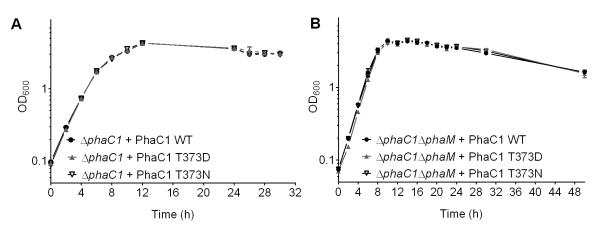
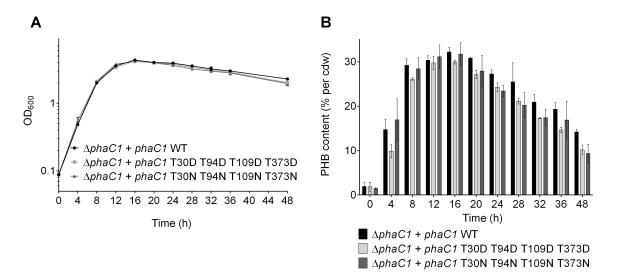
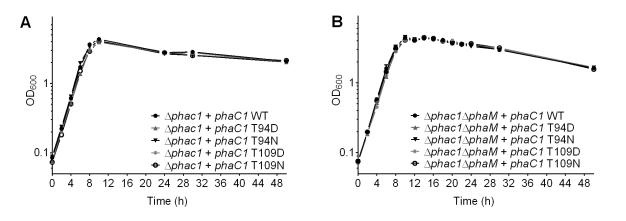
5 Ralstonia eutropha´s Poly(3-hydroxybutyrate)(PHB) polymerase PhaC1 and PHB depolymerase PhaZa1 are phosphorylated *in vivo*


10 Janina R. Jüngert¹, Cameron Patterson^{1,2} and Dieter Jendrossek1^{*}

¹Institute of Microbiology, University of Stuttgart, Stuttgart, Germany ²Western University, London, Ontario, Canada

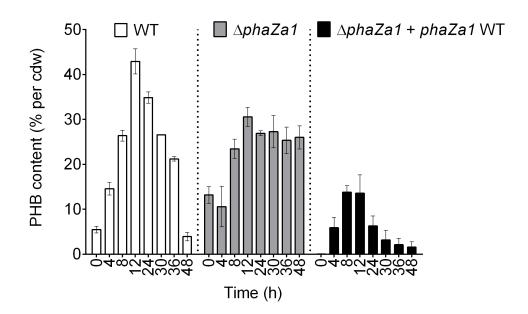

Supplementary materials

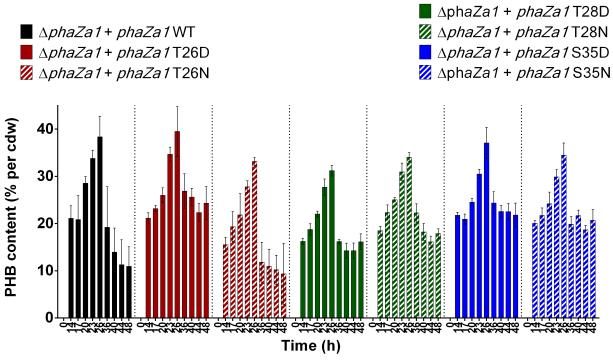
20 Supplementary materials Fig. S1: CD spectrum of purified His₆-PhaC1^{WT} and His₆-PhaC1^{T373D}


 Supplementary materials Fig. S2: Growth of *R. eutropha* H16 strains (A) Growth of *R. eutropha* ΔphaC1 (pBBR1MCS2_p_{phaC}_phaC1_eyfp), *R. eutropha* ΔphaC1 (pBBR1MCS2_p_{phaC}_phaC1_T373D_eyfp), *R. eutropha* ΔphaC1 (pBBR1MCS2_ p_{phaC}_phaC1_T373N_eyfp) on NB-medium with 0.2% gluconate. (B) Growth of *R.* eutropha ΔphaC1 ΔphaM (pBBR1MCS2_p_{phaC}_phaC1_eyfp), *R. eutropha* ΔphaC1 ΔphaM (pBBR1MCS2_p_{phaC}_phaC1_T373D_eyfp), *R. eutropha* ΔphaC1 ΔphaM (pBBR1MCS2_p_{phaC}_phaC1_T373D_eyfp), *R. eutropha* ΔphaC1 ΔphaM (pBBR1MCS2_p_{phaC}_phaC1_T373N_eyfp) on NB-medium with 0.2% gluconate. Error bars show the standard deviation.

Supplementary materials Fig. S3: Growth and PHB accumulation of *R. eutropha* H16 strains over 48 h. Growth (A) and PHB contents (B) of *R. eutropha* $\Delta phaC1$ (pBBR1MCS2_p_{phaC}_phaC1_eyfp), *R. eutropha* $\Delta phaC1$ (pBBR1MCS2_p_{phaC}_

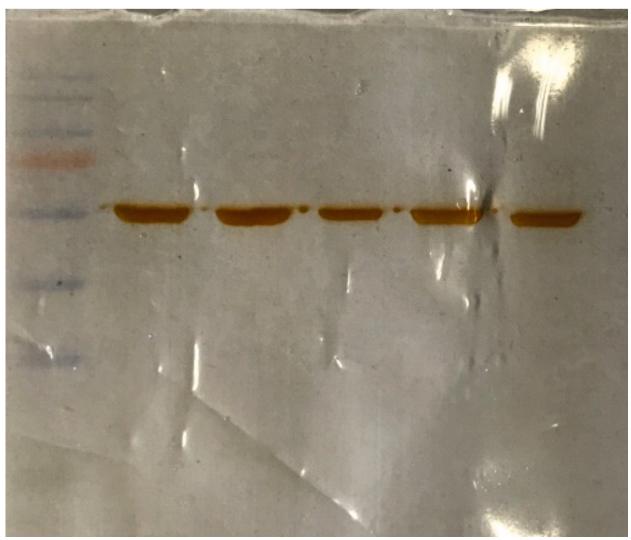
40 (pBBR1MCS2_p_{phaC}_phaC1_eyfp), R. eutropha △phaC1 (pBBR1MCS2_p_{phaC}_phaC1_T30D_T94D_T109D_T373D_eyfp) and R. eutropha △phaC1 (pBBR1MCS2 _p_{phaC}_phaC1_T30N_T94N_T109N_T373N_eyfp) on NB-medium with 0.2% Nagluconate. Results were obtained from biological triplicates; error bars show the standard deviation.


45


Supplementary materials Fig. S4: Growth of R. eutropha H16 strains (A) Growth of 50 eutropha $\Delta phaC$ (pBBR1MCS2_p_{phaC}_phaC1_eyfp), eutropha $\Delta phaC1$ R. R. (pBBR1MCS2_p_{phaC}_phaC1_T94D_eyfp), R. eutropha (pBBR1MCS2 $\Delta phaC1$ p_{phaC}_phaC1_T94N_eyfp), R. eutropha ∆phaC1 (pBBR1MCS2_p_{phaC}_phaC1 _T109D_eyfp) and *R. eutropha* ∆phaC1 (pBBR1MCS2_p_{phaC}_phaC1_ T109N_eyfp) on NB-medium with 0.2% gluconate. (B) Growth of R. eutropha $\Delta phaC1 \Delta phaM$ $(pBBR1MCS2_p_{phaC}_phaC1_eyfp), R. eutropha <math>\Delta phaC1 \Delta phaM$ (pBBR1MCS2_ $p_{phaC}_phaC1_T94D_eyfp), R. eutropha \Delta phaC1 \Delta phaM$ (pBBR1MCS2_ $p_{phaC}_phaC1_T94D_eyfp), R. eutropha \Delta phaC1 \Delta phaM$ (pBBR1MCS2_ $p_{phaC}_phaC1_pha$ 55 T94N eyfp), R. eutropha $\Delta phaC1 \Delta phaM$ (pBBR1MCS2 p_{ohaC} phaC1 T109D eyfp) and R. eutropha $\Delta phaC1 \Delta phaM$ (pBBR1MCS2_p_{phaC}_phaC1_T109N_eyfp) on NB-medium

60

with 0.2% gluconate.


Supplementary materials Fig. S5: PHB accumulation of *R. eutropha* strains over 48h. PHB content per cellular dry weight of *R. eutropha* wild type, *R. eutropha* 65 Δ*phaZa1* and *R. eutropha* Δ*phaZa1* (pBBR1MCS2_p_{phaC}_phaZa1_eyfp) on NB-medium with 0.2% gluconate (data were obtained from two biological and two technical replicates; error bars show the standard deviation).

Supplementary materials Fig. S6: PHB accumulation of *R. eutropha* H16 strains. PHB contents of R. eutropha AphaZa1 (pBBR1MCS2_pphaC_phaZa1_eyfp), R. eutropha (pBBR1MCS2_p_{phaC}_phaZa1_T26D_eyfp), $\Delta phaZa1$ ∆phaZa1 R. eutropha

- 75 $(pBBR1MCS2_p_{phaC}_phaZa1_T26N_eyfp), R. eutropha \Delta phaZa1 (pBBR1MCS2_p_{phaC})$ $_phaZa1_T28D_eyfp)$, R. eutropha $_phaZa1$ (pBBR1MCS2_p_{phaC}_phaZa1_T28N_eyfp), R. eutropha $_phaZa1$ (pBBR1MCS2_p_{phaC}_phaZa1_S35D_eyfp) and R. eutropha $_phaZa1$ (pBBR1MCS2_p_{phaC}_phaZa1_S35N_eyfp) on NB-medium with 0.5% Nagluconate. The PHB content per cellular dry weight is shown. Data were obtained from 80 2 biological and 2 technical replicates; error bars show the standard deviation.

WT T373A T373D T373E T373N

Suppl. materials, Fig. S7: SDS-PAGE analysis of purified PhaC1 muteins. Left lane shows marker proteins. Gel was stained with silver.

 Supplementary materials, Table S1: Summary of all PhaC1 mutants generated. For all of the mutants indicated a growth curve over 24h on NB-medium supplemented with 150µg/ml kanamycin and 0.2 % Na-gluconate (wt/vol) was recorded and the cells were stained with Nile red to visualize PHB and without any dye to visualize the eYFP-tagged PhaC1 by fluorescence microscopy.

Non- phosphorylatable	Microscopy	Phosphomimetic	Microscopy
T30A	As WT	T30D	As WT
T94N	As WT	T94D	As WT
T109N	As WT	T109D	As WT
T373N, T373A	As WT	T373D, T373E	As WT