GigaScience

Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo --Manuscript Draft--

Manuscript Number:	GIGA-D-17-00311			
Full Title:	Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia grosvenorii, also known as monk fruit or luo-han-guo			
Article Type:	Data Note			
Funding Information:	National Key R&D Program of China (2017YFA0503800)	Pro. Xing Wang Deng		
Abstract:	 Abstract Backgroud: Luo-han-guo (Siraitia grosvenorii), also called monk fruit, is a member of the Cucurbitaceae family. To date, monk fruit is becoming a heated point of research for the pharmacological and economic potential of its non-caloric, extremely sweet components (mogrosides). It has also been commonly used in traditional Chinese medicine for the treatment of lung congestion, sore throat and constipation. Recently a single reference genome became available for monk fruit, assembled from 36.9 x genome coverage reads via Illumina sequencing platfroms. This genome assembly has a relatively short (34.2 kb) contig N50 length and lacks an integrated annotation. These drawbacks make it difficult to use as a reference in assembling transcriptomes and discovering novel functional genes. Findings: Here we offer a new high-quality draft of S. grosvenorii genome assembled using 31 Gb (~ 73.8 x) long single molecule real time sequencing (SMRT) reads. The final genome assembly is approximately 467.1 Mb, with contig N50 length of 556,347 bp, representing a 12.7 fold improvement. We further annotated 237.3 Mb of repetitive sequence and 21,731 consensus protein coding genes with combined evidence. Phylogenetic analysis showed that S. grosvenorii diverged from members of cucurbitaceae family approximately 38.22 million years ago. With comprehensive transcriptomic analysis and differential expression test, we identified 825 candidate functional transcripts will facilitate the discovery of new functional genes and genetic improvement of monk fruit. Keywords: Siraitia grosvenorii, Monk fruit, PacBio sequencing, Ortholog analysis, RNA- 			
Corresponding Author:	Hang He beijing, Beijing CHINA			
Corresponding Author Secondary Information:				
Corresponding Author's Institution:				
Corresponding Author's Secondary Institution:				
First Author:	Mian Xia			
First Author Secondary Information:				
Order of Authors:	Mian Xia			
	Xue Han			
	Hang He			
	Renbo Yu			

	Gang Zhen
	Xiping Jia
	Beijiu Cheng
	Xing Wang Deng
Order of Authors Secondary Information:	
Opposed Reviewers:	
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our <u>Minimum Standards Reporting Checklist</u> . Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	
Resources A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible. Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	Yes
Availability of data and materials All datasets and code on which the conclusions of the paper rely must be	Yes

Have you have met the above requirement as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u>?

Improved de novo genome assembly and analysis of the Chinese cucurbit Siraitia
grosvenorii, also known as monk fruit or luo-han-guo
Mian Xia ^{1,} [†] , Xue Han ^{2, †} , Hang He ^{2, †} , Renbo Yu ² , Gang Zhen ² , Xiping Jia ³ , Beijiu Cheng ^{1,*} and Xing
Wang Deng ^{2,*}
¹ Key Laboratory of Crop biology of Anhui Province, Anhui Agricultural University, Hefei, China
² School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of
Protein and Plant Gene Research, Peking University, Beijing 100871, China.
³ National Demonstration Area of Modern Agriculture in Cangxi, Sichuan Province, China
*Correspondence: Xing Wang Deng (<u>deng@pku.edu.cn</u>), Beijiu Cheng (cbj@ahau.edu.cn)
[†] Theses authors contributed equally to this article.
Abstract
Backgroud: Luo-han-guo (Siraitia grosvenorii), also called monk fruit, is a member of the
Cucurbitaceae family. To date, monk fruit is becoming a heated point of research for the
pharmacological and economic potential of its non-caloric, extremely sweet components
(mogrosides). It has also been commonly used in traditional Chinese medicine for the treatment
of lung congestion, sore throat and constipation. Recently a single reference genome became
available for monk fruit, assembled from 36.9 x genome coverage reads via Illumina sequencing
platfroms. This genome assembly has a relatively short (34.2 kb) contig N50 length and lacks an
integrated annotation. These drawbacks make it difficult to use as a reference in assembling
1

22 transcriptomes and discovering novel functional genes.

Findings: Here we offer a new high-quality draft of S. grosvenorii genome assembled using 31 Gb $(\sim 73.8 \text{ x})$ long single molecule real time sequencing (SMRT) reads. The final genome assembly is approximately 467.1 Mb, with contig N50 length of 556,347 bp, representing a 12.7 fold improvement. We further annotated 237.3 Mb of repetitive sequence and 21,731 consensus protein coding genes with combined evidence. Phylogenetic analysis showed that S. grosvenorii diverged from members of cucurbitaceae family approximately 38.22 million years ago. With comprehensive transcriptomic analysis and differential expression test, we identified 825 candidate functional transcripts involved in mogrosides biosynthesis. Conclusions: The availability of this new monk fruit genome assembly as well as candidate transcirpts will facilitate the discovery of new functional genes and genetic improvement of monk fruit. Keywords: Siraitia grosvenorii, Monk fruit, PacBio sequencing, Ortholog analysis, RNA-seq, Mogrosides biosynthesis **Data description** Introduction Siraitia grosvenorii (luo-han-guo or monk fruit, NCBI Taxonomy ID: 190515) is an herbaceous perennial native to southern China and is a famous specialty in Guilin city, Guangxi Province of China (Figure 1)[1]. On top of being used as a natural sweetener, *S. grosvenorii* has been used in China as a folk remedy for the treatment of lung congestion, sore throat and constipation for

hundreds of years[2]. The ripe fruit of *S. grosvenorii* contains mogrosides, which have become a popular research topic due to their pharmacological characteristics, including putative anti-cancer properties [3]. Additionally, mogrosides are purified and used as a non-caloric, non-sugar sweetener in the United States and Japan, as they are estimated to be approximately 300 times as sweet as sucrose [1,4]. To date, S. grosvenorii fruit has been shown to have the following extra effects of antitussive, anti-asthmatic, anti-oxidation, liver-protection, glucose-lowering, immunoregulation, and shown as containing triterpenoids, flavonoids, vitamins, proteins, saccharides, and a volatile oil [5,6]. Monk fruit products have been approved as dietary supplements in Japan, the US, New Zealand and Australia [2,7]. The biosynthesis pathway of mogrosides has been extensively studied and several genes have been identified [8-11]. Squalene is thought to be the initial substrate and precursor for triterpenoid and sterol biosynthesis. Squalene epoxidases (SQE) perform expoxidation, which creates squalene or oxidosqualene, and cucurbitadinenol synthase (CDS) cyclizes oxidosqualene to form the cucurbitadienol triterpenoid skeleton, which is a distinct step in phytosterol biosynthesis [12]. Epoxide hydrolases (EPH) and cytochrome P450s (CYP450) further oxidize cucurbitadienols to produce mogrol, which is glycosylated by UDP-glycosyl-transferases (UGT) to form mogroside V (Figure 2). The genome of *S. grovenorii* was first published in 2016, served the purpose of identifying the genomic organization of the gene families of interest, but not as the reference in their transcripotome assembly and gene families identification[8]. Although the fact that the first draft genome assembly was useful resources, some improvements are still necessary, including

64	improving the continuity and completeness, genome assembly assessment, annotation of genes
65	and repetitive regions, and other genomic features analysis. With average read length now
66	exceeding 10 kb, SMRT sequencing technology from Pacific Biosciences (PacBio) has the potential
67	to significantly improve genome assembly quality [13]. Therefore, we de novo assembled a
68	high-quality genome draft of S. grosvenorii using high coverage of PacBio long reads and applied
69	extensive genomic and transcriptomic analysis. This new assembly, annotation and other
70	genomic features studied below will serve as a valuable resource for investigating economic and
71	pharmacological characters and assisting molecular breeding of monk fruit.
72	
73	Library construction and sequencing of single-molecule long reads
74	20 µg genomic DNA was extracted from seedlings of <i>S. grosvenorii</i> (variety Qingpiguo) using a
75	modified CTAB method [14] to construct 2 libraries with an insert size of 20 kb, which were
76	introduced from the Yongfu District (Guangxi Province, China) and planted in Cangxi County
77	(Sichuan Province, China). Sequencing of S. grosvenorii was performed using the Pacbio RSII
78	platform (Pacfic Biosciences; USA) and generated 31 Gb (\sim 73.8 x) of data from 44 SMRT cells,
79	with an average subread length of 7.7 kb and read quality of 82 % after filtering low-quality bases
80	and adapters (Table 1).
81	
82	RNA isolation and sequencing
83	Fresh roots, leaves and early fruit of <i>S. grosvenorii</i> were sampled in the garden of Cangxi County.
84	All samples were stored at -80 °Cafter treated immediately with liquid nitrogen. Total RNA was

isolated from (1) leaf of female plants (FL), (2) leaves of male plants (ML), (3) leaves beside fruits
(L), (4) roots(R), (5) fruit of 3 DAA (F1) and (6) fruit of 20 DAA (F2) using Qiagen RNeasy Plant
Mini Kits (Qiagen). Paired-end libraries (PE150 with insertion size of 350 bp) were constructed
and subsequently sequenced via Illumina HiSeq X-Ten platform (Illumina; CA, USA).

Table 1 SMRT reads used for genome assembly

Statistics	Length (bp)
Total raw data	31 G
Mean length of raw reads	11 K
N50 of raw reads	15,754
Mean length of subreads	7.7 K
N50 of subreads	11,898

Subreads: reads without adapters and low-quality bases.

91 Genome assembly

Initial correction of long reads was carried out using FALCON [15] with length_cutoff = 5000 according to the distribution of read length and -B15, -s400 to cut reads into blocks of 400Mb and aligned 15 blocks to another one at the same time. The longest 25 x corrected reads was extracted with Perl scripts and assembled by mecat2canu command of MECAT [16] with GenomeSize=420000000 estimated in previous study. This led to a new genome assembly of 467 Mb with a contig N50 size of 434,684 bp (Table 2). This genome size was slightly larger than the estimated 420 Mb [8], which was probably due to the high genome heterozygosity. The assembly produced 4,128 contigs, 609 of which were over 100 kb long. Genome scaffolding was processed

with paired-end RNA-seq reads of root, leaf and fruit (Table 2). Compared to the preliminary draft of the published *Siraitia* genome, the contiguity was improved more than \sim 12.7 times. Genome assessment We estimated the completeness of the assembly by using Benchmarking Universal Single-Copy Orthologues (BUSCO v2, RRID:SCR_015008) [19] analysis. Of the 1,440 orthologues identified in plants, 1,167 were found in the genome assembly, including 877 in single copy and 290 in multi-copy (Table 3). In addition, we used RNA-seq data from different organs to assess the sequence quality. The assembly was mapped by all the 15 RNA-seq raw data using HISAT2 (RRID:SCR_015530)[20] and overall alignment rate of each data was used as rough estimation of sequence quality. Then the alignment files was manipulated by SAMtools (RRID:SCR_002105) [21] and only unique mappings (mapping quality = 60) were retained to call SNP with Genome Analysis Toolkit (GATK, RRID:SCR_001876) [22] pipeline. GATK VariantFiltration program was used to filter out low quality variations with the following expression : $QD < 2.0 \parallel ReadPosRankSun < - 8.0 \parallel FS > 60.0$ || QUAL < 50 || DP < 5. Coverage of each uniq alignment file was scanned using Qualimap 2 [23] and error rate was calculated as the ration of double variation (1/1 and 1/2) number and covered genome size. The overall alignment rates of reads in most samples were over 80% (Table 4), and the average base error rate was estimated at 0.07%, which suggests a high-quality

respectively using SSPACE-LongRead [17] with all the SMRT long read sequences and AGUTI [18]

120 assembly (Table 5).

Statistics	Contig	Scaffold (SSPACE_LongRead)	Scaffold (AGOUTI)
Total number	4,128	3,429	4,053
Total length (bp)	467,072,951	468,956,921	467,147,951
N50 length (bp)	433,684	549,749	456,454
N90 length (bp)	36,820	41,649	37,010
Max length (bp)	7,657,852	7,657,852	7,657,852
GC content (%)	33.57	33.57	33.57
N length (bp)	0	1,883,970	75,000

Table 2 Metrics of de novo S. grosvenorii genome assembly

Table 3 Summarized benchmarks of the BUSCO assessment.

	Monk fruit (%)
Complete BUSCOs	81.0
Complete and single-copy	60.9
Complete and duplicated	20.1
Partial	5.1
Missing	13.9

121 Repeat annotation

We scanned the genome using RepeatMasker (RRID:SCR_012954) [24] with Repbase [25] and a

de novo repeat database constructed with RepeatModeler (RRID:SCR_015027) [26]. We

identified 237 Mb (50.8% of the assembled genome) as repetitive elements, which was slightly higher than the 42.8% of Momordica charantia [27] and much higher than the 28.2% of Cucumis sativus [28]. We further classified the repetitive regions and found that the vast majority was interspersed repeats. Among them, the main subtypes were unclassified repeats and long terminal repeats (LTRs), and Copia (30.7 Mb, 6.6% of the genome) and Gypsy (41.6 Mb, 8.9% of the genome) LTRs were the most abundant. Compared to cucumber, the genome enlargement in monk fruit and bitter gourd was likely driven by the expansion of interspersed repeats (Table 6).

Table 4 Quality evaluation of the draft genome with overall alignment rate

Sample	Overall alignment rate
FL-1	87.06%
FL-2	84.84%
FL-3	82.94%
ML-1	87.08%
ML-2	87.17%
ML-3	82.54%
L-1	83.42%
L-2	84.42%
R-1	79.30%
R-2	82.03%
R-3	82.33%
F1-1	82.25%
F1-2	89.40%
F2-1	84.82%
F2-2	85.25%

6 I	0	Variation				Error
Sample	Coverage	0/1 1/1		1/2	1/2 Total	
FL-1	15.3%	9,489	9,355	489	19,333	1.4E-4
FL-2	13.6%	60,145	65,778	2,897	128,820	1.1E-3
FL-3	15.4%	74,724	83,290	3,473	161,487	1.2E-3
ML-1	16.3%	24,003	28,475	940	53,418	3.9E-4
ML-2	16.6%	35,480	46,177	1,301	82,958	6.1E-4
ML-3	16.7%	44,176	63,115	1,513	108,804	8.3E-4
L-1	16.0%	48,632	50,938	2,022	101,592	7.1E-4
L-2	15.2%	57,994	55,795	2,533	116,322	8.2E-4
R-1	11.5%	51,240	51,216	2,114	104,570	9.9E-4
R-2	9.0%	43,058	37,967	1,886	82,911	9.4E-4
R-3	11.3%	5,939	5,271	283	11,507	1.1E-4
F1-1	9.3%	31,531	33,663	1,292	66,486	8.1E-4
F1-2	16.9%	20,019	19,083	869	39,998	2.5E-4
F2-1	10.6%	47,261	41,679	2,100	91,040	8.9E-4
F2-2	11.8%	52,576	48,655	2,279	103,510	9.2E-4

High-quality genome criteria: 1E-4.

FL: female leaf, ML: male leaf, L: leaf, R: root, F1: fruit stage 1, F2: fruit stage 2.

0: genotype that is identical to the reference, 1,2: genotype that is different from the reference.

125 Gene annotation

126 To generate gene models, the *S. grosvenorii* genome sequences were subjected to 3 gene

prediction pipelines including homology-based, de novo and RNA-seq data-based prediction. First, we aligned the assembly sequences to cucumber protein sequences downloaded from cucurbit database using BLASTX and merged the hits if intervals of 2 hits was less than 6,000 bp [29]. The merged sequences was extracted and further scanned for protein coding gene structures by GeneWise (RRID:SCR_015054, https://www.ebi.ac.uk/~birney/wise2/). Second, we de novo predicted protein coding genes using AUGUSTUS (RRID:SCR_008417) [30] with a repeat masked genome, while repeat masking was done by RepeatMasker. Third, we used StringTie [31] assemble 15 RNA-seq alignment files (described above) generated from Hisat2 to transcriptome TransDecoder with the assembly reference, and as (https://github.com/TransDecoder/TransDecoder) to identify coding regions based on transcripts. In the end, three respective annotation files were combined using EVidenceModeler (EVM, RRID:SCR_014659) [32]. After combining these gene structure predictions, we obtained 21,731 consensus protein-coding genes (Table 7). We annotated the genes using BLASTX with the non-redundant database and found that 84.7% of the predicted genes had at least one significant homologue, indicating that the gene structures were credible. We found that 10,678 of the homologous proteins belonged to cucurbitaceous plants, such as cucumber (Chinese Long v2) and muskmelon (Figure 3). Protein domain annotations and gene ontology (GO) terms were assigned using InterProScan 5 (RRID:SCR_005829, Table 7) [33].

146 Synteny analysis

We compared the monk fruit genome to the cucumber genome using integrated genome

annotation and synteny mapping of protein-coding sequences with the SyMap 4.2 program [34].
Synteny blocks were observed in 1,992 of 4,128 contigs and were defined as regions consisting of
more than seven anchors between two species [26]. These anchored contigs comprised 76.5% of
the genome, whereas the anchor region covered 9.5% of the monk fruit genome and 17.4% of the
cucumber genome. Thus, monk fruit and cucumber share a large number of similar genes, even
though their genome sizes differ greatly.

Table 6 Repeat annotation of the S. grosvenorii genome

Repeat Classification		Siraitia grosvenorii		Momordica charantia		Cucumis sativus	
		Length (bp)	Content	Length (bp)	Content	Length (bp)	Content
	SINEs	0	0.00%	0	0.00%	0	0.00%
	LINEs	10,114,693	2.17%	5,183,926	1.82%	2,397,830	1.22%
Interspersed	LTR	73,041,961	15.64%	34,217,647	11.98%	8,253,090	4.18%
repeats	DNA elements	9,070,191	1.94%	3,460,431	1.21%	2,777,943	1.41%
	Unclassified	139,015,592	29.76%	75,056,338	26.28%	37,539,553	19.03%
	Total	231,242,473	49.51%	117,918,342	41.29%	50,967,966	25.84%
Simple repeats		5,447,789	1.17%	3,451,508	1.21%	3,547,474	1.80%
Low complexity		1,514,238	0.32%	958,289	0.34%	1,095,406	0.56%
Total		237,342,400	50.81%	122,111,538	42.75%	55,540,243	28.15%

158 Ortholog analysis

159	Gene family clustering analysis was accomplished using OrthoMCL (RRID:SCR_007839) [35] on
160	protein sequences of <i>S. grosvenorii, C. sativus</i> (cucumber_ChineseLong_v2,
161	http://cucurbitgenomics.org/) [27], Cucumis melo (CM3.5.1, http://cucurbitgenomics.org/) [36],
162	Citrullus lanatus (watermelon_97103_v1, http://cucurbitgenomics.org/) [37], Prunus persica
163	(Prunus_persica.prupe1_0, https://plants.ensembl.org/) [38], <i>Glycine max</i> (Glycine_max_V1.0,
164	http://plants.ensembl.org/) [39] and Arabidopsis thaliana (Tair10, http://Arabidopsis.org/) [40].
165	A total of 15,576 S. grosvenorii genes were clustered into 8,543 gene families, including 4,178
166	unique S. grosvenorii genes (Figure 4A). Compared to other cucurbitaceous plants, S. grosvenorii
167	shares fewer gene families (Figure 4B), indicating an earlier divergence time than <i>C. lanatus</i> . 229
168	single-copy gene families were identified, and 164 groups high-quality orthologs among them
169	were selected to construct the phylogenetic tree using RAxML (RRID:SCR_006086) [41]. We used
170	Muscle (RRID:SCR_011812, https://www.ebi.ac.uk/Tools/msa/muscle/) [42] to align the
171	orthologs and the alignment was treated with Gblocks [43] with parameters of -t=p -b5=h -b4=5
172	-d=y -n=y. The divergence time was estimated by MCMCtree [44]. Phylogenetic analysis showed
173	that <i>S. grosvenorii</i> diverged from the cucurbitaceae family approximately 38.22 million years ago
174	(Figure 4C). In addition, we annotated the orthologue groups belonging to SQEs, CDSs, EPHs,
175	CYP450s, and UGTs, and we found that gene abundance in the 5 mogroside-related gene families
176	was not significantly different (Table 8).
177	
178	

	RNA-seq data-based	Ab initio	Homology- based	Integration		Annotation	
Weight	20	1	1	-		-	
Number of predicted genes	27,229	76,804	261,439	21,731	nr 18,411	IPR 12,305	GO 8,626
Tools	HISAT2 StringTie TransDecoder	RepeatMasker AUGUSTUS	BLAST GeneWise	EVM	BLAST	InterPr	oScan

Table 8 Abundance analysis of the mogroside synthesis related gene families

	Siraitia grosvenorii	Cucumis sativus	Cucumis melo	Citrullus lanatus
SQE	4 (5)	4	4	5
EPH	24 (8)	33	35	29
CYP450	149 (191)	158	185	168
UGT	57 (131)	60	71	74
CDS	13 (1)	5	9	8

182 Transcriptomic analysis

183 Mogrosides are produced during fruit development in *S. grosvenorii* and are not found in 184 vegetative tissues [8]. Thus, we performed an extensive transcriptomic analysis of early fruit at 2 185 stages (stage 1 sampled 3 days after anthesis and stage 2 sampled at 20 days after anthesis) and

186	of leaves to identify transcripts involved in mogroside synthesis. Using the genome-wide
187	annotation, RNA-seq reads were mapped to the genome assembly and 77,844 transcripts were
188	assembled for differential expression analysis using Hisat2. Deseq2 (RRID:SCR_000154) [45] was
189	used to detect differential expression transcripts (DET) among leaves (L), fruits of 3 DAA (F1)
190	and fruits of 20 DDA(F2) with the criteria of padj < 0.1. Transcripts that were significantly highly
191	expressed in fruit were merged (Figure 5A), and 825 were found to increase from leaves to fruit
192	in stages 1 and 2. These were chosen as functional candidate transcripts for KEGG pathway
193	enrichment analysis using KOBAS (RRID:SCR_006350) [46]. Twelve pathways were significantly
194	enriched (Corrected P-value < 0.05), and the most enriched pathways were related to secondary
195	metabolites. In particular, the sesquiterpenoid and triterpenoid biosynthesis pathways were
196	significantly enriched (Figure 5B). We found 825 functional transcript candidates with similarity
197	to proteins in 5 mogroside-related cucurbit gene families. We used BLASTX to detect 0 SQE, 5 CDS,
198	6 EPH, 19 CYP 450 and 6 UGT homologues, which were assigned to the mogrosides synthesis
199	pathway (Figure 2). All transcripts were queried against the non-redundant database and
200	annotated with the Blast2GO (RRID:SCR_005828) [47] platform. In addition to the 36 transcripts
201	of the five gene families, 64 transcription factors, 72 transporters and 331 other enzymes were
202	detected through annotation (Figure 2). These transcripts are possibly novel genes related to
203	mogroside synthesis.
204	

205 Discussion

Siraitia grosvenorii is an important herbal crop with multiple economic and pharmacological

values. Mogrosides, the main effective components of S. grosvenorii fruit, will be partial substitutes of sucrose for its extreme sweet and non-caloric characters as more and more progress has been making on molecular breeding and purification process. Additionally, monk fruit could serve as the contrast of other cucurbitaceous plant as its earlier divergence from the common ancestor than some other well-studied cucurbits (cucumber, muskmelon et al.) and a new system for the investigation of plant sex determination. In the present study, we sequenced and assembled the second version of monk fruit genome. With the great improvement of completeness and accuracy, the genome as well as the annotations will provide valuable resources and reference information for transcriptomes assembly and novel gene discovery as we did above. With the resources and further transcriptomic analysis of ripe fruit and young fruit will facilitate studies of the mogrosides synthesis pathway and monk fruit breeding. Availability of supporting data The genomic and transcriptomic sequencing reads have been deposited in the Genome Sequence Archive (GSA) under the Accession of CRA000522 and ENA (European Nucleotide Archive) under the Accession number of PRJEB23465, PRJEB23466. Supporting data are also available in the GigaScience database, GigaDB.

225 ACKNOWLEDGMENTS

This research was supported by National Key R&D Program of China (2017YFA0503800) to
X.W.D. and in part by National Demonstration Area of Modern Agriculture in Cangxi, Sichuan

228	Province, China.	
229		
230	Author's contribution	
231	XWD, BC, HH, and MX planned and coordinated the project. MX collected and grew the plant	
232	material. RY and GZ collected the samples and performed experiments. Genome assembly,	
233	annotation, phylogenetic analysis and manuscript writing were completed by XH, MX, HH and	
234	XWD.	
235		
236	Competeing interests	
237	The authors declare that they have no competing interests.	
238		
239	Reference	
240	1. Zhang JS, Dai LH, Yang JG, Liu C, Men Y, Zeng Y, et al. Oxidation of cucurbitadienol catalyzed by	
241	CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol.	
242	2016;57:1000-1007.	
243	2. Li C, Lin LM, Sui F, Wang ZM, Huo HR, Dai L, et al. Chemistry and pharmacology of Siraitia	
244	grosvenorii: A review. Chinese Journal of Natural Medicines. 2014;12:89-102.	
245	3. Liu C, Dai LH, Dou DQ, Ma LQ, Sun YX. A natural food sweetener with anti-pancreatic cancer	
246	properties. Oncogenesis. 2016;5:e217.	
247	4. Nie RL. The decadal progress of triterpene saponins from <i>Cucurbitaceae</i> (1980–1992). Acta	
248	Bot Yunnan 1994;16:201–208.	
	16	
	10	

5. Wang Q, Qin HH, Wang W, Qiu SP. The pharmacological research progress of Siraitia grosvenorii. J Guangxi Tradit Chin Med Univ. 2010;13:75-76. Zhang H, Li XH. Research progress on chemical compositions of Fructus Momordicae. J Anhui 6. Agri Sci. 2011;39:4555-4556, 4559. Pawar RS, Krynitsky AJ, Rader JI. Sweeteners from plants--with emphasis on Stevia 7. rebaudiana (Bertoni) and Siraitia grosvenorii (Swingle). Anal Bioanal Chem. 2013;405:4397-407. Itkin M, Davidovich-Rikanati R, Cohen S, Portnoy V, Doron-Faigenboim A, Oren E, et al. The 8. biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc Natl Acad Sci U S A. 2016;113:E7619-E7628. Dai LH, Liu C, Zhu YM, Zhang JS, Men Y, Zeng Y, et al. Functional characterization of 9. cucurbitadienol synthase and triterpene glycosyltransferase involved iin biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2015;56: 1172-1182. 10. Zhang JS, Dai LH, Yang JG, Liu C, Men Y, Zeng Y, et al. Oxidation of cucurbitadienol catalyzed by CYP87D18 in the biosynthesis of mogrosides from Siraitia grosvenorii. Plant Cell Physiol. 2016;57:1000-1007. 11. Tang Q, Ma XJ, Mo CM, Wilson WI, Song C, Zhao H, et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12: 343. 12. Shibuya M, Adachi S, Ebizuka Y. Cucurbitadienol synthase, the first committed enzyme for cucurbitacin biosynthesis, is a distinct enzyme from cycloartenol synthase for phytosterol

biosynthesis. Tetrahedron. 2004;60: 6995-7003. 13. Zimin AV, Stevens KA, Crepeau MW, Puiu D, Wegrzyn JL, Yorke JA, et al. An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing. Gigascience. 2017;6:1-4. 14. Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep. 1997;15:8-15. 15. Chin CS, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050-1054. 16. Xiao CL, Chen Y, Xie SQ, Chen KN, Wang Y, Han Y, et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat Methods. 2017;14:1072-1074. 17. Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics. 2014;15:211. 18. Zhang SV, Zhuo L, Hahn MW. AGOUTI: improving genome assembly and annotation using transcriptome data. GigaScience. 2016;5:31. 19. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210-2.

20. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357-60. 21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078-9. 22. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297-303. 23. Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292-4. 24. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;3:4-14. 25. Visser M, Van der Walt AP, Maree HJ, Rees DJ G, Burger JT. Extending the sRNAome of apple by next-generation sequencing. PLoS one. 2014;9:e95782. 26. Smit A, Hubley R. RepeatModeler Open-1.0.8, 2008; http://www.repeatmasker. org/RepeatModeler.html. 27. Urasaki N, Takagi H, Natsume S, Uemura A, Taniai, N, Miyagi N, et al. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res. 2016;24:51-58. 28. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, *Cucumis sativus* L. Nat Genet. 2009;41:1275-81. 29. Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, al. et

1	311		RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate
3 4 5	312		genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific
6 7 8	313		alternative splicing. Gigascience. 2015; 4:5.
9 10 11	314	30.	Stanke M, Tzvetkova A, Morgenstern B. AUGUSTUS at EGASP: using EST, protein and genomic
12 13	315		alignments for improved gene prediction in the human genome. Genome Biol.
14 15 16	316		2006;7:S11.1-8.
17 18 19	317	31.	Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables
20 21 22	318		improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol.
23 24 25	319		2015;33:290-5.
26 27 28	320	32.	Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene
29 30 31	321		structure annotation using EVidenceModeler and the Program to Assemble Spliced
32 33	322		Alignments. Genome Biol. 2008;9:R7.
35 36	323	33.	Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan:
37 38 39	324		protein domains identifier. Nucleic Acids Res. 2005;33:W116-20.
40 41 42	325	34.	Soderlund C, Bomhoff M, Nelson WM. SyMAP v3.4: a turnkey synteny system with
43 44 45	326		application to plant genomes. Nucleic Acids Res. 2011;39:e68.
46 47 48	327	35.	Li L, Stoeckert CJJr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic
49 50 51	328		genomes. Genome Res. 2003;13:2178-89.
52 53	329	36.	Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, et al. The genome of
54 55 56	330		melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109:11872-7.
57 58 59			
60 61 62			20
63 64			20
0.0			

1	331	37.	Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al.
2 3 4 5	332		The draft genome of watermelon (Citrullus lanatus)
6 7	333		and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51-8.
8 9 10	334	38.	International Peach Genome Initiative, Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, et al. The
11 12 13	335		high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic
14 15 16	336		diversity, domestication and genome evolution. Nat Genet. 2013;45:487-94.
17 18 19	337	39.	Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, et al. Genome sequence of the
20 21 22	338		palaeopolyploid soybean. Nature. 2010;463:178-83.
23 24 25	339	40.	Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The Arabidopsis
26 27 29	340		Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res.
29 30	341		2012;40:D1202-10.
31 32 33	342	41.	Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
34 35 36	343		phylogenies. Bioinformatics. 2014;30:1312-3.
37 38 39	344	42.	Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
40 41 42	345		Nucleic Acids Res. 2004;32:1792-7.
43 44 45	346	43.	Talavera G, Castresana J. Improvement of phylogenies after removing divergent and
46 47 48	347		ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564-77.
49 50	348	44.	Battistuzzi FU, Billing-Ross P, Paliwal A, Kumar S. Fast and slow implementations of
51 52 53	349		relaxed-clock methods show similar patterns of accuracy in estimating divergence times. Mol
54 55 56	350		Biol Evol. 2011;28:2439-42.
57 58 59			
60 61 62			
63 64 65			21
00			

351	45. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
352	RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
353	46. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and
354	identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316-22.
355	47. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for
356	annotation, visualization and analysis in functional genomics research. Bioinformatics.
357	2005;21:3674-6.
358	
359	Figure legends
360	Figure 1 Morphological character of the fruit of <i>S. grosvenorii (A)</i> , vertical section of fruit of <i>S.</i>
361	grosvenorii (B), horizontal section of fruit of <i>S. grosvenorii</i> (C) and seeds (D). Size bar, 1 cm.
362	Figure 2 Candidate transcripts involved in mogrosides biosynthesis pathway. Candidate
363	functional transcripts were annotated as homologues including enzymes, transcription factors
364	and transporters, which were selected and assigned to mogrosides biosynthesis pathway.
365	Figure 3 Number of best-matching proteins for each predicted <i>S. grosvenorii</i> gene by species.
366	Figure 4 Comparative genome analysis of the <i>S. grosvenorii</i> genome. (A)Orthologue clustering
367	analysis of the protein-coding genes in the <i>S. grosvenorii</i> genome. (B) Venn diagram showing
368	shared and unique gene families among four cucurbit plant species. Numbers represent the
369	number of gene families in unique or shared regions. (C) Phylogenetic tree and divergence time
370	of <i>S. grosvenorii</i> and 6 other plant species. The phylogenetic tree was generated from 164
371	single-copy orthologues using the Maximum-likelihood method. The divergence time range is

372 shown in the blue blocks. The numbers beside the branching nodes are the predicted divergence373 time.

374	Figure 5 Expression pattern analysis of candidate functional transcripts involved in mogrosides
375	synthesis pathway. (A) Expression heatmap of significantly highly expressed transcripts in fruit.
376	Transcripts that were significantly highly expressed in fruit stage 1 (Fruit 1) or fruit stage 2 (Fruit
377	2) compared to those in leaves were merged and classified according to their expression. Only
378	transcripts that belong to increasing expression patterns (red stars) were chosen as candidate
379	functional transcripts for further analysis. (B) KEGG pathway enrichment analysis of candidate

380 functional transcripts.

Figure 3 Cucumis melo Cucumis sativus Vitis vinifera Citrus sinensis Caianus caian Juglans regia Ziziphus iuiuba Theobroma cacao Gossvpium raimondii Gossypium hirsutum Prunus persica Morus notabilis Daucus carota subsp. sativus Corchorus capsularis

Figure 5

Click here to download Figure figure4.pdf 🛓

(B)

