6] R. S. Costa, A. Hartmann, P. Gaspar, A. R. Neves, and S. Vinga. An extended
dynamic model of lactococcus lactis metabolism for mannitol and 2,3-butanediol
production. Molecular Biosystems, 10:628–639, 2014.

10

Supplementary Figures

Supplementary Figure 1: System dynamics change depending on the input prior
distributions. Simulations of (A) FBP, (B) G3P, and (C) PEP are altered given the
data used to construct prior distributions. The blue line is the original model pub-
lished by Costa et al. [6], the green line is the model created using the pipeline
without the estimated parameters of Costa et al. [6] and the orange line is the model
created using both the online databases and optimal values of Costa et al. [6]. It
can be observed that for some metabolites the original simulation is close to the
model resulting from the pipeline (PEP), but for others (G3P), the simulation is sig-
nificantly different. Finally, some states such as FBP show a closer match when the
values by Costa et al. [6] are taken as additional prior information.

11

Supplementary Figure 2: Convergence and error rates in simulations of Costa
and Random models. Given a percentage of known parameter values used as input
into the pipeline, the posterior distribution is resampled until the mean error score
between model simulations and the ‘gold standard’ dataset converges. (A) The
mean number of samples before convergence of the mean error score is recorded.
(B) The number of unconverged or failed simulations is recorded. Simulations can
fail due to numerical issues when simulating the ODE system. When comparing
the convergence of the L. lactis network compared to the random network, the con-
vergence displays quite a different trend. The random network requires more sim-
ulations until convergence as would be expected at lower information. However,
the mean number of samples before convergence of the L. lactis model quickly goes
down with lower information. When we compare this to the results in Figure 5 and
Additional File (Figure 3), one can see that the L. lactis, as opposed to the random
network has several peaks. This might indicate that there are concentration states
that regardless of the sampled parameters are more prevalent due to the network
structure. These peaks, in turn, could cause the effect of quick convergence because
of their prevalence when sampling the parameters.

12

Supplementary Figure 3: Similar to Figure 5 in the main text, the robustness of
the parameter balancing technique is tested for a random metabolic network.
Given a percentage of known parameter values used as input into the pipeline,
the posterior distribution is resampled until the mean error score between model
simulations and the ‘gold standard’ dataset converges.

13

Supplementary Figure 4: Compartmentalisation and regulation of metabolic net-
works can be included in DMPy. Simulated dynamics of a random metabolic net-
work when all cell compartments are equal in size (A), when one of the compart-
ments is twice the size of the others (B), when randomized regulatory interactions
are added (C) and both size differences and regulation is introduced (D). The in-
set in (C) shows the dynamics at low concentrations. All models were simulated
for 400 s with a pulse after 200 s in one of the metabolites. Note that the random
network and parameter samples are identical between simulations except for the
aforementioned differences.

14

Supplementary Figure 5: System dynamics are affected by changes in metabolite
regulation type. The L. lactis model produced by the pipeline is simulated when
metabolites are regulated by allosteric regulation (green), specific regulation (or-
ange) or unregulated (blue) - see equations (4) and (5) of the main text.

15

