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In particular, both reviewers feel that some of your results that have been achieved by simulation 
need to be backed up with an analysis of real data (reviewer 1, #2; reviewer 2, #6). I also agree with 
reviewer 2 that it is important to compare the performance of (parts of) your pipeline with existing 
tools that perform steps in the zUMI pipeline.  
 
---  
AUTHOR RESPONSE:  
Thank you for the useful comments. We have now backed up the comparison of UMI collapsing 
approaches by analysis of real data. To this end, we have added descriptive statistics plots in a new 
Figure 2. This data also shows how well gene expression estimates correspond between published 
pipelines and zUMIs. Furthermore, we have added a Table showing presence or absence of 
important features in existing tools and zUMIs.  
---  
 
Reviewer 2's comments regarding technical and biological sources of variation (#2 in the report) is 
another crucial point that needs careful consideration when you are preparing a revised submission.  
 
---  
AUTHOR RESPONSE:  
We have added a deeper analysis of the DroNc-seq dataset to show more in detail the biological 
relevance of adding Intronic counts (see detailed answer in the Response to Reviewers) below. 
Additionally, we show that the Intronic counts are not artifacts by sampling fake random Intronic 
reads and showing that this actually decreases cluster resolution (for more details see response to 
Reviewer 1, comment 3).  
---  
 
It is important that the description of your methods allows full reproducibility - please include 
missing details, as outlined by our reviewers.  
 
---  
AUTHOR RESPONSE:  
We have added a detailed Methods section in the paper to carefully describe the datasets and 
analysis strategies.  
---  
 
 
Reviewer #1: Parekh and coworkers introduce a pipeline to process high throughput scRNA-seq data 
consisting of cell barcodes and UMIs. This is an open-source software that also supports features 
such as reads downsampling and Intron counting - the latter is important for single nucleus RNA-seq 
data. Overall, this is a useful study and I would like to support its publication, but the current 
manuscript could greatly benefit with additional biological analysis (related to Fig 4) that would 
prompt users to take notice. I would like to support its publication, contingent on the authors 
addressing the following comments.  
 
1. The pipeline appears to collapse only identical UMIs. We have found in our experience that this 
can lead to overcounting of transcripts, and that it is necessary to collapse UMIs mapping to the 



same gene in the same cell within an edit distance of 1. I would be curious to see how this impacts 
the number of transcripts detected per cell.  
 
---  
AUTHOR RESPONSE:  
zUMIs now also offers the option to collapse UMIs based on Hamming distance and add a plot 
comparing the number of UMIs/cell for 4 different approaches (updated Figure 1). We also extended 
the text accordingly:  
 
“Per default, we only collapse UMIs by sequence identity. If there is a risk that a large proportion of 
UMIs remains under-collapsed due to sequence errors, zUMIs provides the option to collapse UMIs 
within a given Hamming distance. We compare the two zUMIs UMI-collapsing options to the 
recommended directional adjacency approach implemented in UMI-tools [15], using our in-house 
example dataset (see Methods). zUMIs identity collapsing yields nearly identical UMI counts per cell 
as UMI-tools, while Hamming distance yields increasingly fewer UMIs/cell with increasing 
sequencing depth (Figure 2C). Smith et al. [15] suggest that edit distance collapsing without 
considering the relative frequencies of UMIs might indeed overreach and over-collapse the UMIs. 
We suspect that this is indeed what happens in our example data, where we find that gene-wise 
dispersion estimates appear suspiciously truncated as expected if several counts are unduly reduced 
to one, the minimal number after collapsing (Figure 2D).  
However, note that the above described differences are minor. By and large, there is good 
agreement between UMI counts obtained by UMI-tools [15], the Drop-seq pipeline [24] and zUMIs. 
The correlation between gene-wise counts of the same cell is > 0.99 for all comparisons (Figure 2B). 
In light of this, we would consider the > 3 times higher processing speed of zUMIs a decisive 
advantage (Figure 2A)“  
---  
 
2. The authors use simulations to describe the impact of Intron counting on differential expression. I 
would instead like to see this on real data. In particular I would like to see examples of 
"before/after" plots (e.g. violin plots/heatmaps) of specific genes that (1) were called out as 
differentially expressed (DE) but no longer are once introns are incorporated, (2) the reverse of (1), 
and (3) those that remain DE but with significantly different statistical significances.  
 
---  
AUTHOR RESPONSE:  
To analyse real data we use the DroNc-seq data from Habib et al. (2017). We analyse the log2 fold 
changes (LFC) for the groups that were split up more when using Exon+Intron counting (see the new 
Figure 4F) and we added a description of our findings to the main text.  
 
“Following the Seurat pipeline to cluster cells [30, 31], we find that using Exon+Intron counts 
discriminates 28 clusters, while we could only discriminate 19 clusters using Exon counts (Figure 
4A+B). We then continue to further characterize the 7 clusters that were further subdivided by the 
addition of Intron counts (Figure 4D). First, we identify differentially expressed (DE) genes between 
the newly formed clusters. If we count only Exon reads there appears on average only 10 genes to 

be DE between the sub-groups, while Exon+Intron counting yields ∼10x more DE genes, thus 

corroborating the signal found with clustering. The log2-fold changes estimated for the additional DE 
genes estimated with either counting strategy are generally in good agreement, especially large 



log2-fold changes are detected with both Exon and Exon+Intron counting (Figure 4F).“  
---  
 
3. I am also not convinced of the result claiming more clusters when introns are included. What is 
the evidence that these clusters are not spurious? The detection of additional clusters is not 
evidence enough that these are real. It would be useful to show a heatmap demonstrating that there 
is true, biologically significant differential expression between the novel clusters detected by the 
Intron counting.  
 
---  
AUTHOR RESPONSE:  
We now added plots with the numbers of DE genes distinguishing the newly split clusters for both 
Exon+Intron as well as Exon counting (Figure 4D). Note that with the number of DE genes also the 
more informative marker genes such as the example in Figure 4E are detected. Thus, even though 
we do not fully understand the biological meaning of the more fine grained clusters, we are 
confident that they are indeed based on a biological signal from the RNA-seq data. Additionally, we 
demonstrate this, by sampling randomly from the distribution of intronic counts and adding to the 
exonic counts. The resulting extra-noise in fact leads to a lower number of clusters detected: 19 
Exon 28 Intron+Exon 7 fake Intron+Exon (see plot in attached “Additional File 1”).  
---  
 
4. For completeness, I would like if the authors could include a section comparing their "exon-
counts" matrix with the count matrix produced by either the cellranger or Drop-seq-tools for 
datasets that have been classically analyzed by the latter methods. This would produce some 
confidence in the base reproducibility of the methods. If on the other hand, zUMIs produces a 
different Exon count matrix, then the authors must explain why this is the case.  
 
---  
AUTHOR RESPONSE:  
Unfortunately, we could not run the cellranger pipeline on our example dataset, because it does not 
allow to freely specify cell barcodes. Instead we compare to the Drop-seq and the UMI-tools 
pipelines. We generally find a high correlation between the number of UMIs per gene detected in a 
cell. The slight discrepancies between zUMIs and the Drop-seq-tools are due to how reads are 
associated with genes. For example zUMIs does not count ambiguously mapped reads, i.e. reads that 
overlap with multiple genes, while Drop-seq counts them for all genes.  
UMI-tools on the other hand also uses featureCounts for read association, however their 
recommended method to collapse UMIs by directional adjacency with edit distance 1 differs from 
the options in zUMIs. Here, our newly added feature of collapsing UMIs Hamming distance yields as 
expected the most similar counts.  
These results are now included in Figure 2C.  
---  
 
5. In Figure 4, the authors show to show a confusion matrix to compare how clusters in A map to 
clusters in B. Also for those clusters that multi-map (i.e. those resolved by intron-Exon mapping but 
not by exon-mapping alone), is there biologically meaningful differential expression? Some examples 
of specific cell types and their gene expression differences in A vs B would be very informative.  
 
 
---  
AUTHOR RESPONSE:  
We added an example for a subsplit of a mainly GABAergic cluster that also has significantly DE 



Marker gene for Pvalb GABAergic neurons when considering Intron+Exon counts in Figure 4E and 
discuss this in the main text:  
 
“Having a closer look at cluster 7, it was split into a bigger (7) and a smaller cluster (24) using 
exon+intron counting (Figure 4A-C), we find one marker gene (Il1rapl2) to be DE between the 
subclusters using Exon+Intron counting, while Il1rapl2 had only spurious counts using Exon counts. 
Il1rapl2 is a marker for transcriptomic subtypes of GABAergic Pvalb-type Neurons, suggesting that 
the split of cluster 7 might be biological meaningful (Figure 4E).”  
---  
 
 
Reviewer #2: Review of "zUMIs - A fast and flexible pipeline to process RNA sequencing data with 
UMIs"  
 
Summary:  
Parekh et al. describe a computational pipeline to preprocess single-cell RNA-seq data that contains 
UMIs and cell barcodes. The main components of the pipeline include sequence quality filtering of 
UMIs and barcodes, a wrapper to call the mapping software STAR, selection of cell barcodes, and 
downsampling of reads to lower library size. While other tools exist that perform all of these steps 
either all together or individually for one or more platforms, the novelty of zUMIs is that it performs 
all of these steps at once for data from any UMI platform. Such a tool would likely be useful for the 
single-cell community, however many methodological details are missing. In addition the manuscript 
could benefit from additional comparison to existing tools.  
 
The authors also argue that in general quantification of gene expression should incorporate intron-
mapping reads, a task which is enabled by the use of their software. However, I have reservations 
about the evidence upon which this conclusion is based.  
 
---  
AUTHOR RESPONSE:  
We want to clarify that we do not wish to claim that counting introns is a good idea in general. 
However, we argue that for extremely sparse datasets such as generated by single nuclei 
sequencing, having Intron counts is better than losing even more genes. We hope that we could 
make this clearer in the text, as such:  
 
“Furthermore, we think that although noisy, the large number of additionally detected genes makes 
Exon+Intron counting worthwhile for extremely sparse data.”  
---  
 
I have identified several issues that the authors should address in order to improve the manuscript, 
which are detailed below and divided into major (of critical importance) and minor (to improve 
clarity) categories.  
 
Major Comments:  
1. Methodological details are missing throughout. The method should be described more completely 
and clearly, and any analyses or comparisons should be made reproducible. For example:  
* What differential expression method was used in the simulation study to compare UMItools and 
zUMI?  
* What options were used with powsimR in the simulation study?  
* How is the k-dimensional multivariate normal distribution fit in the cell barcode selection step?  
* How is k determined in the cell barcode selection step?  



* How was data simulated for the Intron evaluation?  
* What options were used in applying the Seurat pipeline to cluster cells?  
 
---  
AUTHOR RESPONSE:  
We added a methods section (Page:3-4) that includes subsections for (1) data generation of the HEK 
dataset as well as data processing of other used datasets, (2) the powsimR simulations and (3) the 
use of the Seurat pipeline. The passage about the Cell-Barcode selection was changed in the main 
text (Page:2). We hope to have made our barcode selection clearer in the main text.  
 
“To this end, we fit a k-dimensional multivariate normal distribution using the R-package mclust [25, 
26] for the number of reads/BC, where k is empirically determined by mclust via the Bayesian 
Information Criterion (BIC). We reason that only the kth normal distribution with the largest mean 
contains barcodes that identify reads originating from intact cells.”  
---  
 
2. One major conclusion of the paper is that incorporation of intron-mapping reads significantly 
improves cluster resolution. It is perhaps not surprising that including the Intron counts results in a 
higher mean number of genes detected, but the authors conclude that since more clusters are also 
found that this means the additional reads are biologically meaningful. Unfortunately, the authors 
have not provided any evidence that this is the case. The fact that more clusters are seen says 
nothing about the difference between technical and biological sources of variation. If these 
additional clusters also corresponded to some independently measured biological covariate, the 
argument would have basis.  
 
---  
AUTHOR RESPONSE:  
While we do not wish to claim that counting of intron-mapping reads is recommended in all cases of 
scRNA-seq, we do think it is valid and helpful for extremely sparse datasets such as the DroNc-seq 
data from Habib et al. (2017). We now provide detailed analyses of differences between newly 
formed subclusters using Exon+Intron counting. We find not only more genes, but also more 
significantly differentially expressed genes between subclusters when using Exon+Intron UMI data 
(Figure 4D). Furthermore, log2 fold changes (LFC) for the groups that were split up more when using 
Exon+Intron counting corresponded well to the Exon-only LFC (see the new Figure 4F). Additionally, 
we illustrate the biological relevance of subclusters found with Exon+Intron data by the example of 
the transcriptomic subtypes of GABAergic Pvalb-type Neurons marked by Il1rapl2 expression. We 
have added this evidence to the ‘Intron Counting’ section and included methodological details in the 
appropriate Methods sections.  
Lastly, we have excluded the possibility of Intron-mapping reads being spurious by sampling fake 
intronic reads and attempting cluster identification (see response to Reviewer 1, point 3).  
---  
 
3. Many central conclusions of the article were made based on an analysis of a dataset of 96 cells 
that is never described. It is referred to as "the HEK dataset" throughout the manuscript, but no 
citation, details of data generation, or description of the experimental design is given.  
 
---  
AUTHOR RESPONSE:  
We added this information to the new Method section (Page:3-4).  
---  
 



4. Several open-source tools exist that perform many of the steps in the zUMI pipeline [1, 2, 3]. It 
would be nice to see how these perform in comparison to zUMI.  
 
---  
AUTHOR RESPONSE:  
While several tools exist that can perform some of the steps of the zUMIs pipeline, none of them 
provides a comprehensive combination as zUMIs. We have added a Table to compare available 
features of six other pipelines geared towards scRNA-seq data with UMIs. The tool “UMI-Reducer” 
with reference [2] suggested by the reviewer was omitted because it seemed like a tool geared 
towards one specific application outside of single-cell RNA-seq. Furthermore, “UMI-Reducer” only 
de-duplicates UMIs with the same mapping position, which would be inappropriate for scRNA-seq 
protocols that fragment after preamplification, such as SCRB-seq.  
Furthermore, we added a comparison of the count-tables produced by zUMIs, Drop-seq-tools and 
UMI-tools and generally find very good correspondence (see response to Reviewer 1).  
---  
 
5. The conclusion that a UMI distance filter (using UMI-tools) is unnecessary is only based on a single 
simulated dataset of up to 90 cells per condition. It is also based on a single metric (power to identify 
differentially expressed genes in simulated data). If we are only interested in differential expression 
analyses, this might be a reasonable metric. However to be widely applicable to the analysis of single 
cell RNA-seq, the authors should consider additional metrics such as replicate reproducibility, 
number of detected genes, etc. The authors should also consider additional datasets.  
 
---  
AUTHOR RESPONSE:  
We substantially extended our comparison of different UMI-collapsing method. In Fig. 2 B,C, we also 
compare the correlation of gene expression values and numbers of detected UMIs per cell between 
various different filtering methods and find that there is generally a high consensus among all UMI 
collapsing methods in our HEK example dataset. An analysis of the DroNc-seq data gave basically the 
same results (see plot in attached “Additional File 1”).  
Furthermore, we added the possibility to collapse UMIs with a specified Hamming-distance to 
zUMIs, giving users more choice over UMI filtering. All these new analysis are also described in the 
section “Transcript Counting” of the main text.  
---  
 
 
6. It is not clear how the simulation parameters in the comparison to UMI-tools directly relate to the 
UMI quantification. Specifically, estimating the mean and dispersion of the processed data and then 
using these as the basis for a simulated dataset seems pretty far removed from the observed UMI 
counts. The authors should also investigate differences in differential expression analysis of the 
actual data (not simulated data). They could also generate a simulated null comparison by randomly 
permuting sample labels. The same comments hold for the second simulation (evaluating Intron 
count inclusion).  
 
---  
AUTHOR RESPONSE:  
We removed the simulations from the description of UMI-collapsing methods and focus our 
reporting on the descriptive statistics suggested by the reviewer (Figure 2 & section “Transcript 
counting”).  
---  
 



Minor Comments:  
1. The results of the simulation evaluating Intron usage are summarized broadly in the text, but the 
specific results are not shown. For example what does "power to detect differentially expressed 
genes was similar for the Exon and Exon+Intron counts" mean? How similar? What were the values?  
 
---  
AUTHOR RESPONSE:  
This is now better described in the main text (Page 3 Passage:Intron Counting) along with specific 
settings for the powsimR package listed in the method section. Additionally, power simulation 
results are shown in Figure 4 with the true positive rate (TPR) and false discovery rate (FDR) shown 
for 5 stratas of gene expression (Figure 4G). Furthermore, we display the number of genes per 
stratum for Exon and Exon+Intron counting (Figure 4H).  
---  
 
 
2. The pipeline requires the user to specify many parameters for each step, however the 
implementation is run with one command. This means that if a user wants to change a single 
parameter in one of the later steps, they would still have to rerun the entire pipeline, wasting time 
and computational resources. It would be useful if the pipeline could alternatively be run as a series 
of individual steps so that the same exact steps don't need to be carried out multiple times in these 
situations.  
 
---  
AUTHOR RESPONSE:  
This feature is implemented as “-w” option. One can invoke zUMIs at any step, eg to just re-run the 
counting of gene expression the user can give “-w counting”.  
---  
 
3. In the cell barcode selection step, the authors state that they remove "all barcodes that fall in the 
lower 1% tail of this distribution." What is the justification for this? What does this correspond to in 
practice? This threshold should also be denoted in Figure 3A.  
 
---  
AUTHOR RESPONSE:  
The blue line in figure 3A corresponds to the calculated read cut-off. The normal distribution 
identified by mclust with the highest mean number of reads contains actual cell barcodes. Thus, 
setting the read cut-off to the lower 1% of this distribution is an empirical value that gives good 
correspondence to the known cell-barcodes for the HEK dataset (cut-off value: 52634 
reads/barcode) and gave similarly good results for the DroNc-seq data analysed here. Still, in 
practice we recommend to always look at the elbow-plots output by zUMIs (Figure 3B). This will 
show whether our empirical cut-off was also valid for the dataset at hand.  
---  
 
4. What are the practical guidelines for downsampling? How should it be used in practice to 
normalize for sequencing depth?  
 
---  
AUTHOR RESPONSE:  
We found the downsampling function extremely useful for method comparisons as we showed in 
our previous study (Ziegenhain et al. 2017). This also allows to evaluate whether the single cell 
libraries were sequenced to saturation (Figure 3D). For normalization purposes, the built-in MAD 



cut-offs as indicated by the dashed red lines in Figure 3C should be sufficient.  
---  
 
5. In the documentation online, section on cell barcode selection (here: 
https://github.com/sdparekh/zUMIs/wiki/Cell-barcodes-selection), Figure A is contradictory to 
Figure 3A in the manuscript. Specifically, the online documentation says "cells left to the blue line 
are selected" and the manuscript says "cell barcodes with reads above the blue line are selected."  
 
---  
AUTHOR RESPONSE:  
This was indeed a mistake and we corrected it on GitHub.  
---  
 
6. As a main advantage of zUMIs is the ability to apply on any UMI platform, the documentation 
should clearly state how to use the software in each case. Currently, this is unclear, as for example in 
the case of the "-c" option the wiki on GitHub (https://github.com/sdparekh/zUMIs/wiki/Usage) 
states that "For STRT-seq/InDrops give this as 1-n where n is your first cell barcode(-f) length." But it 
also states in the very next line "For InDrops give this as 1-n where n is the total length of cell 
barcode(e.g. 1-22)," which is contradictory to what the previous line states about InDrops.  
 
---  
AUTHOR RESPONSE:  
This was indeed a mistake and we corrected it on GitHub.  
---  
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