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Background: Single cell RNA-seq (scRNA-seq) experiments typically analyze hundreds
or thousands of cells after amplification of the cDNA. The high throughput is made
possible by the early introduction of sample-specific barcodes (BCs) and the
amplification bias is alleviated by unique molecular identifiers (UMIs). Thus the ideal
analysis pipeline for scRNA-seq data needs to efficiently tabulate reads according to
both BC and UMI. Findings: zUMIs is a pipeline that can handle both known and
random BCs and also efficiently collapses UMIs, either just for Exon mapping reads or
for both Exon and Intron mapping reads. If BC annotation is missing, zUMIs can
accurately detect intact cells from the distribution of sequencing reads. Another unique
feature of zUMls is the adaptive downsampling function, that facilitates dealing with
hugely varying library sizes, but also allows to evaluate whether the library has been
sequenced to saturation. To illustrate the utility of zUMIs, we analysed a single-nucleus
RNA-seq dataset and show that more than 35% of all reads map to Introns. We
furthermore show that these intronic reads are informative about expression levels,
significantly increasing the number of detected genes and improving the cluster
resolution. Conclusions: zUMIs flexibility allows to accommodate data generated with
any of the major scRNA-seq protocols that use BCs and UMIs and is the most feature-
rich, fast and user-friendly pipeline to process such scRNA-seq data. Availability:
https://github.com/sdparekh/zUMIs
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Background: Single cell RNA-seq (scRNA-seq) experiments typically analyze hundreds or thousands of cells after
amplification of the cDNA. The high throughput is made possible by the early introduction of sample-specific barcodes
(BCs) and the amplification bias is alleviated by unique molecular identifiers (UMIs). Thus the ideal analysis pipeline for
scRNA-seq data needs to efficiently tabulate reads according to both BC and UMI. Findings: zUMIs is a pipeline that can
handle both known and random BCs and also efficiently collapses UMIs, either just for Exon mapping reads or for both
Exon and Intron mapping reads. If BC annotation is missing, zUMIs can accurately detect intact cells from the distribution
of sequencing reads. Another unique feature of zUMIs is the adaptive downsampling function, that facilitates dealing with
hugely varying library sizes, but also allows to evaluate whether the library has been sequenced to saturation. To illustrate
the utility of zUMIs, we analysed a single-nucleus RNA-seq dataset and show that more than 35% of all reads map to
Introns. We furthermore show that these intronic reads are informative about expression levels, significantly increasing
the number of detected genes and improving the cluster resolution. Conclusions: zUMIs flexibility allows to accommodate
data generated with any of the major scRNA-seq protocols that use BCs and UMIs and is the most feature-rich, fast and
user-friendly pipeline to process such scRNA-seq data. Availability: https://github.com/sdparekh/zUMIs
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molecules with a random nucleotide sequence before amplifi-
cation [7]. This enables the computational removal of ampli-
fication noise and thus increases the power to detect expres-
sion differences between cells [8, 9]. To increase the through-
put, many protocols also incorporate sample-specific barcodes
(BCs) to label all cDNA molecules of a single cell with a nu-
cleotide sequence before library generation [10]. This allows for
early pooling, which further decreases amplification noise [6].
Additionally, for cell types such as primary neurons it has been
proven to be more feasible to isolate RNA from single nuclei
rather than whole cells [11, 12]. This decreases mRNA amounts

The recent development of increasingly sensitive protocols al-
lows to generate RNA-seq libraries of single cells [1]. The
throughput of such single-cell RNA-sequencing (scRNA-seq)
protocols is rapidly increasing, enabling the profiling of tens
of thousands of cells [2, 3] and opening exciting possibilities
to analyse cellular identities [4, 5]. As the required amplifi-
cation from such low starting amounts introduces substantial
amounts of noise [6], many scRNA-seq protocols incorporate
unique molecular identifiers (UMIs) to label individual cDNA
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Key Points

+ Unique features of zUMIs:
- Automatic cell barcode selection
- Adaptive downsampling

+ zZUMIs processes UMI-based RNA-seq data from raw reads to count tables in one command.

- Counting of Intron mapping reads for gene expression quantification
- zUMIs is compatible with all major UMI-based RNA-seq library protocols.

further, so that it has been suggested to count Intron map-
ping reads originating from nascent RNAs as part of single cell
expression profiles [11]. However, the few bioinformatic tools
that process RNA-seq data with UMIs and BCs have limitations
(Table 1). For example the Drop-seq-tools is not open source
[13]. While Cell Ranger is open, it is exceedingly difficult to
adapt the code to new or unknown sample barcodes and other
library types. Other tools are specifically designed to work with
one mapping algorithm and focus mainly on transcriptome ref-
erences [14, 15]. Furthermore, the only other UMI-RNA-seq
pipeline providing the utility to also consider Intron mapping
reads, dropEst [16], is only applicable to droplet-based proto-
cols. Here, we present zUMIs, a fast and flexible pipeline that
overcomes these limitations.

zUMIs is a pipeline to process RNA-seq data that were multi-
plexed using cell barcodes and also contain UMIs. Read pairs
are filtered to remove reads with low quality BCs or UMIs based
on sequence and then mapped to a reference genome (Fig-
ure 1). Next, zUMIs generates UMI and read count tables for
Exon and Exon+Intron counting. We reason that especially
very low input material such as from single nuclei sequenc-
ing might profit from including reads that potentially originate
from nascent RNAs. Another unique feature of zUMIs is that it
allows for downsampling of reads before collapsing UMIs, thus
enabling the user to assess whether a library was sequenced to
saturation or whether deeper sequencing is necessary to de-
pict the full mRNA complexity. Furthermore, zUMIs is flexi-
ble with respect to the length and sequences of the BCs and
UMIs, supporting protocols that have both sequences in one
read [17, 18, 13, 15, 3, 2, 12] as well as protocols that provide
UMI and BC in separate reads [19, 20, 21]. This makes zUMIs
the only tool that is easily compatible with all major UMI-based
scRNA-seq protocols.

Filtering and Mapping

The first step in our pipeline is to filter reads that have low qual-
ity BCs according to a user-defined threshold (Figure 1). This
step eliminates the majority of spurious BCs and thus greatly
reduces the number of BCs that need to be considered for count-
ing. Similarly, we also filter low quality UMIs.

The remaining reads are then mapped to the genome us-
ing the splice-aware aligner sTAR [22]. The user is free to cus-
tomize mapping by using the options of sTAR. Furthermore, if
the user wishes to use a different mapper, it is also possible to
provide zUMIs with an aligned bam file instead of the fastq file
with the cDNA sequence, with the sole requirement that only
one mapping position per read is reported in the bam file.

Transcript counting

Next, reads are assigned to genes. In order to distinguish Exon
and Intron counts, we generate two mutually exclusive an-
notation files from the provided gtf, one detailing Exon posi-
tions, the other Introns. Based on those annotations Rsubread
featureCounts [23] is used to first assign reads to Exons and
afterwards to check whether the remaining reads fall into In-
trons, in other words if a read is overlapping with intronic and
exonic sequences, it will be assigned to the Exon only. The
output is then read into R using data.table [24], generating
count tables for UMIs and reads per gene per BC. We then col-
lapse UMIs that were mapped either to the Exon or Intron of
the same gene. Note that only the processing of Intron and
Exon reads together allows to properly collapse UMIs that can
be sampled from the intronic as well as from the exonic part of
the same nascent mRNA molecule.

Per default, we only collapse UMIs by sequence identity. If
there is a risk that a large proportion of UMIs remains under-
collapsed due to sequence errors, zUMIs provides the option to
collapse UMIs within a given Hamming distance. We compare
the two zUMIs UMI-collapsing options to the recommended di-
rectional adjacency approach implemented in UMI-tools [25],
using our in-house example dataset (see Methods). zUMIs iden-
tity collapsing yields nearly identical UMI counts per cell as
UMI-tools, while Hamming distance yields increasingly fewer
UMIs/cell with increasing sequencing depth (Figure 2C). Smith
et al. [25] suggest that edit distance collapsing without consid-
ering the relative frequencies of UMIs might indeed overreach
and over-collapse the UMIs. We suspect that this is indeed
what happens in our example data, where we find that gene-
wise dispersion estimates appear suspiciously truncated as ex-
pected if several counts are unduly reduce to one, the minimal
number after collapsing (Figure 2D).

However, note that the above described differences are mi-
nor. By and large, there is good agreement between UMI counts
obtained by UMI-tools [25], the Drop-seq pipeline [13] and zU-
MIs. The correlation between gene-wise counts of the same cell
is > 0.99 for all comparisons (Figure 2B). In light of this, we
would consider the > 3 times higher processing speed of zUMIs
a decisive advantage (Figure 2A).

Cell Barcode Selection

In order to be compatible with well-based and droplet-based
scRNA-seq methods, zUMIs needs to be able to deal with known
as well as random BCs. As default behavior, zUMIs infers which
barcodes mark good cells from the data (Figure 3 A,B). To
this end, we fit a k-dimensional multivariate normal distri-
bution using the R-package mclust (26, 27] for the number
of reads/BC, where k is empirically determined by mclust via
the Bayesian Information Criterion (BIC). We reason that only
the kth normal distribution with the largest mean contains
barcodes that identify reads originating from intact cells. We
exclude all barcodes that fall in the lower 1% tail of this kth
normal-distribution to exclude spurious barcodes. The HEK
dataset used in this paper contains 96 cells with known bar-



O©CoO~NOOOITA~AWNPE

codes and zUMIs identifies 99 barcodes as intact, including all
the 96 known barcodes. Also for the single-nucleus RNA-seq
from Habib et al.[12] zUMIs identified a reasonable number of
cells: Habib et al. report 10,877 nuclei and zUMIs identified
11,013 intact nuclei. However, we recommend to always check
the elbow-plot generated by zUMISs (Figure 3B) to confirm that
the cut-off used by zUMISs is valid for a given dataset. In cases
where the number of barcodes or barcode sequences are known,
it is preferable to use this information. If zUMIs is either given
the number of expected BCs or is provided with a list of BC
sequences, it will use this information and forgo automatic in-
ference.

Downsampling

scRNA-seq library sizes can vary by orders of magnitude, which
complicates normalization (28, 29]. A straight-forward solu-
tion for this issue is to downsample over-represented libraries
[30]. zUMIs has an inbuilt function for downsampling datasets
to a user-specified number of reads or a range of reads. By
default, zUMIs downsamples all selected barcodes to be within
three absolute deviations from the median number of reads per
barcode (Figure 3 C). Alternatively, the user can provide a target
sequencing depth and zUMIs will downsample to the specified
read number or omit the cell from the downsampled count ta-
ble if less reads were present. Furthermore, zUMIs also allows
to specify multiple target read number at once for downsam-
pling. This feature is helpful, if the user wishes to determine
whether the RNA-seq library was sequenced to saturation or
whether further sequencing would increase the number of de-
tected genes or UMIs enough to justify the extra cost. In our
HEK-cell example dataset the number of detected genes starts
leveling of at one million reads, sequencing double that amount
would only increase the number of detected genes from 9,000
to 10,600, when counting Exon reads (Figure 3D). In line with
previous findings [8, 14], the saturation curve of Exon+Intron
counting runs parallel to the one for Exon counting, both indi-
cating that a sequencing depth of one million reads per cell is
sufficient for these libraries.

Output and Statistics

zUMIs outputs three UMI and three read count tables: gene-
wise counts for traditional Exon counting, one for Intron and
one for Exon+Intron counts. If a user chooses the downsam-
pling option, 6 additional count tables per target read count are
provided. To evaluate library quality, zUMIs summarizes the
mapping statistics of the reads. While Exon and Intron map-
ping reads likely represent mRNA quantities, a high fraction of
intergenic and unmapped reads indicates low-quality libraries.
Another measure of RNA-seq library quality is the complexity
of the library, for which the number of detected genes and the
number of identified UMIs are good measures (Figure 1). We
processed 227 million reads with zUMIs and quantified expres-
sion levels for Exon and Intron counts on a unix machine us-
ing up to 16 threads, which took barely 3 hours. Increasing the
number of reads increases the processing time approximately
linearly, where filtering, mapping and counting each take up
roughly one third of the total time (Figure 3 E). We also ob-
serve that the peak RAM usage for processing datasets of 227,
500 and 1000 million pairs was 42 Gb, 89 Gb and 172 Gb, re-
spectively. Finally, zUMIs could process the largest scRNA-seq
dataset reported to date with around 1.3 million brain cells and
30 billion read pairs generated with 10xGenomics Chromium
(see Methods) on a 22-core processor in only 7 days.

Intron Counting

Recently it has been shown that Intron mapping reads in RNA-
seq likely originate from nascent mRNAs and are useful for
gene expression estimates [31, 32]. Additionally, novel ap-

proaches leverage the ratios of Intron and Exon mapping reads
to infer information on transcription dynamics and cell states
La Manno et al. [33]. To address this new aspect of analysis,
zUMIs also counts and collapses Intron-only mapping reads as
well as Intron and Exon mapping reads from the same gene
with the same UMI. To assess the information gain from in-
tronic reads to estimate gene expression levels, we analyzed a
publicly available DroNc-seq dataset from mouse brain ([12],
see Methods). For the ~ 11,000 single nuclei of this dataset,
the fraction of Intron mapping reads of all reads goes up to
61%. Thus, if intronic reads are considered, the mean number
of detected genes per cell increases from 1041 for Exon counts
to 1995 for Exon+Intron counts. Next, we used the resulting
UMI count tables to investigate whether Exon+Intron count-
ing improves the identification of cell types, as suggested in
Lake et al. (2016)[11]. The validity and accuracy of counting In-
trons for single nucleus sequencing methods has recently been
demonstrated [34]. Following the Seurat pipeline to cluster
cells [35, 36], we find that using Exon+Intron counts discrimi-
nates 28 clusters, while we could only discriminate 19 clusters
using Exon counts (Figure 4A+B). The larger number of clus-
ters is not simply due to the increase in the counted UMIs and
genes. When we permute the Intron counts across cells and
add them to the Exon counts, the added noise actually reduces
the number of identifiable clusters (Figure 4E).

We continue to further characterize the 7 clusters that were
subdivided by the addition of Intron counts (Figure 4D). First,
we identify differentially expressed (DE) genes between the
newly formed clusters. If we count only Exon reads, there
appear to be on average only 10 DE genes between the sub-
groups, while Exon+Intron counting yields ~ 10x more DE
genes, thus corroborating the signal found with clustering. The
log2-fold changes of those additional DE genes estimated with
either counting strategy are generally in good agreement, espe-
cially large log2-fold changes are detected with both Exon and
Exon+Intron counting (Figure 4F). Genes that are detected as
DE in only one of our counting strategies have small log2-fold
changes and there are more of these small changes detected
using Exon+Intron counting.

Detecting more genes naturally increases the chance to also
detect more informative genes. Here, we cross-reference the
gene list with marker genes for transcriptomic subtypes de-
tected for major cell types of the mouse brain [37] and find that
~ 5% of the additional genes are also marker genes, which cor-
responds well to the general frequency of marker genes among
the detected genes (4%). In the same vein, we also detect
proportionally more DE genes with Exon+Intron counting as
compared to Exon counting. Thus including introns simply
allows us to better detect present transcripts, while it leaves
the proportions of interest unaltered. Having a closer look at
cluster 7, it was split into a bigger (7) and a smaller cluster
(24) using Exon+Intron counting (Figure 4A-C), we find one
marker gene (Ilirapl2) to be DE between the subclusters using
Exon+Intron counting, while Ilirapl2 had only spurious counts
using Exon counts. Ilirapl2 is a marker for transcriptomic sub-
types of GABAergic Pvalb-type neurons [37], suggesting that
the split of cluster 7 might be biological meaningful (Figure
4LE).

In order to evaluate the power gained by Exon+Intron count-
ing in a more systematic way, we perform power simulations
using empirical mean and dispersion distributions from the
largest and most uniform cluster (~ 1500 cells) [9]. For a fair
comparison, we include all detected genes, which is equivalent
to the number of genes detected with Exon+Intron counting
and since we call a gene detected as soon as one count is as-
sociated, Exon counting is necessarily a subset of Exon+Intron.
Thus there are on average 4x more genes in the lowest expres-
sion quantile for Exon counting than for Exon+Intron counting
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(Figure 4H). For those genes, expression is too spurious to be
used for differential expression analysis, while for Exon+Intron
counting we have on average 60% power to detect a DE gene
in the first mean expression bin with a well controlled FDR
(Figure 4G). In summary, the increased power for Exon+Intron
counting and probably also the larger number of clusters is
due to a better detection of lowly expressed genes. Further-
more, we think that, although potentially noisy, the large num-
ber of additionally detected genes makes Exon+Intron counting
worthwhile, especially for single-nuclei sequencing techniques
that are enriched for nuclear nascent RNA transcripts, such as
DroNc-seq [12]. Additionally, Exon+Intron counting may help
extracting as much information as possible from low coverage
data as generated in the context of high-throughput cell at-
las efforts (eg 10,000-20,000 reads/cell (38, 39]. Lastly, users
should always exclude the possibility of intronic reads stem-
ming from genomic DNA contamination in the library prepara-
tion by confirming low intergenic mapping fractions using the
statistics output provided by zUMIs.

zUMIs is a fast and flexible pipeline processing raw reads to ob-
tain count tables for RNA-seq data using UMIs. To our knowl-
edge it is the only open source pipeline that has a barcode and
UMI quality filter, allows Intron counting and has an integrated
downsampling functionality. These features ensure that zUMIs
is applicable to most experimental designs of RNA-seq data,
including single nucleus sequencing techniques, droplet-based
methods where the BC is unknown, as well as plate-based UMI-
methods with known BCs. Finally, zUMIs is computationally
efficient, user-friendly and easy to install.

Analysed RNA-seq datasets

HEK293T cells were cultured in DMEM High Glucose with L-
Glutamine (Biowest) supplemented with 10 % Fetal Bovine
Serum (Thermo Fisher) and 1 % Penicillin/Streptomycin
(Sigma-Aldrich) in a 37 °C incubator with 5 % CO2. Cells were
passaged and split every 2 or 3 days. For single-cell RNA-
seq, HEK293T cells were dissociated by incubation with 0.25
% Trypsin (Sigma-Aldrich) for 5 minutes at 37 °C. The single-
cell suspension was washed twice with PBS and dead cells
stained with Zombie Yellow (Biolegend) according to the man-
ufacturer’s protocol. Single-cells were sorted into DNA LoBind
96-well PCR plates (Eppendorf) containing lysis buffer with a
Sony SH-800 cell sorter in 3-drop purity mode using a 100 pm
nozzle. Next, single-cell RNA-seq libraries were constructed
from one 96-well plate using a slightly modified version of the
mcSCRB-seq protocol. Reverse transcription was performed as
described previously [40], with the only change being the use of
KAPA HiFi HotStart enzyme for PCR amplification of cDNA. Re-
sulting libraries were sequenced using an Illumina HiSeq1500
with 16 cycles in Read 1 to decode cell barcodes (6 bases) and
UMIs (10 bases) and 50 cycles in Read 2 to sequence into the
cDNA fragment, obtaining ~ 227 million reads. Raw fastq files
were processed using zUMIs, mapping to the human genome
(hg38) and Ensembl gene models (GRCh38.84).

Furthermore, we anlysed data from 1.3 million mouse brain
cells generated on the 10xGenomics Chromium platform [2].
Sequences were downloaded from the NCBI Sequence Read
Archive under accession number SRP096558. The data consist
of 30 billion read pairs from 133 individual samples. In these
data, read 1 contains 16 bp for the cell barcode and 10 bp for the
UMI and read 2 contains 114 bp of cDNA. zUMIs was run using

default settings and we allowed 7 threads per job for a total of
up to 42 threads on an Intel Xeon E5-2699 22-core processor.

Finally, we obtained mouse brain DroNc-seq read data [12]
from the Broad Institute Single Cell Portal [41]. This dataset
consists of ~1615 million read pairs from ~ 11,000 single nuclei.
Read 1 contains a 12bp cell barcode and a 8bp UMI and read 2
60bp of cDNA.

The two mouse datasets were mapped to genome version
mm10 and applying Ensembl gene models (GRCm38.75).

Power simulations and DE analysis

We evaluated the power to detect differential expression with
the help of the powsimR package [9]. For the DroNc-seq
dataset, we estimated the parameters of the negative binomial
distribution from one of the identified clusters, namely clus-
ter 0, compromising 1500 glutamatergic neuronal cells from
the prefrontal cortex (Figure 4D). Since we detect more genes
with Exon+Intron counting (4433 compared to 1782), we in-
cluded this phenomenon also in our read count simulation by
drawing mean expression values for a total of 4433 genes. This
means that the table includes sparse counts for the Exon count-
ing. Log2 fold changes were drawn from a gamma distribution
with shape equal to 1 and scale equal to 2. In each of the 25 sim-
ulation iterations, we draw an equal sample size of 300 cells per
group and test for differential expression using limma-trend
[42] on log2 CPM values with scran [43] library size correction.
The TPR and FDR are stratified over the empirical mean expres-
sion quantile bins.

For the differential expression analysis between clusters,
we use the same DE estimation procedure as in the simulations:
scran normaliztion followed by limma-trend DE-analysis (c.f.
[44]).

Cluster Identification

After processing the DroNc-seq data [12] with zUMIs as de-
scribed above, we cluster cells based on UMI counts derived
from Exons only and Exons+Introns reads using the Seurat
pipeline [35, 36]. First, cells with fewer than 200 detected
genes were filtered out. The filtered data were normalized us-
ing the ‘LogNormalize’ function. We then scale the data by re-
gressing out the effects of the number of transcripts and genes
detected per cell using the ‘ScaleData’ function. The normal-
ized and scaled data are then used to identify the most variable
genes by fitting a relationship between mean expression (Exp-
Mean) and dispersion (LogVMR) using the ‘FindVariableGenes’
function. The identified variable genes are used for Principle
Component Analysis (PCA) and the top 20 PCs are then used to
find clusters using graph based clustering as implemented in
‘FindClusters’. To illustrate that the additional clusters found
by counting Exon+Intron reads are not spurious, we use Intron-
only UMI-counts from the same data to add to the observed
Exon only counts. More specifically, to each gene we add scran-
sizeFactor corrected Intron counts from the same gene after
permuting them across cells. We assessed the cluster numbers
from 100 such permutations.

Comparison of UMI collapsing strategies

In order to validate zUMIs and compare different UMI collaps-
ing methods, we used the HEK dataset described above. We ran
zUMIs (1) without quality filtering, (2) filtering for 1 base un-
der Phred 17 and (3) collapsing similar UMI sequences within
a hamming distance of 1. To compare with other available
tools, we ran the same dataset using the Drop-seq-tools ver-
sion 1.13 [13] and quality filter "1 base under Phred 17" without
edit distance collapsing. Lastly, the HEK dataset was used with
UMI-tools [25] in (1) "unique" and (2) "directional adjacency"
mode with edit distance set to 1. Furthermore, we compared
the output of zUMIs from the DroNc-seq dataset when using
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default parameters ("1 base under Phred 20") to UMI-tools in
(1) "unique", (2) "directional adjacency" and (3) "cluster" set-
tings. For each setting and tool combination, we compared
per-cell/per-nuclei UMI contents in a linear model fit.

- Project name: zUMIs

- Project home page: https://github.com/sdparekh/zUMIs

+ Operating system(s): UNIX

- Programming language: shell, R, perl

+ Other requirements: STAR >=2.5.3a, R >= 3.4, Rsubread >=
1.26.1, pigz >= 2.3 & samtools >= 1.1

« License: GNU GPLv3.0

+ Research Resource Identification Initiative ID: SCR__ 016139

All data that were generated for this project were submitted to
GEO under accession GSE99822. An archival copy of the source
code and test data are available via the GigaScience repository
GigaDB [45].

scRNA-seq - single-cell RNA-sequencing
UMI - Unique Molecular Identifier

BC - Barcode

MAD - Median Absolute Deviation
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Figure 1. Schematic of the zZUMISs pipeline. Each of the grey panels from left to right depicts a step of the zUMIs pipeline. First, fastq files are filtered according to
user-defined barcode (BC) and unique molecular identifier (UMI) quality thresholds. Next, the remaining cDNA reads are mapped to the reference genome using
STAR. Gene-wise read and UMI count tables are generated for Exon , Intron and Exon+Intron overlapping reads. To obtain comparable library sizes, reads can be
downsampled to a desired range during the counting step. In addition, zUMIs also generates data and plots for several quality measures, such as the number of
detected genes/UMIs per barcode and distribution of reads into mapping feature categories.
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Figure 2. Comparison of different UMI collapsing methods. We compared Drop-seq-tools and UMI-tools with zUMIs using our HEK dataset (227 mio reads).
(A) Runtime to count exonic UMIs using zUMIs (hamming distance = 0), UMI-tools ('"unique" mode) and Drop-seq-tools (edit distance = 0). (B) Boxplots of
correlation coefficients of gene-wise UMI counts of the same cell generated with different methods. UMI counts generated using zUMIs (quality filter "1 base
under phred 17" or hamming distance = 1) were correlated to UMI counts generated using Drop-seq-tools (quality filter "1 base under phred 17" ) and UMI-tools
("directional adjacency" mode). C) Comparison of the total number of UMIs per cell derived from different counting methods to "unfiltered" counts. (D) Violin
plots of gene-wise dispersion estimates with different quality filtering and UMI collapsing methods.
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Figure 3. Utilities of zZUMIs. Each of the panels shows the utilities of zUMIs pipeline. The plots from A-D are the results from the example HEK dataset used in the
paper. A) The plot shows a density distribution of reads per barcode. Cell barcodes with reads above the blue line are selected. B) The plot shows the cumulative
read distribution in the example HEK dataset where the barcodes in light blue are the selected cells. C) The barplot shows the number of reads per selected cell
barcode with the red lines showing upper and lower MAD (Median Absolute Deviations) cutoffs for adaptive downsampling. Here, the cells below the lower MAD
have very low coverage and are discarded in downsampled count tables. D) Cells were downsampled to six depths from 100,000 to 3,000,000 reads. For each
sequencing depth the genes detected per cell is shown. E) Runtime for three datasets with 227, 500 and 1000 million read-pairs. The runtime is divided in the
main steps of the zUMIs pipeline: Filtering, Mapping, Counting and Summarizing. Each dataset was processed using 16 threads ("-p 16").

Name Reference  Open Quality fil- UMI col- Mapper BC detec- Intron Down- Compatible
Source ter lapsing tion sampling UMl li-
brary
protocols
Cell [2] yes BC+UMI Hamming STAR A no yes [2]
Ranger distance
CEL-seq [15] yes BC+UMI identity bowtie2 WL no no [46, 15]
only
dropEst [16] yes BC frequency- TopHat2 WL, top- yes no [13, 19, 2]
based or Kallisto n,EM
Drop-seq- [13] no BC+UMI Hamming STAR WL,top-n no no [13, 17, 15]
tools distance
scPipe [47] yes BC+UMI Hamming  subread WL,top-n no no [46, 18, 17,
distance 13]
umis [14] yes BC frequency- Kallisto WL, top- no no [17, 46,
based n,EM 48, 18, 13,
19, 2]
UMI-tools [25] yes BC+UMI network- BWA WL no no [17, 19]
based
zUMIs This work  yes BC+UMI Hamming  STAR AWL,top-  vyes yes [17, 46,
distance n 48, 18, 13,
15, 21, 12,
3,2]

Table 1. Features of available UMI pipelines for the quantification of gene expression data. We consider whether the pipeline is open source,
has sequence quality filters for cell barcodes (BC) and UMIs, mappers, UMI-collapsing options, options for BC detection (A - automatically
infer intact BCs, WL - extract only the given list of known BCs, top-n - order BCs according the number of reads and keep the top n BCs,
EM - merge BCs with given edit-distance), whether it can count Intron mapping reads, whether it offers a utility to make varying library
sizes more comparable via downsampling and finally with which RNA-seq library preparation protocols it is compatible.
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Figure 4. Contribution of Intron reads to biological insights. We analyse published single-nucleus RNA-seq data from mouse prefrontal cortex (PFC) and
hippocampus [12] to assess the utility of counting Intron in addition to Exon reads. We processed the raw data with zUMIs to obtain expression tables with Exon reads
as well as Exon+Intron reads and then use the R-package Seurat [35, 36] to cluster cells. With Exon counts, we thus identify 19 clusters (A) and with Exon+Intron
counts 27 (B). Clusters are represented as t-SNE plots and colored according to the most frequent cell-type assignment in the original paper [12]: glutamatergic
neurons from the prefrontal cortex (exPFC), GABAergic interneurons (GABA), pyramidal neurons from the hippocampal CA region (CA), granule neurons from
the hippocampal dentate gyrus region (DG), astrocytes (ASC), microglia (MG), oligodendrocytes (ODC), oligodendrocyte precursor cells (OPC), neuronal stem cells
(NSC), smooth muscle cells (SMC) and endothelial cells (END). Different shades of those clusters indicate that multiple clusters had the same major cell-type
assigned. If we randomly sample counts from the intron data and add them to the Exon counting, the noise reduces the number of clusters and the Seurat pipeline
can only identify 9-11 clusters (E). The composition of each cluster based on Exon+Intron is detailed in panel (C) and cells that were not assigned a cell type in
Habib et al. [12] are displayed as empty. The boxes mark the clusters that were not split when using Exon data only. For example, cluster 7 from Exon counting
that mainly consists of GABAergic neurons, was split into clusters 7, 24 (506, 66 cells) when using Exon+Intron counting. In (D), we show the numbers of genes
that were DE (limma p-adj<0.05) between the clusters only found with Exon+Intron counts. The panel numbers represent the Exon counting cluster numbers
and the y-axis the Exon+Intron counting cluster number. The log2-fold changes corresponding to these contrasts are also used in G). Among the genes that were
additionally detected to be DE by Exon+Intron counting was the marker gene Ilirapl2 (limma p-adj=10~3). In (F), we present a violin plot of the normalized counts
for Ilirapl2 in cells of the GABAergic subclusters 7 and 24. Log2-fold-changes calculated with Exon+Intron counts correlate well with Exon counts (G). Note that
for Exon counting only half as many genes could be evaluated as for Exon+Intron counting and thus only half of the Exon+Intron genes are depicted in (G). Large
LFCs are found significant with both counting strategies (purple points are close to the bisecting line). We conduct simulations based on mean and dispersion
measured using Exon cluster 0 (1616 cells, ~ 90% exPFC). In (I) we show the expected true positive rate (TPR) and the false discovery rate (FDR) for a scenario
comparing 300 vs 300 cells. Results for Exon and Exon+Intron counting were stratified into 5 quantiles according to the mean expression of genes, where stratum
1 contains lowly expressed genes and stratum 5 the most highly expressed genes. The numbers of genes falling into each of the bins using Exon+Intron and Exon
counting are depicted in (H).
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