

A

В

А

Α

F

Β

1 Supplemental Figures Legends

2 FIG. S1 Effect of Cd²⁺ and Fe³⁺ on the GAs, ROS and Ca²⁺ contents in *G. lucidum*

3	G. lucidum wild-type strain was cultured on CYM plates for 5 days with different concentrations of
4	copper. Aerial hyphae were removed from actively growing colonies, suspended in fluorescent dye
5	DCFH-DA for cytosolic ROS detection (A) or Fluo-3AM (B) for the free cytosolic Ca ²⁺ detection for 30
6	min at 37 °C. The hyphae were washed three times with PBS to remove excess fluorophore. The green
7	fluorescence DCF- and Fluo 3-labeled cells were visualized by CLSM, with the green fluorescence
8	intensity representing the levels of cytosolic ROS and Ca ²⁺ . DIC denotes differential interference contrast
9	Scale bar = 100 μ m. C and D. Changes in the cytosolic ROS and Ca ²⁺ fluorescence ratio in copper-
10	stressed G. lucidum. The Y-axis is the fluorescence ratio measured by CLSM, and the X-axis represents
11	the different concentrations of copper. E. The wild-type strain was cultured in CYM liquid with shaking
12	at 28 °C. On the 4th day, 3 mM Cu^{2+} , 3 mM Cd^{2+} , and 3 mM Fe^{3+} were added. On the 7th day, the sample
13	were analyzed. Within each set of experiments, different letters indicate significant differences between
14	the lines (P $<$ 0.05, according to one-way ANOVA multiple comparison test).
15	FIG. S2 The effect of ROS-related reagents on fold change of ROS contents and GAs contents,
16	expression of GAs-related genes in G. lucidum under copper stress
17	A, B. The effect of DPI, Rot, and AA on fold change of ROS and GAs contents induced by copper treated.
18	C-E. The relative expression of genes encoding key enzymes in the GAs biosynthetic pathway was
19	measured in G. lucidum mycelia with ROS-related inhibitor, H_2O_2 and 3 mM copper treatment. The Y
20	axis is the relative expression of Sqs (C), Osc (D) and Hmgr (E) measured by RT-PCR, and the X axis is

 $\label{eq:21} \mbox{the different treatments. F. The effect of H_2O_2 on hyphal growth without copper treated. All values are$

22 the mean \pm SD of three independent experiments. Within each set of experiments, different letters

indicate significant differences between the lines (P < 0.05, according to one-way ANOVA multiple

24 comparison test).

25 FIG. S3 The effect of NOX silencing on fold change of ROS contents and GAs contents, expression

- 26 of GAs-related genes in *G. lucidum* under copper stress
- 27 A, B. The effect of NOX silencing on fold change of ROS and GAs contents induced by copper treated.
- All values are the mean \pm SD of three independent experiments. Within each set of experiments, different
- 29 letters indicate significant differences between the lines (P < 0.05, according to one-way ANOVA
- 30 multiple comparison test).

31 FIG. S4 The effect of Ca²⁺-related reagents on hyphal growth, Ca²⁺ contents, GAs contents and

32 expression of GAs-related genes in *G. lucidum* under copper stress

- A, B. The effect of CaCl₂, LaCl₃, and Neo on hyphal growth without copper treated. C-D. The effect of
- LaCl₃, and Neo on fold change of Ca^{2+} and GAs contents induced by copper treated. E. The effect of
- 35 LaCl₃, and Neo on hyphal branching without copper treated. F-H. The relative expression of genes
- encoding key enzymes in the GAs biosynthetic pathway was measured in G. lucidum mycelia with Ca^{2+} -
- 37 related inhibitor, CaCl₂ and 3 mM copper treatment. The Y axis is the relative expression of Sqs (F), Osc
- 38 (G) and *Hmgr* (H) measured by RT-PCR, and the X axis is the different treatments. All values are the
- 39 mean \pm SD of three independent experiments. Within each set of experiments, different letters indicate
- 40 significant differences between the lines (P < 0.05, according to one-way ANOVA multiple comparison
- 41 test).

42 FIG. S5 The effect of reagents on genes expression in *G. lucidum* under copper stress

- 43 The expression levels of certain ROS and Ca^{2+} signaling-related genes were measured after the hyphae
- 44 were treated with different treatments (A. 3 mM copper and 6 mM H2O2 treatment with ROS related

45	reagents; B. 3mM treatment on Nox-silenced strains). Relevant genes were detected using real-time PCR,
46	reference gene was used as actin gene, and the results are presented as a heatmap generated using
47	GENESPRINGGX 7.3.1 software (Agilent Technologies). Relative expression is shown as a mean value
48	from 0.0 to 4.0 in green to red.
49	FIG. S6 The effect on ROS, Ca2+, and GAs contents, antioxidant activities, and copper contents in
50	G. lucidum under different agents without copper treated
51	A. Measurement of ROS contents by DCFH-DA staining to detect the effect of different agents and NOX-
52	silencing without copper treated on ROS contents. B Measurement of Ca^{2+} contents by Fluo-3 AM
53	staining to detect the effect of different agents and NOX-silencing without copper treated on Ca^{2+}
54	contents. C. Measurement of GAs contents to detect the effect of different agents and NOX-silencing
55	without copper treated on GAs contents. D, E. Measurement of CAT and SOD activities to detect the
56	effect of different agents and NOX-silencing without copper treated on antioxidant activities. E.
57	Measurement of copper contents to detect the effect of different agents and NOX-silencing without
58	copper treated. Within each set of experiments, different letters indicate significant differences between
59	the lines ($P < 0.05$, according to one-way ANOVA multiple comparison test).