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Abstract

Providing objective metrics of conscious state is of great interest across multiple re-
search and clinical fields—from neurology to artificial intelligence. Here we approach
this challenge by proposing plausible mechanisms for the phenomenon of structured
experience. In earlier work we argued that the experience we call reality is a mental
construct derived from information compression. Here we show that algorithmic infor-
mation theory provides a natural framework to study and quantify consciousness from
neurophysiological or neuroimaging data, given the premise that the primary role of the
brain is information processing. We take as an axiom that there is consciousness and
focus on the requirements for structured experience: we hypothesize that the existence
and use of compressive models by cognitive systems, e.g., in biological recurrent neural
networks, enables and provides the structure to phenomenal experience. Self-awareness
is seen to arise naturally (as part of a better model) in cognitive systems interacting
bidirectionally with the external world. Furthermore, we argue that by running such
models to track data, brains can give rise to apparently complex (entropic but hier-
archically organized) data. We compare this theory, named KT for its basis on the
mathematical theory of Kolmogorov complexity, to other information-centric theories
of consciousness. We then describe methods to study the complexity of the brain’s
output streams or of brain state as correlates of conscious state: we review methods
such as i) probing the brain through its input streams (e.g., event related potentials in
oddball paradigms or mutual algorithmic information between world and brain), ii) an-
alyzing spontaneous brain state, iii) perturbing the brain by non-invasive transcranial
stimulation and iv) quantifying behavior (e.g., eye movements or body sway).
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1. Introduction

Characterizing consciousness is a profound scientific problem (Koch et al., 2016)
with pressing clinical and practical implications. Examples include disorders of con-
sciousness (Laureys, 2005; Casali et al., 2013), locked-in syndrome (Chaudhary et al.,
2017), conscious state in utero (Lagercrantz and Changeux, 2010), in sleep and other
states of consciousness, in non-human animals and perhaps soon in exobiology or in
machines (Koch and Tononi, 2008; Reggia, 2013). Here we address the phenomenon of
structured experience from an information-theoretic perspective.

Science strives to provide simple models that describe observable phenomena and
produce testable predictions. In line with this, we offer here the elements of a theory
of consciousness based on algorithmic information theory (AIT). AIT studies the
relationship between computation, information, and (algorithmic) randomness (Hutter,
2007), providing a definition for the information of individual objects (data strings)
beyond statistics (Shannon entropy). We begin from a definition of cognition in the
context of AIT and posit that brains strive to model their input/output fluxes of
information (I/Os) with simplicity as a fundamental driving principle. (Ruffini, 2007,
2009). Furthermore, we argue, brains, agents and cognitive systems can be identified
with special patterns embedded in mathematical structures enabling computation and
compression.

A brief summary of what we may call the Kolmogorov theory of consciousness
(KT) is as follows. We start from the subjective view (my brain and my conscious
experience):

1) There is information and I am conscious. Information here refers to the mes-
sages/signals traveling in and out of my brain or even within parts of my brain
(I/O streams), and to Shannon’s definition of the information conveyed by those
messages1.

2) Reality, as it relates to experience and phenomenal structure, is a model my brain
has built and continues to develop based on input-output information. The phe-
nomenal structure of consciousness encompasses both sensory qualia and the spa-
tial, temporal and conceptual organization of our experience of the world and of
ourselves as agents in it (Van Gulick, 2016). Brains are model builders, compres-
sors of information for survival. Cognition and phenomenal consciousness arise
from modeling, compression and data tracking using models. At this stage, from

1 Consider the following gedanken (G1) (thought experiment). A subject is connected to a very
advanced, fully immersive VR system capable of controlling all the subject’s I/Os. Here the experience
may be mediated using peripheral means, or perhaps the I/Os are patched directly to the subject’s
CNS using an invasive technology. The I/Os are relayed through a high speed optical fiber to a
computer that interacts (interprets outputs and sends back inputs to the subject) so that she feels to
be laying in a beach in Hawai’i—with, let us assume, the experience feeling completely real. In this
hypothetical scenario, which while not possible today certainly seems technologically feasible in the
future, the universe experienced by this subject is fully described by the information carried by the
optical fiber—the actual sequence of bits. It is in this sense that we may say that as far as our subject
is concerned, “there is information”, and the rest is inference.
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what really is a mathematical framework, I, (my brain) derive, from the avail-
able information and computation, concepts such as chair, mass, energy or space
(physics is itself a derived, emergent concept).

Then we shift to the objective view: what kind of mathematical structures connecting
the concept of information with experience could describe the above?

3) We argue that the proper framework is provided by AIT and the concept of
algorithmic (Kolmogorov) complexity. AIT brings together information theory
(Shannon) and computation theory (Turing) in a unified way, and provides a
foundation for a powerful probabilistic inference framework (Solomonoff). These
three elements, together with Darwinian mechanisms, are crucial to our theory,
which places information-driven modeling in agents at its core.

4) To make the discussion more concrete, we briefly discuss Cellular Automata
(CA)2. These represent one example for the definition of information and com-
putation, and of “brains” as special complex patterns that can actually represent
(model) parts of the universe. CAs, as universal Turing machines (TMs), can
instantiate embedded sub-TMs and provide an example of how complex-looking,
entropic data chatter can be produced by simple, iterative rules. This provides
a conceptual bridge to relate algorithmic complexity and other measures and
“flavors” of complexity (e.g., entropy, power laws, fluctuation analysis, fractals,
complex networks, avalanches, etc.).

5) We return to the subjective and hypothesize that structured, graded, multidi-
mensional experience arises in agents that have access to simple models. These
models are instantiated on computational substrates such as recurrent neural net-
works (RNNs) and are presumably found by successful agents through interaction
with a complex-looking world governed by simple rules.

Finally, based on the prior items and shifting to empirical application,

6) We examine methods to characterize conscious systems from available data (in-
ternal/physiological or external/behavior) and propose lines for further research.

We do not address here the hard problem of consciousness—the fundamental ori-
gin of experience (Chalmers (1995)). We assume that there is consciousness, which,
with the right conditions, gives rise to structured experience, much as we assume that
there is a quantum electromagnetic field with particular states we call photons. We
focus instead on understanding how structured experience is shaped by the algorith-
mic characteristics of the models brains (or other systems) build with simplicity as a
guiding principle. We aim to link the properties of models with those of experience,
such as uniqueness, unity and strength. In this sense, we are aligned with the idea
that phenomenal structure requires complex representations of the world (as in rep-
resentational theories of consciousness) (Van Gulick, 2016), and also that we should

2Here we aim to provide a concrete mathematical framework to study AIT. However, we note that
CA-based physical theories are also being studied (’t Hooft, 2014).
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address the real problem (Seth, 2016): “how to account for the various properties of
consciousness in terms of biological mechanisms; without pretending it doesn’t exist
(easy problem) and without worrying too much about explaining its existence in the
first place (hard problem).” An important new element is that we study mathematical
mechanisms that, as such, can potentially be generalized beyond biology. This is an
ambitious but challenging program. In the closing section we discuss some limitations
and open questions.

2. Computation, compression and cognition

The definition of a Universal Turing Machine (Turing (1936)) provides the math-
ematical foundation for computation and algorithmic information theory, and hence
plays a key role in KT. Although our starting point is mathematical3, it is readily
linked to physics4. In practice, all formulations of fundamental physics theories can be

3 In another gedanken (G2), suppose that someday we develop algorithms for artificially intelligent
systems that pass the Turing test—that we all come to agree are conscious. If so, we would be
implicitly asserting that consciousness is truly a mathematical phenomenon that, through computation,
some algorithms possess. We could indeed launch the same algorithms in different types of computers
with identically results, for example. In this way, we would abstract away the potential for conscious
experience from its instantiation in matter, just as with computation.

4In KT, physical objects, including physical computers, as well as physical theories, are emerg-
ing phenomena: models created by cognitive systems to compress data. Mathematics, on the other
hand, although it is also constructed by cognitive systems, could be argued to exist in a Platonic
sense. We may summarize our reasoning as follows: 1) Computation is mathematical: Computation
is a mathematical concept (Turing defined it as a mathematical structure); 2) All physical things are
mathematical: all I have access to is information, and through mathematics (and computation) I can
create models to simplify this information, and physical concepts (matter, energy, chairs) emerge in
that way, as models; 3) The universe is, at root, mathematics: from the above, we come to the more
fundamental hypothesis that all the data we get originates from something we can call the universe:
a mathematical structure, a grand model (which rides on the concept of computation). Thus, as far
as I can tell, the universe is a mathematical structure. It may be that the data I receive is actually
generated by something else (physical?), but I don’t have access to that and never will. While this may
sound a bit extreme, it helps to imagine it at first as being reasoned by a freshly created AI system
rather than a human brain, who gets all its I/Os from an optical link—as in Jaynes (2003)’s robot.

The computation-physics link is based on the Church-Turing conjecture. It loosely states that
any physically-realizable “effective procedure” (a calculation stemming from the dynamics of some
physical system—including those carried out by living beings, which are seen to implement mechanistic
procedures), can be translated into an equivalent computation involving a TM (Copeland, 2015), or,
equivalently, using the lambda calculus, general recursive functions, cyclic tag systems or recurrent
neural networks (RNNs). The Church-Turing thesis is complemented by the principle of computational
equivalence: “almost all processes that are not obviously simple can be viewed as computations of
equivalent sophistication” ((Wolfram, 2002), pp. 5 and 716-717). More specifically, the principle states
that systems found in the natural world can perform computations up to a maximal (“universal”) level
of computational power, and that most systems do in fact attain this maximal level of computational
power. Consequently, “most systems are computationally equivalent. For example, the workings of
the human brain or the evolution of weather systems can, in principle, compute the same things as
a computer. Computation is therefore simply a question of translating inputs and outputs from one
system to another.” Of course, such capability is not equivalent to realization. The programs that run
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set on mathematical frameworks in which there is a description of the universe called
the state (a string) and dynamic laws (effective procedures) that transform the state
in time (computation) through recursion. The state can be fully described given suffi-
cient information (it is literally a string)—both in classical and quantum theories—and
evolves, computing its future (Lloyd, 2002). The field of physics is guided by the notion
that some simple laws dictate this evolution. A possible conclusion is then the conjec-
ture (called “digital physics”) that the universe is discrete and isomorphic to a TM5.
Although the specific choice of a physical theory is not of immediate concern for us, KT
is certainly aligned with the idea that the universe is isomorphic to—or can be fully
described by—such a mathematical structure, and that organisms are examples of spe-
cial complex patterns embedded in it with the interesting property of being capable of
modeling parts of the universe. The statement that the universe is a TM is important,
among other reasons, because TMs can represent/embed others—and KT adopts the
notion that brains are such embedded sub-TMs in the universe. Both CAs and RNNs
are examples of TMs which may be appropriate at different levels of description6.

CAs are mathematical structures defined on a cell grid with simple local interaction
rules (Wolfram, 2002), and they encapsulate many of fundamental aspects of physics
(spatiotemporal homogeneity, locality and recursion). They can be used to formalize
the concepts of computation, information and emergence of complex patterns, and
have attracted a great deal of interest because they capture two basic aspects of many
natural systems: a) they evolve according to local homogenous rules and b) they can
exhibit rich behavior even with very simple rules. The simplest interesting example is
provided by a 1D lattice of binary-valued “cells”, with nearest neighbor interaction7.
A rule specifies, for the next iteration (dynamics) the value at that location from its
prior value and that of its neighbors (state). Surprisingly, some of these rules have
been shown to produce universal computers—such as Rule 110 (Cook, 2004). That is,
the patterns such a simple system generates can be used to emulate a universal TM

on such systems are crucial.
There is no proof for these principles linking the physical world and mathematics, but every realistic

model of computation discovered so far has been shown to be equivalent and we seem to be able to
model the world using computation.

For completeness, we mention a new approach to the study of computing and complexity. An absolute
measure of complexity using the concept of (strong) inference machines has recently been proposed
(Wolpert, 2008). Inference machines theory (IMT) is a mathematical formalization of physical devices
performing observation, prediction or recollection tasks—what we call here cognitive systems. We
could use this formalism as a starting point equally well.

5This idea builds from early work by Jaynes (Jaynes, 1957), John Wheeler (“it from bit” (Wheeler,
1990)), Zuse (Zuse, 1967), Fredkin (Fredkin, 2003, 2004), Wolfram (Wolfram, 2002), Tegmark
(Tegmark, 2014b) and others such as Gerard ’t Hooft (’t Hooft, 2014).

6E.g., a brain can be seen as a RNN embedded in a CA universe (small scale description vs. coarse
grained one). Both of them are TMs. Mathematically, the entire discussion could take place talking
only about abstract TMs, but this description makes the connections with physics and neuroscience
clearer.

7Interestingly, research within other information-theoretic frameworks for consciousness (IIT) has
used CAs to model the emergence of adaptive systems (Albantakis and Tononi, 2015).
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(as is Conway’s 2D Game of Life, Gardner (1970)). The initial configuration of the CA
provides the program, Wolfram (2002)). CAs can produce highly entropic data, with
power law behavior (Kayama, 2010; Ninagawa, 2013; Mainzer and Chua, 2012). Thus,
CAs or similar systems represent interesting frameworks to study measurable hallmarks
of computation and compression, and establish links with other complexity “flavors”
(as discussed, e.g., in Mainzer and Chua (2012)). Although we will not attempt to do
so here, we note that CAs may provide a mathematical framework to formalize the
definition of information and interaction, as required in definition of agent below8.

Neural Networks (NNs) represent another important paradigm of computation with
a direct application in cognitive neuroscience and machine learning. Feedforward net-
works have been shown to be able to approximate any reasonable function (Cybenko,

8See for example Rendell (2014). The physics—or rather, mathematics—we describe are embedded
in spacetime. We can imagine for simplicity a 2D board (CA) representing the Game of Life—the first
implementation of a Turing Machine in a CA, Conway, (Gardner, 1970)—as it evolves in time. The
rules of this game (laws of physics) describe how a 2D spatial slice is to be computed from the prior one.
Note that the very concept of computers requires, in a sense, spacetime: space is what contains the
tape/program and state machine, time describes the evolution of computation. We can thus picture
programs as evolving in time as they are executed. On the other hand, in principle, programs (models)
live on spatial slices (e.g., the tape on a TM, or the state of a 2D CA at any given time). Models are
extended structures in CA space (such as a Blinker or Pulsar in the Game of Life). We can compare
such spatially extended structures to other simpler ones that transport information across the CA
(information carriers such as gliders) and require a spacetime description.

Starting from such simple CA models (yet ones capable of universal computation), we can illustrate
the main KT ideas in a somewhat extreme Platonic way. Consider a toy model in which the universe
is described by the rules of cellular automaton such as Conway’s The Game of Life or Wolfram’s
elementary Cellular Automata Rule 110 (Wolfram, 2002; Cook, 2004), both of which are known to
implement universal computation (see (Berto and Tagliabue, 2012) for a lucid discussion of CAs). A
brain in this context corresponds to a specific configuration in which a subset of CA cells perform
computation and prediction, and, for example, adapt (via replication and natural selection) to dodge
harmful patterns (bullets) in the CA. Thus, seen from the “outside” the brain is just a pattern of
changing states in the CA, but quite a special one (in a way that can be mathematically characterized).
We would call this CA a brain or agent, and its goal would be to survive as many CA cycles as possible.
What is even more interesting, the existence of such a pattern is intrinsic to the CA rules and initial
conditions. The picture just described is succinctly summarized by the CA equations plus the initial
conditions used to run it. In a sense, the CA need not be even run: once defined, it implicitly specifies a
spacetime of states, a history which is in a real sense static (time is a model (Barbour, 1999)). In a CA
universe model, information could be transported by some emergent CA particle-like structures that
interact (are entangled with) with others in the CA world. Information transmission here just means
that the state of a system can affect the state of another by the CA dynamics in a specific way. In
this view, in this emergent definition of (meta) information, we are aligned with (Rovelli, 2015), which
postulates that information is a meaningful emerging concept as the mutual information between two
interacting systems, or with (Deutsch and Marletto, 2014), where information is seen to be a derived
concept from computation. Here we further emphasize the role of the mutual algorithmic information
between systems. Just as in Conway’s Game of Life, CA structures/patterns such as CA-bullets, CA-
brains or CA-photons are all meta-structures produced by the CA. It is in this way that we define the
concept of algorithmic mutual information between structures. For example, the emission and then
absorption of a CA-photon in two CA-structures will increase their mutual information. We will return
to CAs below in an effort to link compressive agents with measurable metrics.
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1989; Hornik, 1991). Remarkably, if the function to be approximated is compositional
(recursive), then a hierarchical, feedforward network requires less training data than
one with a shallow architecture to achieve similar performance (Mhaskar et al., 2016)9.
Significantly, RNNs are known to be Turing complete (Siegelmann and Sontag, 1995).
Recurrence in NNs thus enables universal modeling. There is increasing evidence that
the brain implements such deep, recursive, hierarchical networks—see, e.g., Taylor et al.
(2015).

2.1. Cognition from information

In this section we attempt to formalize our ideas. If all that brains have access to
is information, we can naturally think of brains as ‘information processing machines’—
computers in the mathematical sense (TMs)—and questions about our experience of
reality should be considered within the context of AIT. Our Input/Output streams
(I/Os) include information collected from visual, auditory, proprioceptive and other
sensory systems, and outputs in the form of PNS mediated information streams to
generate actions affecting the body (e.g., via the autonomic system) or the external
world (e.g., body movements or speech). We will use the term cognition here to refer
to the process of model building and model-driven interaction with the external world
(Ruffini, 2007). Since it is a crucial concept in KT, let us define more formally the
notion of “model” (Figure 1a):

Definition 1. A model of a dataset is a program that generates (or, equivalently, com-
presses) the dataset efficiently, i.e., succinctly.

As discussed in Ruffini (2016), this definition of model is equivalent to that of a
classifier or generating function—neural networks and other classifiers can be seen to
essentially instantiate models. A succinct model can be used to literally compress
information by comparing data and model outputs and then compress the (random)
difference or error using, e.g., Huffman or Lempel-Ziv-Welch (LZW) coding (Kaspar
and Schuster (1987); Cover and Thomas (2006)). Also, a good model must be capable
of accounting for a large repertoire of potential I/Os. E.g., Newtonian physics is a
simple model that accounts for kinematics, dynamics and gravitational phenomena
on the Earth (falling apples) and space (orbit of the Moon). Naturally, a powerful
model is both comprehensive and integrative, encompassing multiple data streams (e.g.,

9A hierarchical network can achieve the same as a shallow one, but, in a simpler way, using less
nodes. By a compositional function we mean, e.g.,

f(x1, ..., xd) = h1(h2(...(hj(hk1(x1, x2), hk2(x3, x4)), ...)),

which is best visualized as a compositional tree. A neural network can be seen as implementing a
program to compute a function in a sequence of steps in a programming language where each layer
represents a set of parallel computational steps in a sequence. If the function to be computed is simple
(allows for a short description), it is fairly intuitive that deep networks can provide more succinct, and
hence easier to train network structures than shallow ones, which are limited to single step computations
(with a smaller programming language repertoire).
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auditory, proprioceptive and visual data). Examples of models built by brains include
our concepts of space and time, hand, charge, mass, energy, coffee cups, quarks, tigers
and people.

To survive—to maintain homeostasis and reproduce—brains build models to func-
tion effectively, storing knowledge economically (saving resources such as memory or
time). They use models to build other models, for agile recall and decision making,
to predict future information streams and interact successfully with the world. Having
access to a good, integrated model of reality with compressive, operative and predictive
power is clearly an advantage for an organism subjected to the forces of natural selec-
tion (from this viewpoint, brains and DNA are similar compressing systems acting at
different time scales). Furthermore, when a brain interacts actively with the rest of the
universe, it disturbs it with measurements or other actions (represented as information
output streams). The information gathered from its inputs (senses) depends on how it
chooses to extract it from the outside world (through the passive and active aspects of
sensing or other actions). A more complete, and therefore more useful model of reality
of an active brain must include a model of itself—of ‘bodies’ and internal ‘algorithms’,
for example10. This creates a “strange loop” (Hofstadter, 2007; Ruffini, 2007) in terms
of model representations. Such self-models correspond here to what are called body
representation and self-awareness.

Based on the notion of modeling we now define a cognitive system or agent, of
which a brain is an example:

Definition 2. A cognitive system or agent is a model-building semi-isolated computa-
tional system controlling some of its couplings/information interfaces with the rest of
the universe and driven by an internal optimization function.

Figure 1b displays schematically the modeling engine and the resulting error stream
from comparison of data and model outputs. These are passed onto an action mod-
ule that makes decisions guided by an optimization function (possibly querying the
model for action simulations) and generates outputs streams, which also feedback to
the model11. A classical thermostat or a machine learning classifier is not an agent
by this definition, but new artificial intelligence systems being developed are. As an

10This is especially true if the agent’s actions have a great impact on its immediate environment.
That is, self-modeling is important in proportion to the impact the agent has in its input stream.

11 According to KT, the key elements in Figure 1 must exist in some form in a cognitive system
such as the brain. Note that this must be seen as a rough initial approximation to the problem. E.g.,
we did not explain how the model has been discovered, only that one is available, perhaps assembled
from available ones by integrating and/or tweaking them, and that it is malleable (learning can take
place). In fact, we can allow for more than one model being available in a probabilistic sense: there
may be several that explain the data with similar performance (i.e., posteriori probability, taking into
account both data matching and length of description). This leads naturally to the idea of probabilistic
inference, which in the end is itself a model. Recall that compression is a tool for model discovery taking
into account model match with data, since the compressed length is a function of both the kernel of
regularities (the sufficient statistic of Kolmogorov) and the uncompressible part, which we can think of
as error. The Solomonoff prior provides a probability associated with each model. The action module
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Input stream: 100101010010101001 

Model  state: M

Error out: 00000000000000001

Model 

M

Action module

output stream: 100101010010101001 

Input stream: 100101010010101001 

Model  state: M

Error out: 00000000000000001

Model 

M

prediction 

error feedback 

a) Model, compression and prediction 

prediction 

error feedback 

b) Agent: coupling modeling with an action module driven by an objective function of model state

Obj(M)

Objective 
function

Action /Obj  state

Figure 1: Top (a): Modeling for predictive compression. The arrows indicate information flow, and the
circled plus sign comparison/difference (XOR gate). Bottom (b): An agent with coupled modeling and
an action modules. The action module contains an optimization objective function (e.g., homeostasis),
may include, e.g., a motor system, and will query the model (this time for “imagery”) to plan and
select the next actions. The model itself may be informed of the state of the action module directly
(dotted line) or indirectly via the output stream (concatenated to the input stream). Without loss of
generality a single stream is shown, although I/O streams represent multidimensional data.

must make a choice based on this information, through the objective function. Each model choice will
translate into a future action and a consequent future forecast of objective function change. The task
of the action module is to choose the outputs (“action”) that in probability, will lead to the greater
positive change in the objective function, very much as a policy needs to be solved for in reinforcement
learning (Mnih et al., 2015). The Action module will rely on the Model to optimize its policies.

The objective function can be seen as assigning valence, positive, negative or null (one dimensional
scale), driving the agent to homeostasis. Evolution and natural selection will strongly shape such
optimization functions.

We also make note here of the boundary problem of consciousness, and here of agents (Fekete et al.,
2016): how to mathematically define the boundary, the “information membrane” of an agent. The
concept of mutual algorithmic information of agent and the world may be a useful starting point. In
order to attempt to define a boundary of an agent, we can refer to the CA picture of an agent in the
universe (the world). Formally, the agent is a subset A of the CA with a very high mutual algorithmic
information (MAI) with the world. We may like to think of A as a connected set in the CA, but this is
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example, we refer to Bongard et al. (2006), where a four-legged robot uses actuation-
sensation relationships to model its own physical structure, which it then uses to gen-
erate locomotion, or to the recent Deep Reinforcement Learning results, where deep
learning and reinforcement learning are combined very much as in the Figure to create
AI systems that excel in Atari video-game universes (Mnih et al., 2015)12 .

2.2. Simplicity and Kolmogorov Complexity (K)

Compression (and therefore simplicity) were formalized by the mathematical con-
cept of algorithmic complexity or Kolmogorov complexity (K), co-discovered during the
second half of the 20th century by Solomonoff, Kolmogorov and Chaitin13. We recall
its definition: the Kolmogorov complexity of a string is the length of the shortest pro-
gram capable of generating it. More precisely, let U be a universal computer (a TM),
and let p be a program. Then the Kolmogorov or algorithmic complexity of a string
x with respect to U is given by KU (x) = minp:U(p)=x l(p), i.e., the length l(p) of the
shortest program that prints the string x and then halts (see e.g., Cover and Thomas
(2006); Li and Vitanyi (2008)). Crucially, although the precise length of this program
depends on the programming language used, it does so only up to a string-independent
constant14. An associated useful notion is the mutual algorithmic information (MAI)
between two strings (Grunwald and Vitanyi, 2004), the algorithmic analog of Shannon
mutual information15.

not actually necessary. A potential definition of a minimal agent may make use of a quantity such as
the mutual algorithmic information per cell of the proposed agent, as follows: Def: A minimal agent is
a minimal subset A of the CA with high effective MAI per cell with the CA: removing one or more cells
from A lowers its MAI/cell with the CA, and adding cells does not increase it MAI/cell significantly.
(Chaitin, 1991; Ruffini, 2007, 2009). Using such a definition we may attempt to identify local maxima
of MAI that may be associated with structured experience in agents. However, such boundaries will
probably be fuzzy. This is not a problem in KT, since it is an inherently panpsychist theory, where
consciousness is not a binary quantity restricted to special arrangements of matter. “Panpsychists
see themselves as minds in a world of mind.” (Wikipedia, but see also Seager and Allen-Hermanson
(2015)).

12 In fact, the model used in Deep Reinforcement Learning is essentially equivalent to the one
described here for an Agent. Our Action module is the one implementing a policy, which needs to be
optimized using the Model. Having access to a succinct model simplifies drastically the search for an
optimal policy. An interesting point is that the Model can only be as rich as the universe it is trying to
model. The analogy is that human conscious level has an upper bound in the algorithmic complexity
of the universe.

13Kolmogorov complexity is also known as ‘algorithmic information’, ‘algorithmic entropy’, ‘Kol-
mogorov -Chaitin complexity’, ‘descriptional complexity’, ‘shortest program length’ and ‘algorithmic
randomness’.

14That is, if U is a universal computer, then for any computer A and all strings x we can easily
show that KU (x) ≤ KA(x) + cA, where the constant cA does not depend on the string x (Cover and
Thomas, 2006).

15Let EX [Q(X)] denote the expectation value of some random variable Q(X) under a probability
distribution P (X). We recall first that the mutual (Shannon) information (Cover and Thomas, 2006)
between random variables X and Y is

I(X;Y ) = H(Y )−H(Y |X),
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We also need to point out a derived elegant concept, the Kolmogorov Structure
Function of a dataset (Cover and Thomas, 2006; Ruffini, 2016), as well as the related
concept of Effective Complexity (Gell-mann and Lloyd, 2003). Briefly, one can concep-
tually split the Kolmogorov optimal program describing a data string into two parts:
a set of bits describing its regularities, and another which captures the rest (the part
with no structure). The first term is the effective complexity, the minimal description
of the regularities of the data. This concept brings to light the power of the notion of
Kolmogorov complexity, as it provides, single-handedly, the means to account for and
separate regularities in data from noise.

Gödel’s incompleteness theorem, or its equivalent, Turing’s halting theorem, im-
plies we cannot compute in general K for an arbitrary string: it is impossible to test
all possible algorithms smaller than the size of the string to compress, since we have
no assurance that the TM will halt (Chaitin, 1995). However, within a limited com-
putation scheme (e.g., in terms of programming language resources or computation
time), variants of algorithmic complexity can be calculated16. An example of this
is Lempel-Ziv-Welch compression (Ziv and Lempel, 1978), a simple yet fast algorithm
that exploits the repetition of symbol sequences (one possible form of regularity). LZW
file length is actually equivalent to entropy rate, an extension of the concept of entropy
for stochastic sequences of symbols. LZW provides a useful if limited upper bound to

where H(X) is the entropy of X, H(X) = −EX [log(P (X)], and H(Y |X) is the entropy of Y conditioned
on X,

H(Y |X) = −EX,Y [logP (Y |X)] = H(Y,X)−H(X).

Analogously, the mutual algorithmic information (MAI) between two strings x and y is

IK(x :y) = K(y)−K(y|x),

where K(y|x) is the complexity of the string y if the computer has access to x (Li and Vitanyi, 1997;
Grunwald and Vitanyi, 2004). In practice, we can use the relation K(x, y) ≈ K(x) + K(y|x) so that
K(y|x) ≈ K(x, y)−K(x) and

IK(x :y) ≈ K(y) +K(x)−K(x, y).

As a proxy for algorithmic complexity, LZW can be used to estimate MAI using this equation.
16 See for example the concept of Universal (Levin) Search, which resolves the problem of com-

putability of K and adds an element of practical relevance by penalizing slow programs (Hutter, 2007),
or Logical Depth (Bennet, 1988; Zenil et al., 2015b), where the complexity of a string is defined by the
time that a computation process takes to reproduce the string from its shortest description. However,
note that these definitions build on Kolmogorov complexity rather than supersede it in a fundamental
way. Another approach is to limit the programming language repertoire. E.g., limiting the search to
primitive recursive functions, a subset of recursive functions, avoids the halting problem in algorithmic
complexity at the expense of giving up universal computation (Ruffini, 2016). LZW is a prime example
of this.
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K17.
The connection between simplicity, statistics and prediction was developed by

Solomonoff through the definition of the algorithmic or universal probability PU (x) of
a string x (Li and Vitanyi, 2008). This is the (prior) probability that a given string x
could be generated by a random program. An important result is that PU (x) ≈ 2−KU (x).
Thus, the probability of a given string being produced by a random program is dom-
inated by its Kolmogorov complexity. Because of this, a Bayesian prior for simplicity
may be a good strategy for prediction, e.g., in a universe where data is generated by fer-
rets typing programs or by other random program generating mechanisms18. Although
we can only hypothesize the existence of such a data generating process, we do seem
to inhabit a universe described by simple rules. Thus, we will assume here that while
I/O streams encountered by agents may appear to be complex (entropic), they are
inherently simple, allowing for compression (the deterministic, simple physics hypoth-
esis). From this, and from considerations on the evolutionary pressure on replicating
agents (natural selection favoring pattern-finding agents), we formulate the following
hypothesis:

17 The main idea in LZW is to look for repeating patterns in the data, and instead of rewriting
repeating sequences, refer to the last one seen Lempel and Ziv (1976). As Kaspar and Schuster (1987)
clearly state, LZW is the Kolmogorov Complexity computed with a limited set of programs that only
allow copy and insertion in strings.

“We do not profess to offer a new absolute measure for complexity which, as mentioned
already, we believe to be nonexistent. Rather, we propose to evaluate the complexity
of a finite sequence from the point of view of a simple self- delimiting learning machine
which, as it scans a given n- digit sequence S = s1 · s1 · ...sn , from left to right, adds
a new word to its memory every time it discovers a substring of consecutive digits not
previously encountered. The size of the vocabulary, and the rate at which new words
are encountered along S, serve as the basic ingredients in the proposed evaluation of the
complexity of S.”

Entropy rate, given by H(X) = limn→∞
1
n
H(X1, ..., Xn) = limn→∞H(Xn|Xn−1, Xn−2..., X1) and

LZW are essentially equivalent for stationary stochastic processes (Cover and Thomas, 2006).
LZW can be used to obtain an upper bound on K, but, given its reduced programming repertoire, it
will fail to compress random-looking data generated by simple, but highly recursive programs, e.g.,
the sequence binary digits of π, with more sophisticated regularities than sequence repetition (deep
programs (Ruffini, 2016)). As an example of how LZW or entropy rate are limited tools for compression,
and therefore poor cousins of algorithmic complexity, consider a string and its “time-reversed” version
in a file with the ordering of symbols inverted, or a string and “time-dilated” string where each symbol
is repeated, say 2 times. Such simple algorithmic manipulations will not be detected and exploited
by LZW. It is interesting to note that the expectation value of algorithmic complexity of a stochastic
process is proportional to its entropy rate as well (Cover and Thomas, 2006). However, all processes
in nature are probably deterministic, not stochastic.

18 The precept that short explanations are in this sense more likely is the essence of the Minimum
Description Length and the Minimum Message Length approaches to statistical inference (Li and
Vitanyi, 2008; Wallace and Dowe, 1999; Vitányi and Li, 2000). Among possible explanations of an
observed data string, those which are shortest (program plus error) are more likely. Similarly, in
machine learning one speaks of regularization, sparsity or other approaches for reducing the learning
problem to simpler (smaller) spaces of solutions.
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Hypothesis 1. Successful replicating agents find and use simple models of their I/Os.

As far as an agent can tell, “reality” is the simplest program it can find to model
data-streams generated from its interaction with the world.

3. Consciousness and KT

We address next the nature of conscious content. In what follows, we assume
that there is a strong link between structured experience and cognition, the cognitive
substrates and processes involved in modeling I/Os19.

3.1. Structured consciousness requires compressive models of I/Os

From a cognitive perspective, we have argued that what we call reality is represented
and shaped by the simplest programs brains can find to model their interaction with
the world. In some sense, simplicity is equivalent to reality and therefore, we now
hypothesize, to structured experience. When we become conscious of something, we
become conscious of it through a model, which is chosen among many as the one best
fitting the available data. In more detail, we propose our next hypothesis, relating
cognition and consciousness:

Hypothesis 2. Structured conscious content is experienced by agents tracking I/Os
using successful, simple models. The more compressive these models are, the stronger
the subjective structured experiences generated.

In other words, conscious experience has a richer structure in agents that are bet-
ter at identifying regularities in their I/Os streams, i.e., discovering and using more
compressive models. In particular, a ‘more’ conscious brain is one using and refining
succinct models of coherent I/Os (e.g., auditory and visual streams originating from
a common, coherent source, or data accounting for the combination of sensorimotor
streams). We may refer to this compressive performance level as conscious level 20. It
is ultimately limited by the algorithmic complexity of the universe the agent is in and
the resources it has access to.

Returning to Figure 1, the better the fit of the model with all available data (inte-
grating present and past multisensory streams), the stronger the experience (how real
it will feel to the agent) and the stronger the impact on behavior. The model itself
is a mathematical, multidimensional, highly structured object, and can easily account
for a huge variety of experiences. It will also, in general, be compositional and recur-
sive (assuming those are properties of I/Os). An implicit element here is thus that
consciousness is a unified, graded and multidimensional phenomenon.

Let us clarify that here highly compressive implies comprehensive, i.e., that all the
I/O data streams available up to the moment of experience are ideally to be accounted

19It seems reasonable to assume that being conscious of something will be shaped by what that
something actually is, which we equate to a model here.

20This is a different meaning than, e.g., the one used in neurology:level of consciousness is a mea-
surement of a person’s arousability and responsiveness to stimuli from the environment.
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for21, and that compressive refers to the length of model plus (compressed) error stream
being short. Past I/Os (possibly encoded in the form of prior models), play an impor-
tant role: the algorithmic complexity of new data given available old data must be low
(simple)22.

In KT, structured conscious awareness is thus associated to information processing
systems that are efficient in describing and interacting with the external world (informa-
tion). An ant, for example, represents such a system23. Furthermore, some experiences
may require a self-awareness, as we discussed before: if the appropriate model has to
take into account the agent’s actions (the output streams), then self-awareness (self-
modeling) will become an important element of structured experience. However, not
all interactions may call for a self-model (e.g., passively perceiving an object may not
require running a self-model, while dancing presumably does). Self-modeling includes
here all the agent’s elements (e.g., including the Action module policy in the figure).

In Ruffini (2009), we hypothesized a related conjecture with regard to the experi-
ence of Presence, the subjective experience of being somewhere24. We may view this
phenomenon as a consequence of our prior hypotheses: Given a set of models for avail-
able data, an agent will select the most compressive one, or equivalently, the model that
will feel most real. Again, by data here we mean all available data up to the present
moment, some of which may be from, e.g., the past hour, or encoded in models built
from much older interactions.

3.2. Apparent complexity from simplicity

Can we associate the characteristics of electrophysiological or metabolic spatiotem-
poral patterns in brains to conscious level? Although somewhat counterintuitive, in
KT agents that run simple models in conscious brains may appear to generate (Shan-
non) apparently complex data. By apparently complex data streams we mean those
that are inherently simple yet entropic and probably hard to compress by weak algo-

21Models are thus “eternal”, invariants. Of course, as invariant rules they may specify rules for
dynamic changes in parameters or sub-rules themselves.

22To clarify this point, consider another gedanken (G3). If we place somebody in a dark room, the
subject will receive a simple stream of data, consisting of, say, mostly 0s (it’s dark and silent). Now,
what model is this person to make of the data stream? We need to keep in mind that as a modeling
tool the brain has access to this data as well as all other past experience. What model will it come
up with? Let’s say that it is “I have been placed in a dark room”. But is this a simple model? If the
recent experience is compatible with this (e.g., the person has been led by a friend with eyes closed
and it is our subject’s birthday) the model will actually be “I have been placed in a dark room by my
friend, because I am about to experience a birthday party!”. This model fits well with all the available
data, not just the string of recent 0s. It is a good model, and the subject will feel the experience as
being very real. If however, our subject were driving on the highway and suddenly a demigod from the
Enterprise teleports her to a dark room, her “reality meter” will be lower according to KT. The event
will feel unreal, because no simple model will be readily available to match the data.

23In fact, the distinction between life, cognition and consciousness is as a matter of degree in KT.
24As an applied research field, Presence studies how to produce real-feeling experiences in mediated

interaction—the phenomenon of behaving and feeling as if a mediated experience were real (Sanchez-
Vives and Slater, 2005).
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rithmic complexity estimators such as LZW. The context for this apparent paradox is
the aforementioned hypothesis (the deterministic, simple physics hypothesis) that the
universe is ruled by simple, highly recursive programs which generate entropic data.
As Mandelbrot, Wolfram and others have shown, apparently complex data streams can
be generated by very simple, recursive special models (Wolfram, 2002) (called “deep”
models in Ruffini (2016)). By this we mean models such as an algorithm for the digits
of π, which are not compressed by algorithmic complexity estimators such as LZW. In
such a world, a brain tracking—and essentially simulating—high entropy data from its
interaction with the world will itself produce complex looking data streams25.

Recapping, we hypothesize that driven by natural selection in a complex looking
but intrinsically simple universe, replicating agents running and developing models of
reality will instantiate recursive computation (that being necessary for deep modeling),
running compressive, “deep” programs. The data produced by such recursive agents
can display features of critical systems (“order at the edge of chaos”), situated between
the kingdoms of simple and random systems (Li and Nordahl, 1992). Simple, deep
programs will model and therefore generate entropic, fractal-looking data, and one
whose structure is characterized by power laws, small world (Gallos et al., 2012) or scale
free networks (Eguiluz et al., 2005) associated with the hierarchies in the systems we find
in the natural world26 (West, 1999; Albert and Barabasi, 2002; Ravasz and Barabasi,
2003; He, 2014). While a brain capable of universal computation may produce many
different types of patterns—both simple (e.g., constant or repetitive) and entropic—
a healthy brain engaging in modeling and prediction of complex I/Os will produce
complex-looking, highly entropic data. Such apparent complexity is what is evaluated
by entropy or LZW compression measures of, e.g., electrophysiological or metabolic
brain data (Casali et al., 2013; Schartner et al., 2015; Andrillon et al., 2016; Hudetz
et al., 2016; Schartner et al., 2017). First order entropy, entropy rate or LZW provide
upper bounds to the algorithmic complexity of such data. We summarize this as follows:

Consequence 1. Conscious brains generate apparently complex (entropic) but com-
pressible data streams (data of low algorithmic complexity).

Thus, in principle, the level of consciousness can be estimated from data generated
by brains, by comparing its apparent and algorithmic complexities. Sequences with
high apparent but low algorithmic complexity are extremely infrequent27, and we may
call them rare sequences. Healthy, conscious brains should produce such data. And
although providing improved bounds on algorithmic complexity remains a challenge,

25The reason for this is that although the models for the world are simple they generate data with
high entropy rates. Wolfram points out that such functions/models are rather common (Wolfram,
2002). A brain tracking such data streams will generate complexity itself, mirroring what happens in
the world.

26Certainly, further research is needed to establish connections between algorithmic and other flavors
of complexity such as multiscale entropy (MSE) (Costa et al., 2002), entropy rate or power laws.

27The probability that a random sequence can be compressed by more than k bits is no greater than
2−k Cover and Thomas (2006)
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an apparently complex data stream generated from a low algorithmic complexity model
should in principle be distinguishable from a truly random one, leaving traces on metrics
such as entropy rate, LZW, power law exponents and fractal dimension. If brain data
is generated by a model we know (e.g., one fixed in an experimental scenario), a better
bound for its algorithmic complexity could be derived by showing that the model can be
used to further compress it. As an example, consider a subject whom we ask to imagine,
with eyes closed, parabolic trajectories from cannonballs. Using Newton’s equations,
we should be able to compress the subject’s EEG data beyond LZW, demonstrating
that it is partly generated by an internal physical model. As discussed, such apparent
complexity from simplicity points to the EEG data being generated by deep programs
embedded in biological networks that are modeling real work data.

3.3. Mutual algorithmic information between world and agent

A related consequence of the above is that the MAI between world and brain gen-
erated data should be high. A model is a compressed representation of the external
world. The actual program length instantiated in the agent should be much shorter
than raw world data, while the MAI between both program/model and data should be
high. We may also expect, in addition, that world data will not be obviously simple
(i.e., entropic and not yet in compressed form). A simple example is the use of electro-
physiology or fMRI data to reconstruct images projected on the retina (Stanley et al.,
1999; Nishimoto et al., 2011). A more interesting case is when there exists at least one
neuron that fires exclusively when an instance of a percept is presented (corresponding
to a good model being run), such as in “grandmother” cells (Quiroga et al., 2005).
Indeed, the information stemming from such a cell would allow us to compress the
input stream more effectively28.

Consequence 2. Consider a compressible (l(x)/K(x) > 1) input data stream x and
agent response data y as measured by, e.g., neuroimaging or agent behavior. In a
conscious agent processing x (attending to it) the mutual algorithmic information IK(x :
y) will be high. Furthermore, the information about x in y will be in compressed form.

Note that a high MAI is a necessary, not sufficient condition. High MAI between an
external visual input and the state of the optical nerve or thalamus is also expected in

28E.g., consider an experiment in which an image of a face or a scene is presented to a subject.
Suppose we find a neuron that fires exclusively when seeing a particular face regardless of orientation
or lighting, and we show the subject a sequence of faces and other object images. Now, the mutual
algorithmic information between neuronal activity and images is high (we can use knowledge of the
latter to compress the former, or vice-versa). However, what is notable is that neuronal activity contains
this information in compressed form (not as a sequence of raw bits encoding pixels). Let us imagine now
that this is also an fMRI experiment, and that we can, with this data alone create a machine learning
classifier that outputs the class of the image that has been presented from fMRI voxel activations. Can
we conclude from this that the subject is conscious of the image? KT would say that as long as the
representation is compressed, structured experience will occur. This will happen, for example, in the
“grandmother” cell example, but also if there is a specific pattern of activation associated to the event
that responds in some invariant way.
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a subject with eyes open. Our hypothesis is that information will be compressed in the
cortex and present even if sensory inputs are disconnected, represented as a model—e.g.,
run as the subject imagines a visual scene. As models are presumably implemented
in synaptic connectivity and neuronal dynamics, compressed representations of past
input streams will be present in neuroimaging data. It is in this sense that we expect
MAI between world and agent to increase with its actual or potential conscious level29.

3.4. Relation to Integration Information (IIT), Global Workspace (GWT) and Predic-
tive Processing (PP) theories of consciousness

KT is closely related to theories of consciousness that place information at their
core, and it actually provides conceptual links among them. In Integration Information
theory (IIT), the most important property of consciousness is that it is “extraordinarily
informative” (Tononi and Koch, 2008). It maintains that when we experience a con-
scious state, we rule out a huge number of possibilities. KT is strongly related to, but
not equivalent to ITT. KT places the emphasis on the use of simple models to track
I/Os, which lead to structured experience and which we may call the mathematical
substrates of consciousness. IIT emphasizes causal structure of information process-
ing systems and the physical substrate of consciousness. However, the concept of a

29 Consider the question whether there is useful, compressed information about world data x in a
brain or agent with data y. E.g., x is a sequence of images (pixels) of a face or a cat, one billion of
them, and y is the data stream from a face cell that fires when it sees a face. Or the negativity signal
in a MMN paradigm with a billion trials. The following two conditions need to be met to assert that
there is useful, compressed information about the world in a brain or agent:

1- Knowing brain data xb means we know a lot (let’s say all) about some given world data x:

K(x|xb) = K(x)− IK(x : xb) ≈ 0

So
K(x) ≈ IK(x : xb)

or
IK(x : xb)/K(x) ≈ 1

That is, the brain knows about the world.
2- Moreover, xb is a good compressed version of world data x:

l(xb) << l(x), l(x)/l(xb) >> 1

Putting it all together, a necessary condition is that

IK(x : xb)

K(x)

l(x)

l(xb)
> 1

which we may rewrite as
IK(x : xb)

l(xb)

l(x)

K(x)
> 1.

The first factor requires that there is high MAI and it is in compressed form in the agent (to be ≈1),
the second that world data be non-obvious (not yet compressed). Note, however, that sensory streams
are disconnected from the agent, 2 follows if we assume a reasonably small memory capacity in the
agent—information then must be compressed.
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simple model (as defined above) may provide a more fundamental—or alternative—
origin of the notion of a causal complex (a strongly interlinked causal information
structure, Tononi et al. (2016)). KT agrees well with other aspects of IIT30. If struc-
tured experience is shaped by models, our belief in a particular model (as driven by
the input/output streams up to this moment) efficiently rules out—or lowers our belief
in—all other models for the experienced information streams. IIT emphasizes that
information associated to a conscious state must be integrated: the conscious state is
an integrated whole that cannot be divided into sub-experiences (data from the I/Os
must be tightly bound together). KT provides a mechanism for binding of information:
a good, succinct model will by definition integrate available information streams into a
coherent whole31. While IIT states that the level of consciousness of a physical system
is related to the repertoire of causal states (information) available to the system as a
whole (integration), KT would say that the potential level of consciousness of a physical
system is dictated by its ability to model its I/Os in an efficient manner. Economy
of description implies both a vast repertoire (reduction of uncertainty or information)
and integration of information32. We note that simple programs (in the limit of Kol-

30On the surface, the theories use different mathematical frameworks. As it has happened in other
occasions, it may be that they are actually equivalent. Regarding phenomenal structure, KT relates
to the IIT axioms in the following ways:

• Experience exists (intrinsically, independent of external observers). In KT we start from the
same assumption.

• Composition. Experience is structured (it has many aspects): so is a model that integrates
multiple sources of data to provide a unified, organized experience.

• Information. Experience is differentiated (one out of many): it is what it is by differing in its
particular way from many others: so is a model that has been selected against other in terms of
its merits as the simplest and best data fitting (i.e., compressive).

• Integration. Experience is unified (it is “one”): it cannot be reduced to non-interdependent
components: a model does this automatically, as a simple program that cannot be broken into
parts.

• Exclusion. Experience is unique (it is only one), in content and spatiotemporal grain: it is not
a superposition of multiple experiences, with less or more content, flowing at faster or slower
speed at once. Selection of the best model for available data eliminates ambiguities.

31As an example of IIT’s information, integration and differentiation in KT, let us return to CA
Rule110 with some arbitrary initial conditions. Consider the “time series” associated to a couple of
columns in the resulting spacetime diagram. Each series will be highly entropic (highly informative), as
well as differentiated (the two series will be uncorrelated). Yet, the entire picture is highly integrated,
bound by the underlying simple model plus initial conditions.

32KT suggests as well that a possible future version of IIT may consider algorithmic information as
opposed to Shannon information derived concepts (as, e.g., used in the definition of Cn or ϕ, where
the core elements are probability distributions and their distance). An interesting mathematical line of
research to compare the theories is to study systems capable of universal computation running simple
models in terms of IIT’s “neural complexity” Cn or its generalization ϕ, which describe information
integration across variables or nodes. For example, a cellular automaton running a simple model will
presumably display strong integration as computed using ϕ or Cn, as recently discussed in Albantakis
and Tononi (2015). Neural networks offer another interesting scenario for such studies.
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mogorov) are irreducible and Platonic mathematical objects (as in, e.g., “a circle is the
set of points equidistant from another point”). This is another link with IIT and its
central claim that an experience is identical to a conceptual structure that is maximally
irreducible intrinsically.

We can establish closer links between KT and IIT by focusing on efficient neural
networks for the instantiation of models. By definition, the model encoded by a network
specifies which value holders (nodes) to use, how to connect them, and an initial state.
The result may be “integrated” or not. Loosely, if it is an effective (simple) encoding,
we would expect interconnectivity and intercausality in the elements of the network.
It turns out that we should also expect that perturbations of nodes of such a network,
when activated in detecting a matching pattern (i.e., running a model), will propagate
further in the network, as found in Casali et al. (2013) (Ruffini, 2016)33.

Global Workspace theory (GWT) (Baars, 1988; Dehaene et al., 2003) has common
elements with IIT and KT. It states that “conscious content provides the nervous
system coherent, global information” (Baars, 1983), i.e., what we call in KT a (global)
model. KT and IIT are in some sense meta-theories, with the biological brain (and
thus perhaps GWT) as a particular case. The fact that effective models may require
parallel information processing in KT maps into GWT’s requirement that many areas
of the brain be involved in those conscious moments in GWT. Since the original work of
Baars, Dehaene and others (see, e.g., the recent results in (Godwin et al., 2016)) have
identified global brain events to correspond to the conscious experience in numerous
experiments. According to KT, the experience is associated to successful modeling
validation events. Crucially, such events require integration of information from a
variety of sensory and effective systems that must come together for model validation.
Data must thus flow from a variety of sub-systems involving separate brain areas and
merge—perhaps at different stages—for integrative error checking against a running
model. There may be several such integrative sub-nodes (as in “grandmother” cells),
whose outputs may themselves be integrated in a “grand model node”. A candidate for
such a location is the temporo-parietal-occipital junction (TPJ), an association area
which integrates information from auditory, visual and somatosensory information, as
well as from the thalamus and limbic system34 (Koch et al., 2016).

33The core idea is that an efficient, simple network activated by an input which it recognizes will be
more sensitive to perturbations of its nodes. In a simple network running a deep function (recursive,
Kolmogorov simple), all nodes play a crucial role in a pattern tracking task.

34The TPJ has been identified as a candidate for the generation of Presence qualia and proposed as a
full neural correlate of consciousness. Temporo-parietal areas are also associated with the generation of
out-of-body experiences through electrical (Blanke et al., 2002) or TMS (Blanke et al., 2005) stimulation
of the TPJ, or in patients with lesions in that area.
A condition of interest in this respect is called “derealization” (an alteration in the perception or
experience of the external world so that it seems strange or unreal) and “depersonalization” (alteration
in the perception or experience of the self so that one feels detached from, and as if one is an outside
observer of, one’s mental processes or body), can appear following temporal lobe epilepsy, migraine or
head injury (Sierra et al., 2002; MV Lambert and David, 2002). Left-sided temporal lobe dysfunction
and anxiety are suggested as factors in the development of depersonalization. Hemineglect is another
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Predictive processing theory (PP) (Friston, 2009; Hohwy, 2013; Seth, 2013; Clark,
2013; Seth, 2014) is also closely related to KT, with a focus on the predictive efficiency
afforded by simple models of I/Os. It maintains that in order to support adaptation,
the (Bayesian) brain must discover information about the likely external causes of
sensory signals using only information in the flux of the sensory signals themselves.
According to PP, perception solves this problem via probabilistic, knowledge-driven
inference on the causes of sensory signals. In KT, the causes are formally defined by
models which are derived from the objective of compressing I/Os (and which include
Bayesian modeling as a byproduct) in a computational framework, providing links with
recursion and complexity measures.

4. Experimental methods in KT

4.1. Modulating algorithmic complexity of input streams

In the case of the experience of Presence, consistency in the I/Os, in the sense of
there being a simplifying low-level model available to match sensorimotor data, is a
crucial element to enhance this experience (“place illusion”, see Slater (2009); Ruffini
(2009)). As we progress higher in the modeling hierarchy, Bayesian prior expecta-
tions35 play an important role: explanations with a better match with past models are
inherently simpler (leading to “Plausibility”). Virtual reality (VR) technology offers
a powerful way to induce and manipulate Presence. KT (Hypothesis 1) predicts that
given available models for existing data (past and present), the simplest will be chosen
(Ruffini, 2009).

Binocular rivalry is a well-established paradigm in the study of the neuroscience of
consciousness. Briefly, two different images are presented to each eye and the experience
of subjects typically fluctuates between two models, i.e., seeing the right or left image
(Blake and Logothetis, 2002; Blake and Tong, 2008). According to Hypothesis 1, given
this data stream and past ones, the subject’s brain will select the simplest model it can
find, which will then be experienced. First, we note that this experimental scenario
breaks the subject’s past models of the geometry of 3D space. Any given model of
an object in 3D space will only match part of data stream (e.g., from a single eye).
Since the subject does not have access to a simple model from past experience that
integrates both retinal inputs, a partial model will be selected if the images are equally
simple: the subject will use a model of one of the images and become conscious of only

example (Husain, 2008) of relevance, although the view that damage to parietal areas, including the
TPJ, is responsible has been challenged.
Another candidate location for integration is the claustrum (Crick and Koch, 2005; van den Heuvel
and Sporns, 2013; Koubeissi and Bartolomei, 2014; Stiefel et al., 2014; Fischer et al., 2016), a thin
sheet of grey matter below the insular cortex with bidirectional connections to a number of cortices,
including the primary motor, premotor, prefrontal, auditory, and visual, among others, combining
multiple information modalities. Finally, we mention the insular cortex as well, which is involved in
multimodal synchrony checking (Bushara et al., 2001) and also pain and emotion.

35Bayesian modeling emerges here as part of the modeling, compressing process.
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that particular image (the dominant one), discarding the other retinal inputs from
conscious access (but may also patch both images up as in Kovács et al. (1996)). KT
suggests further dominance experiments in which the two images differ in terms of their
simplicity, some of which have already been carried out. E.g., natural images (with
amplitude spectra of the form A(f) ∼ 1/f) dominate (Baker and Graf, 2009)—in KT
because they agree better with available prior models. Or, e.g., recognizable figures
dominate over patterns with similar psychophysical traits, while upside down figures
dominate relatively less (Yu and Blake, 1992). Stimulus strength (luminance, contrast,
motion (Blake and Logothetis, 2002)) also play a role in KT, because strength typically
relates to higher signal to noise ratio, which makes data streams more compressible
than others. We can consider images that differ in their visual algorithmic complexity,
e.g., the image of a regular versus an irregular polygon, or target/context consistent
(simpler) images, which dominate over inconsistent ones (Fukuda and Blake, 1992). Or,
for example, in a setting where at some point during an immersive VR experience two
different images are presented to the subject, one congruent with the ongoing experience
(more plausible), and the other less fitting with the overall experience. Perhaps the
subject can touch one of the objects appearing in the images, or hear sounds associated
to it. The prediction is that the subjects will tend to see the congruent (simpler model)
image more often. According to KT, image training (prior model building) also leads
to dominance (e.g., Dieter and Tadin (2016)).

A direct approach to test the hypothesis that consciousness level self-reports cor-
relate with the capacity of rule-finding (Hypothesis 2) is to prepare sensorial inputs of
varying algorithmic complexities and assess the response of the brain (EEG or MEG)
to rule-breaking (deviant inputs). This is the so-called oddball paradigm (Näätänen and
et al., 1978; Grau et al., 1998). The appearance of a surprise response to rule breaking
is directly related to pattern detection (compression). According to KT, the level of
response to a deviant input is associated with the complexity of the sequence and the
available modeling power of the brain. Oddball experiments using patterns with vary-
ing complexity (including multimodality) could thus shed light on the role of conscious
level and compression. For the purposes of studying higher level, structured conscious-
ness, it may be more appropriate to work with the later parts in the EEG event related
potential (ERP), i.e., the P300b36 (Bekinschtein and et al., 2009). We would expect
that complex patterns might elicit weaker or delayed responses (in agreement with
(Atienza et al., 2003) and other experiments such as Kanoh et al. (2004) or take longer
to learn (for example, Benidixen and Schröger (2008) discuss how rapidly simple but
abstract rules are learned)37. This is also addressed in Bekinschtein and et al. (2009)

36As discussed in (Bekinschtein and et al., 2009), unlike the P300b, neither MMN nor P300a have
been associated empirically with conscious access.

37The oddball paradigm could be expanded in a multi-modal manner (visual, somatosensory, audi-
tory, etc.) using immersive technologies (VR) to fully manipulate interaction (I/Os). If an agent is
capable of constructing a simpler model for data it will allow the agent to store it better (less space
needed) and also to predict the future more precisely. The experiments would involve 1) creating
simple world models that we can manipulate, and generate data streams from them, 2) have subjects
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and Faugeras et al. (2011, 2012) using the so-called “local-global” paradigm, although
the authors’ interpretation of the results (experience of global rule breaking requires
awareness of stimuli) refers to the affordance of sustained perceptual representation. In
KT, the interpretation is that the global rules used are algorithmically more complex
than the local ones38. Working memory is necessary for modeling, but not sufficient.
This methodology has now been extended to the macaque brain, highlighting the role
of a frontoparietal network in global regularity violation (Uhrig et al. (2014)), including
the activation of the temporoparietal area. KT would therefore predict that global-
rule violation detection should not be available in situations in which subjects do not
report experience (deep sleep, unresponsive wakefulness state, anesthesia, etc.). Fur-
thermore, it suggests the exploration of stimulation sequences of increasing algorithmic
complexity.

4.2. Perturbing cortical networks using brain stimulation

Massimini et al. (2005) used transcranial magnetic stimulation (TMS) to character-
ize changes of functional cortical connectivity during sleep. Later, Casali et al. (2013)
used TMS similarly to generate propagating action potentials, with resulting EEG re-
sponses compressed using LZW to define a perturbation complexity index (PCI). The
interpretation in IIT is that a high PCI reflects information (LZW) and integration
(since the neural response originates from a common source and is therefore integrated
by default). The interpretation in KT is slightly different, but in agreement with the
idea that a PCI is indicative of conscious level. According to KT, brains run the sim-
plest models they can find to track world data and make predictions. Such models, if
implemented efficiently in neural networks, should be quite sensitive to perturbations of
their nodes while engaged in a task (Ruffini, 2016)—disturbances should travel further,
as they appear to do (Massimini et al., 2005). Moreover, we may expect that although
EEG perturbations originate from a common cause (a localized TMS pulse), they will
be represented differently across the cortex after non-linear propagation in cortical net-
works, and will therefore be hard to compress using LZW, since LZW is quite limited in
detecting and exploiting the potentially high MAI in the signals from different cortical
sources for compression. We note that other, more powerful estimators of algorithmic
complexity metrics can be explored39. In addition, various non-invasive stimulation

in different states of consciousness try to track these I/Os in a task in which they have to remember
or predict future events (to measure if they actually identified a good model for the I/Os), 3) use
subjective reports of presence to assess experience and also which models they were actually using
for the experience. Availability and access to simple models should map into more real feeling VR
experiences—as we argued happens in the rubber arm experiment (Ruffini, 2009).

38The rules are simple and we can actually compute their algorithmic complexity. The local rule
is simply coded as “repeat n-times the tone X” (as in Rn(X)), while the global rule requires the
specification of a sequence of several tones (e.g., Rn(XXXX) or Rn(XXXY )). More complex rules
could be explored, of course.

39As already mentioned, despite being a good starting point for the study of K, LZW is limited.
Machine learning may become a key enabling technology to provide tighter upper bounds for K.
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methods, such as transcranial current stimulation (tCS) can be used to generate sub-
threshold stimulation related potentials (SRPs) and study their complexity40.

4.3. The complexity of spontaneous brain state

Suppose we collect multichannel spontaneous EEG data from a subject during
a few seconds. An awake or sleeping brain during REM is characterized by fairly
similar EEG: visually complex, fractal and distinct across channels and frequencies.
The deeply asleep brain is dominated by slower rhythms with staccato like bursts. The
epileptic brain, the anesthetized brain, the unresponsive brain all display less complex-
looking EEG. We seek metrics that can differentiate between such data in terms of
complexity, and discriminate among healthy TM-like chatter from other forms of noise
(Consequence 1). Using raw EEG, one may simply attempt to compress the data file
from just a few seconds, for example, using LZW. This technique has been shown to be
useful already in a handful of examples—e.g., during anesthesia (Schartner et al., 2015)
or sleep (Andrillon et al., 2016). Furthermore, we can derive connectivity networks in
electrode or in cortical space and estimate their algorithmic complexity (see, e.g., Ray
et al. (2007); Zenil et al. (2014); Soler-Toscano et al. (2014); Zenil et al. (2015a)). Power
laws, scale-free behavior with 1/fα spectra are also probably closely associated with
simple TM chatter (Eguiluz et al., 2005), as proposed above. It is also known that
hierarchical modular architecture of a network (its structure, as in the cortex41) can
deliver hallmark signatures of dynamical criticality—including power laws—even if the
underlying dynamical equations are simple and non-critical (Friedman and Landsberg,
2013). Although certainly of interest, further work is needed to make clear statements
about the relation of apparent complexity (as measured by, e.g., LZW) and conscious
level. For example, a random number generator produces maximal entropy, but its
mutual information with the world is null. Thus, high apparent complexity alone does
not necessarily imply high conscious level—it is necessary but not sufficient. Although
a healthy brain running simple models is expected to produce apparently complex
physiological chatter, we may be able to compress it beyond LZW if we have access to
its underlying model, e.g., by controlling the experimental scenario to have a subject
“run” a simple model—thus deriving better bounds on its algorithmic complexity.

4.4. The complexity of brain outputs

With regard to Consequence 1, behavior (an agent’s output, such as hand-reaching
motion, voice, gait or eye movements) can be quantified in terms of apparent com-

40In such “interleaved” experiments, the idea is to stimulate the brain using tCS during some period
of time (e.g., 10 seconds), and measure EEG responses during the next 10 seconds (Castellano et al.,
2017). This process can be repeated, e.g., 100 times, as with other event related potential EEG methods.
The resulting data (during interleaved no-stimulation periods to avoid artifacts) can be analyzed using
LZW compression just as Casali et al. (2013) did, or in other related manners.

41Indeed, at the micro-scale level it is believed that groups of ∼100 neurons are organized into
mini-columns, and groups of ∼ 75 mini-columns are organized into columns, with evidence from both
cytoarchitecture and MRI of modular structure at larger scales (see Friedman and Landsberg (2013)
and references therein).
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plexity. For example, Manor et al. (2010) studied postural sway (center-of-pressure
dynamics) during quiet standing and cognitive dual tasking, and derived a complexity
index using multiscale entropy (MSE) (Costa et al., 2002). MSE has also been used to
classify human and robot behavior on Twitter, as in He et al. (2014). REM vs. NREM
sleep eye movements provide another example. Eye movements have also been stud-
ied using entropy metrics, e.g., in autism spectrum disorder (Shic et al., 2008; Pusiol
et al., 2016). More generally, the MAI between sensory inputs, brain state and then
behavioral response (I/Os) should correlate with consciousness level and awareness of
the world (Consequence 2).

5. Discussion

KT proposes a mathematical framework42 to study cognition and consciousness
based on AIT, where the conceptual kernel is the Kolmogorov complexity of a string.
AIT provides the tools to study computation and compression of data from an ap-
parently complex, but intrinsically simple world43. It takes as an axiom that there is
consciousness and provides requirements for structured experience: it is only possible
in computational systems such as brains that are capable of forming compressed repre-
sentations of the world. The availability of compressive models gives rise to structured
conscious phenomena in a graded fashion44. Self-awareness is seen to arise naturally

42As already discussed, KT relies on a mathematical substrate rather than a physical one. This
seems rather consistent with the possibility of creating conscious AI from essentially algorithms (math-
ematics).

43Although the ultimate physical laws may be simple, also the effective, “coarse grained” laws that
derive from them need to be simple to be used in practice by agents. Perhaps it is a logical necessity
that such effective physical theories (those that are approximations of the ruling equations at larger
scales) are also simple (see, e.g., Israeli and Goldenfeld (2004)), but this not obvious. An interesting
challenge is to show that simple, hierarchical rules become again hierarchical and simple after coarse
graining. Seems like a reasonable conjecture from the point of view of “conservation of complexity”
(complexity can only decrease after coarse-graining). On the other hand, the fact that agents are
limited in resources (pressured by the environment) probably makes the discovery of such effective
theories/models an important element in KT, and one that we haven’t yet discussed.
Ultimately, in KT structured experience is seen to stem from the world, and may be limited by it.
If the world were a random number generator (binary digits of π) written in a few lines of code, our
structured experience of it would be quite limited, the simplifying model being too simple. Of course,
it may well be that brains can become capable of constructing models beyond those describing our
observable reality (e.g., the mathematics of complex numbers).

44Of course, KT does not explain away the hard problem of consciousness. The theory assumes
consciousness is an essential part of reality, and that some systems condense it in a special way. This
view is actually fairly in line with work relating to IIT (Tegmark, 2014a; Tononi et al., 2016). Let us
summarize the questions KT attempts to answer:

1. When does structured experience take place? When a compressive model is found and selected.

2. What are we conscious of? Models.

3. Why are experiences unique? Models are complex objects and each is quite unique.

4. Why can they be seen as irreducible? Models are simple programs and cannot be broken into
parts.
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as a better model in agents interacting bidirectionally with the external world. We
have thus linked by definition “conscious level” to the ability of building and running
compressive models that generate “structured experience” (Hypothesis 2). While this
can be seen as a limitation, in our view it provides a quantitative approach for the
study of such elusive concepts.

KT holds that apparent complexity with hidden simplicity is the hallmark of data
generated by agents running models of reality—cognitive systems enjoying structured
experience, because the world is complex only in appearance45. This provides a link
between the conscious properties of systems and observables (e.g., EEG, fMRI time
series or behavior). We have argued that since brains track (or imagine) and model the
external world (producing structured experience as a result), the apparent complexity
(as measured by, e.g., entropy or LZW) but inherent simplicity of brain data (as mea-
sured by yet to be developed improved bounds on K) as well as the mutual algorithmic
information of world data with present or past external brain inputs and outputs con-
stitute key elements or the development of metrics of consciousness46. However, more

5. Why do some experiences feel more real than others? Experiences feel more real if agents have
access to models that fit the data well in a simple and comprehensive way.

6. Why are conscious of some things rather than others? Some models are more compressive than
others and hence “chosen”.

7. Is self-modeling inevitable? An agent interacting with the world will perform better (and thus
have greater chances for survival) using a self-model, so self-modeling and hence self-awareness
are probable byproducts of natural selection.

8. Why is structured consciousness useful? Structured consciousness is equivalent to successful
modeling in a complex looking world. If we accept that good models feel more real when run,
“feeling real” and being more relevant for survival become equivalent.

9. What types of systems may be capable of structured experience? Agents as defined above.

10. What do agents model? That which they can use to enhance their chances of sur-
vival/reproduction.

11. What are the NCCs? The neural correlates of consciousness (NCC) constitute the minimal
set of neuronal events and mechanisms sufficient for a specific conscious percept. With regard
to mechanisms, the theory implies that conscious agents must have access to data, instantiate
computers that find then run compressive programs modeling world-generated data, compare
their outputs with data, and make decisions and learn. These elements lead, for example to
RNNs as a valid (universal) paradigm. Neural networks, for example, provide Bayesian estimates
of class membership (Richard and Lippmann, 1991; Saerens et al., 2002), so they implicitly carry
out this data comparison matching process. Physically, the NCCs of consciousness are thus
RNNs that implement simple models and contrast them with data. The last element may be
the objective function in the Action Module, which may also be a key NCC, providing valence
to experience. KT should eventually provide clues on how models are created by agents, and
how indeed, agents may arise from information chaos and in which types of universes that may
happen. E.g., in a universal CA which has been randomly initialized, how do agents subjected
to natural selection and replication arise?

45Such data strings are extremely rare in a probabilistic sense. “The expected value of the Kol-
mogorov complexity of a random sequence is close to the Shannon entropy” (Cover and Thomas
(2006)).

46An important practical implementation hurdle for this program is the fundamental uncomputabil-
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precise statements should be possible: the connections between algorithmic complexity
and recursion with other complexity measures (e.g., power-laws, small-world network
behavior, fractal dimensions, etc.) remain to be fully established. CAs and RNNs may
be good models to study these links. In addition to such research in mathematics,
fundamental research in machine learning (e.g., studying the role of composition and
simplicity in neural networks) and in physics (studying how simple recursive laws lead
to simple, recursive and deep effective theories at larger, coarse-grained scales) is needed
to create stronger ties between mathematics, physics, cognitive neuroscience and arti-
ficial intelligence. In KT, life, cognition and consciousness are all closely interrelated,
graded phenomena united by the common thread of computation and compression in
a complex, competitive environment47. Even if KT is only partly correct, AIT de-
rived metrics should exhibit discriminatory power for the classification of conscious
states and, importantly, a starting point for the generalization of our understanding of
cognition and consciousness beyond biology.
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