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Abstract 28 

The genetic basis of animal domestication remains poorly understood, and 29 

systems with substantial phenotypic differences between wild and domestic 30 

populations are useful for elucidating the genetic basis of adaptation to new 31 

environments as well as the genetic basis of rapid phenotypic change. Here, 32 

we sequenced the whole genome of 78 individual ducks, from two wild 33 

populations and seven domesticated populations, with an average sequencing 34 

depth > 45X for each population. Our population and demographic analysis 35 

indicates a complex history of domestication, with early selection for separate 36 

meat and egg lineages. Genomic comparison of wild to domesticated 37 

populations suggest that genes affecting brain and neuronal development have 38 

undergone strong positive selection during domestication. Our FST analysis also 39 

first indicates the duck white plumage associated with selection at the 40 

melanogenesis associated transcription factor locus. Our results advance the 41 

understanding of animal domestication and selection for complex phenotypic 42 

traits.  43 

Keywords: duck, domestication, intensive selection, neuronal development, 44 

energy metabolism, plumage colouration. 45 
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Introduction 49 

Anas platyrhynchos (ducks or mallards) are the world’s most widely 50 

distributed and agriculturally important waterfowl, and are of particular 51 

economic and importance in Asia [1]. Although forms of the mallard have been 52 

farmed in Asia for over a thousand years, the exact timing of domestication 53 

remains unknown, with written records indicating domestic ducks in central 54 

China shortly after 500 BC [2]. Moreover, domesticated mallards show many 55 

important behavioral [3] and morphological [4-6] differences from their wild 56 

ancestors, particularly related to plumage and neuroanatomy, offering an 57 

important opportunity to understand the genetic basis of these phenotypic 58 

differences.   59 

In order to determine the timing of duck domestication in China, as well as 60 

identify the genomic regions under selection during domestication, we 61 

performed whole genome resequencing from 78 individuals belonging to seven 62 

different duck breeds (three for meat breeds, three for egg breeds, and one 63 

dual-purpose breed) and two geographically distinct wild populations. Using the 64 

36.1 million single nucleotide polymorphisms (SNPs) and 3.1 million small 65 

insertions and deletions (INDELs), we analyzed the structure of these 66 

populations and signatures of selection associated with domestication. We 67 

identified two distinct domesticated populations, originating from a single 68 

domestication event roughly 2000 years ago. We also identified signatures of 69 

selection on genes associated with neuronal development, energy metabolism, 70 
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vision and plumage during domestication. Together, our results reveal a 71 

complex pattern of selection associated with the domestication of the duck. 72 

Results 73 

Genetic variation 74 

We individually sequenced 16 wild and 62 domestic ducks, from two wild 75 

populations and seven domestic breeds (three meat breeds, three egg breeds 76 

and one dual-purpose breed), from across China (Fig. 1A) to an average of 77 

6.42X coverage per individual after filtering and quality control, resulting in total 78 

535 billion mappable reads(Supplemental Table S1).  79 
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 80 

Figure. 1 Experimental design and variants statistics  81 

(A) Sampling sites in this study. A total of 78 ducks from two wild populations (Mallard Ningxia 82 

(MDN) n=8; Mallard Zhejiang (MDZ) n=14), three meat breeds (Pekin (PK) n=8; Cherry Valley 83 

(CV) n=8; Maple Leaf (ML) n=8), three egg breeds (Jin Ding (JD) n=8; Shan Ma (SM) n=8; 84 

Shao Xing (SX) n=8), and one dual breed (Gao You (GY) n=8) were selected.  85 

(B) Circos plot of SNP distribution and density of seven domestic breeds and two wild 86 
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populations across the genome. The duck whole genome reference is shown in the outermost 87 

circle (non-overlapping, window size = 1 Mb).  88 

(C) Genomic variation of nine population ducks. Mean number of SNPs, heterozygous and 89 

homozygous SNP ratio in the nine populations as shown at the bottom. Homozygous SNP 90 

ratios in domesticated ducks are significantly higher than ratios in wild mallards (p = 1.35 ×91 

10−10 ). Nucleotide diversity ratio in the nine populations are shown at the middle. The 92 

nucleotide diversity ratio in wild mallards are dramatically higher than ratios in domesticated 93 

ducks (p = 2.20 × 10−16). Number of insertions and deletions in the nine populations are shown 94 

at the top. The number of deletion was higher than insertion in all nine populations. 95 

 96 

We detected 36.1 million (M) SNPs in total, with an average for each 97 

individual of 4.5M (range = 2.34 – 9.52M), which covered 96.2% of the duck 98 

dbSNP database deposited in the Genome Variation Map (GVM) 99 

(http://bigd.big.ac.cn/gvm/). We also identified 3.1M INDELs, with an average 100 

of 0.4M (range = 0.21 – 0.89M) (Fig. 1C, Supplemental Figs. S1 - S2, 101 

Supplemental Table S2). Both the number of SNPs (t test, p = 3.13 × 10−12) 102 

and nucleotide diversity (t test, p = 2.20 × 10−16) are lower in domesticated 103 

compared to wild mallards (Fig. 1B - C), consistent with the larger panmictic 104 

wild population. Single base-pair INDELs were the predominant form, 105 

accounting for 38.63% of all detected INDELs (Supplemental Table S3).  106 
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Population structure and domestication 107 

Phylogenetic relationships, based on a neighbor-joining (NJ) of pairwise 108 

genetic distances of whole genome SNPs (Fig. 2A) and Principal Component 109 

Analysis (PCA, Fig. 2B) revealed strong clustering into three distinct genetic 110 

groups. The two wild populations (MDN and MDZ) clustered together, with the 111 

three meat type population ducks (PK, CV, and ML) clustered together into a 112 

second group, and the three egg type populations (JD, SM, and SX) clustered 113 

with the dual-purpose type ducks (GY) into a third group.  114 

We further performed population structure analysis using FRAPPE [7], 115 

which estimates individual ancestry and admixture proportions assuming K 116 

ancestral populations (Fig. 2C). With K = 2, a clear division was found between 117 

wild type ducks (MDN and MDZ) and domesticated ducks (PK, CV, ML, JD, SM, 118 

SX, and GY). With K = 3, a clear division was found between meat type ducks 119 

(PK, CV, and ML) and egg type ducks mixed with dual-purpose type ducks (JD, 120 

SM, SX, and GY).  121 
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 122 

Figure. 2 Population genetic structure and demographic history of nine duck 123 

populations 124 

(A) Neighbor-joining phylogenetic tree of nine duck populations. The scale bar is 125 

proportional to genetic differentiation (p dist ance). 126 

(B) PCA plot of duck populations. Eigenvector 1 and 2 explained 38.8% and 32.5% of the 127 

observed variance, respectively. 128 

(C) Population genetic structure of 78 ducks. The length of each colored segment 129 

represents the proportion of the individual genome inferred from ancestral populations (K = 2-130 

3). The population names and production type are at the bottom. DP type means dual-purpose 131 

type. 132 

(D) Demographic history of duck populations. Examples of PSMC estimate changes in the 133 

effective population size over time, representing variation in inferred Ne dynamics. The lines 134 

represent inferred population sizes and the gray shaded areas indicate the Pleistocene period, 135 

with Last Glacial Period (LGP) shown in darker gray, and Last Glacial Maximum (LGM) shown 136 
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in light blue areas. 137 

 138 

Together, these results indicate two genetic clusters of domesticated 139 

breeds, either domesticated once with subsequent subdivision due to divergent 140 

selection, or domesticated twice independently. In order to differentiate these 141 

alternatives, we explored the demographic history of our samples, first 142 

estimating changes in effective population size (Ne) in our three genetic clusters 143 

in a pairwise sequentially Markovian coalescent (PSMC) framework [8]. The 144 

meat type ducks (PK, CV, and ML) showed concordant demographic 145 

trajectories with egg and mixture type populations (JD, SM, SX, and GY) with 146 

one apparent expansion around the Penultimate Glaciation Period (PGP, 0.30-147 

0.13 Mya) [9,10] and Last Glacial Period (LGP, 110-12 kya) [11,12], followed by 148 

a subsequent contraction (Fig. 2D).  149 

We tested multiple demographic scenarios related to domestication using 150 

a diffusion approximation method for the allele frequency spectrum (∂a∂i) 151 

(Supplemental Fig. S3 and S4). Among the four isolation models tested (models 152 

1 - 4), the model of a single domestication with subsequent divergence of the 153 

domesticated breeds (Model 2) was both consistent with our population 154 

structure results (Fig. 2) and had the lowest Akaike Information Criteria (AIC), 155 

indicating a better overall fit to the data (log-likelihood = -33,388.43; AIC = 156 

66,788) (Supplemental Fig. S3). 157 

Demographic parameters estimated from the single domestication model 158 
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(Model 2) indicated that domestication occurred approximately 2,200 years ago, 159 

followed by a rapid subsequent divergence of the meat breed from the egg/dual 160 

purpose breeds roughly 100 years after the initial domestication event (Table 161 

1). Our results suggest that following an initial bottleneck associated with 162 

domestication, with an estimated Ne of 305 individuals for the ancestral 163 

domesticated population, the population has expanded to the current Ne of 164 

5,345 and 12,404 in the meat type and egg/dual purpose breeds respectively. 165 

Ne estimates for domesticated breeds are lower than that in wild mallards, 166 

consistent with the large panmictic wild population.  167 

 168 

Table 1. Maximum likelihood population demographic parameters. Best fit 169 

parameter estimates for the model of a single domestication event followed by 170 

divergence of the domesticated breeds, including changes in population size. 171 

Time estimates are given in years and migration are in units of number of 172 

migrants per generation.  173 

 174 

Parameter ML estimate 

Ne of ancestral population after size change 633,584 

Ne of the wild population 84,845 

Ne of the ancestral domesticated population 305 

Ne of the meat breed 5,345 

Ne of the egg/dual purpose 12,404 

Time of size change in the ancestral population 238,696 

Time of domestication 2,128 

Time of breed divergence 2,030 

Migration wild  meat 1.21 

Migration wild  egg/dp 3.92 

 175 

Gene flow estimates were relatively high, and were 1 and 4 migrants per 176 

generation from the meat and egg/dual purpose breeds, respectively, into the 177 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

wild population. Difficulty in differentiating between very recent divergence and 178 

high migration rates in the frequency spectrum prevented convergence 179 

between independent runs when trying to fit other migration parameters to our 180 

model.   181 

Selection for plumage color 182 

Derived traits in domesticated animals tend to evolve in a predictable order, 183 

with color variation appearing in the earliest stages of domestication, followed 184 

by coat or plumage and structural (skeletal and soft tissue) variation, and finally 185 

behavioral differences [13,14]. One of the simplest and most visible derived 186 

traits of ducks is white plumage color. In order to detect the signature of 187 

selection associated with white feathers, we searched the duck genome for 188 

regions with high FST among the populations of white feather (PK, CV, and ML) 189 

and non-white feather (MDN, MDZ, JD, SX, and GY) based on sliding windows 190 

of 10kb windows. We identified a region of high differentiation between white 191 

plumage and non-white plumage ducks overlapping the melanogenesis 192 

associated transcription factor (MITF; FST=0.69) (Fig. 3A). In the intronic region 193 

of MITF, we identified 13 homozygous SNPs and 2 homozygous INDELs 194 

present in all white plumage breeds (n=24). These SNPS were absent in all 195 

non-white plumage breeds (n=46) (Fig. 3B). These mutations were completely 196 

consistent with the white plumage phenotype suggesting as causative mutation. 197 

Our result first indicates the duck white plumage associated with selection at 198 

the MITF locus. 199 
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 200 

Figure. 3 MITF shows different genetic signature between white plumage and non-white 201 

plumage ducks. 202 

(A) FST plot around the MITF locus. The FST value of MITF is highest for scaffold 203 

KB742527.1, circled in red. Each plot represent a 10 kb windows. 204 

(B) 13 homozygous SNPs and 2 homozygous INDELs were identified in white plumage 205 

ducks and absent in non-white plumage ducks. SNPs and INDELs were named 206 

according to their position on scaffold. 207 

Selection for other domestication traits 208 

 In order to detect the signature of selection for other traits associated with 209 

duck domestication, we scanned the duck genome for regions with a high 210 

coefficient of nucleotide differentiation (FST) among the populations of wild types 211 

(MDN and MDZ) and domesticated types (PK, CV, ML, JD, SM, SX, and GY) 212 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

based on sliding windows of 10kb windows. Owing to the complex and partly 213 

unresolved demography of these populations, it is difficult to define a strict 214 

threshold that distinguishes true sweeps from regions of homozygosity caused 215 

by drift. We therefore also calculated pairwise diversity ratio 216 

(𝜃𝜋(wild/domesticated)). We identified 292 genes in the top 5% of both FST and 217 

𝜃𝜋 scores, putatively under positive selection during domestication (Fig. 4A, 218 

Supplemental Tables S4). 219 

 220 

Figure. 4 Genomic regions with strong selective sweep signals in wild 221 

population ducks and domesticated population ducks. 222 

(A) Distribution of θπ  ratios θπ(wild/domesticated) ) and Z(FST) values, which are 223 

calculated using scaffolds longer than 10-kb by 10-kb windows with 5-kb steps. Red data points 224 

located to the top-right regions correspond to the 5% right tails of empirical 225 

𝑙𝑜𝑔2(𝜃𝜋 𝑤𝑖𝑙𝑑 𝜃𝜋 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐⁄ ) ratio distribution and the top 5% empirical Z(FST) distribution are 226 
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genomic regions under selection during duck domestication. The two horizontal and vertical 227 

gray lines represented the top 5% value of Z(FST) (2.216) and 𝑙𝑜𝑔2(𝜃𝜋 𝑤𝑖𝑙𝑑 𝜃𝜋 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐⁄ ) 228 

(2.375), respectively. 229 

 (B) 𝑙𝑜𝑔2(𝜃𝜋) ratios and FST values around the GRIK2 locus and allele frequencies of 230 

nine SNPs within the GRIK2 gene across nine duck populations. The black and red lines 231 

represent 𝑙𝑜𝑔2(𝜃𝜋 𝑤𝑖𝑙𝑑 𝜃𝜋 𝑑𝑜𝑚𝑒𝑠𝑡𝑖𝑐⁄ )  ratios and FST values, respectively. The gray bar 232 

showed the region of under strong selection in GRIK2 gene. The nine red rectangular frame 233 

corresponding to the locus on gene of nine SNPs. The SNPs were named according to their 234 

position on scaffold. 235 

(C)The PDC gene showed different genetic signature in domesticated and wild duck. 236 

𝑙𝑜𝑔2(𝜃𝜋) ratios and FST values around the PDC locus. The PDC gene region was showed in 237 

gray par. Allele frequencies of seven SNPs within the PDC gene across nine duck populations. 238 

The SNPs were named according to their position on scaffold.  239 

(D) The PDC gene expression level different in domesticated and wild duck. PDC mRNA 240 

expression levels in brain of wild (MDN, n=3; MDZ, n=4) and domesticated (PK, n=1; CV, n=1; 241 

ML, n=1; JD, n=1; SM, n=1; SX, n=1; GY, n=1) ducks. ****P value from t-test (P<0.0001). 242 

Because domesticated ducks are known to differ from wild ducks in body 243 

size, body fat percentage, behavior, egg productivity, growth speed, and flight 244 

capability, we focused our analysis on GO annotations of neural related 245 

processes, lipid metabolism and energy metabolism, reproduction, and skeletal 246 

muscle contraction for our 292 putative positively selection genes. In this 247 

reduced data set, the neuro-synapse-axon and lipid-energy metabolism 248 
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pathways were over-represented (Supplemental Table S5) in our list of genes 249 

under selection.  250 

From the highlighted GO terms, a total of 25 neuro-synapse-axon genes 251 

were identified as under positive selection, with six (ADGRB3, EFNA5, GRIN3A, 252 

GRIK2, SYNGAP1, and HOMER1) in the top 1% of FST and 𝜃𝜋 (Supplemental 253 

Tables S6). In particular, GRIK2 (glutamate receptor, ionotropic kainate 2) and 254 

GRIN3A (glutamate receptor, subunit 3A) both showed high FST and 𝜃𝜋 value 255 

compared to neighboring regions, suggesting functional importance (Fig. 3B, 256 

Supplemental Table S4, S6).  257 

Beyond the neuronal genes, 115 genes were identified in the four lipid and 258 

energy related pathways with high FST and 𝜃𝜋 values, particularly related to 259 

gatty acid metabolism. Among these genes, 37 genes were found with both 260 

parameters yielding top 1% ranked values (Supplemental Tables S6), such as 261 

phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), and patatin like 262 

phospholipase domain containing 8 (PNPLA8).  263 

To infer whether selection extends beyond yielding novel allelic variation 264 

by also affecting gene expression, we compared individual gene expression in 265 

the brain, liver, and in breast muscle between seven wild mallards and seven 266 

domesticated ducks with RNA-seq (Supplemental Tables S7). We detected 267 

three genes (PDC, MLPH, and NID2) in the brain, two genes (MAPK12 and 268 

BST1) in the liver, and zero genes in breast muscle with significantly different 269 

expression between wild and domesticated ducks. Of the five differentially 270 
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expressed genes, PDC was the only gene which also showed evidence of a 271 

selective sweep at the genomic level (Supplemental Tables S4, Fig. 3C - D). 272 

The results imply that the PDC gene is of substantial functional importance in 273 

phenotypic differentiation among wild and domestic ducks through both allelic 274 

and expression differences.  275 

Discussion 276 

Animal domestication was one of the major contributory factors of the 277 

agricultural revolution during the Neolithic period, which resulted in a shift in 278 

human lifestyle from hunting to farming [15]. Since this transition, domesticated 279 

animals have contributed greatly to human society and human population 280 

growth by provision of stable animal protein, fat, and accessory products such 281 

as leather and feathers (including down). Whole genome sequencing has made 282 

it possible to illuminate the genetic trajectories of animal domestication such as 283 

those observed in pig [16], sheep [17], rabbit [18] and chicken [19,20]. 284 

In this study, we performed whole-genome sequencing of 78 ducks 285 

including seven domesticate breeds and two wild populations. This is the first 286 

study to characterize the genetic architecture, phylogenetic relationships and 287 

domestication history of domesticated ducks and wild mallards. We first 288 

catalogued millions of 36.1M SNPs and 3.1M INDELs, and in both cases, we 289 

observed higher mean variant numbers and nucleotide diversity for the wild 290 

mallard populations compared to the domestics, consistent with both a greater 291 
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panmictic mallard population as well as recent sweeps associated with 292 

domestication.  293 

Population structure and domestication 294 

We observed a large expansion of the duck population at the interglacial 295 

period, which could be the result of beneficial climatic changes, including rising 296 

temperatures and sea levels. In contrast, the glacial maximum coincided with a 297 

much reduced duck population size, consistent with harsher conditions and 298 

limited access to arctic breeding grounds [10,21-23]. The demographic pattern 299 

we observe in wild ducks is similar to that observed in wild boars [16], wild yaks 300 

[24], and wild horses [25]. However, it is worth noting that although PSMC is a 301 

powerful method to infer changes in Ne over time, it is also sensitive to 302 

deviations from a neutral model. The effects of genetic drift and/or selection 303 

could lead to time-dependent estimates of mutation rate, and bias our estimates 304 

of population expansion [12]. 305 

We observed three genetic clusters, with wild mallard, meat breeds, and 306 

egg/dual purpose breeds each representing unique groups. These results 307 

suggest either a single domestication event followed by subsequent breed-308 

specific selection, or two separate domestication events. In order to distinguish 309 

alternative models of domestication, we modeled population demographics and 310 

found strong support for a single domestication event roughly 2,100 years ago, 311 

with the rapid subsequent selection for separate meat and egg/dual purpose 312 

breeds roughly 100 generations later. We note that the evolutionary history of 313 
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wild mallards and domesticated duck breeds is likely to be more complex than 314 

the simple demographic scenarios modelled here, and further studies may be 315 

needed to fully capture the evolutionary dynamics of duck domestication. 316 

Nevertheless, time estimates obtained with our model are compatible with 317 

previous written records from 500 BC [2]. 318 

Selection for white plumage 319 

Plumage color is an important domestication trait, and we compared 320 

breeds with white plumage to those with colored plumage. We identified high 321 

levels of divergence in the intronic region of the MITF gene, an important 322 

developmental locus with a complex regulation implicated in pigmentation and 323 

melanocyte development in severval vertebrate species [26-28], including 324 

Japanese quail [29] and dog [30].  325 

Selection for other domestication traits 326 

In order to identify those genomic regions which have been the target of 327 

selection during domestication, we used estimates of diversity between wild 328 

and domestic samples, retaining those 292 genes in the top 5% of both FST and 329 

𝜃𝜋 values for further analysis. These genes were over-represented for both 330 

neural developmental and lipid metabolism, suggesting that these 331 

functionalities were under strong selection during domestication. Two loci, 332 

GRIK2 and GRIN3A, showed particularly strong signatures of genetic sweep 333 

associated with domestication. GRIK2 encodes a subunit of a glutamate 334 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

receptor that has a role in synaptic plasticity and is important for learning and 335 

memory. GRIN3A encodes a subunit of the N-methyl-D-aspartate (NMDAR) 336 

receptors, which is expressed abundantly in the human cerebral cortex [31] and 337 

is involved in the development of synaptic elements 338 

We also identified five genes with significantly different expression in the 339 

brain and liver of domestics compared to their wild ancestor. One of these, PDC, 340 

also showed evidence of selective sweeps at the genomic level. PDC encodes 341 

phosducin, a photoreceptor-specific protein highly expressed in retina and 342 

pineal gland [32], as well as the brain [33].  343 

Our results suggest that PDC, GRIK2 and GRIN3A may have played a 344 

crucial role in duck domestication by altering functional regulation of the 345 

developing brain and nervous system. This finding is consistent with theories 346 

that behavioral traits are the most critical in the initial steps of animal 347 

domestication, allowing animals to tolerate humans and captivity [34,35]. 348 

Indeed, compared to wild mallards, domestic ducks are more docile, less 349 

vigilant, and show important differences in brain morphology [3,4]. Interestingly, 350 

differential selection on brain and nervous system functions was also observed 351 

in domestication studies of rabbits [18], dogs [36], chickens [19]. In particular, 352 

GRIK2 was also found to play a crucial role during rabbit domestication [18].  353 

Besides brain and nervous system related genes, we also identified 354 

several genes that play an important function in lipid and energy metabolism. 355 

For example, PIK3C3 plays an important role in ATP binding but also regulates 356 
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brain development and axons of cortical neurons [37-41]. PNPLA8 is involved 357 

in facilitating lipid storage in adipocyte tissue energy mobilization and maintains 358 

mitochondrial integrity [42,43], as well as plays a role in lipid metabolism 359 

associated with neurodegenerative diseases [44-46]. PRKAR2B is associated 360 

with body weight regulation, hyperphagia, and other energy metabolism [47,48]. 361 

Taken together, our results show that duck domestication was recent and 362 

complex process, and the genetic basis of domestication traits show many 363 

striking overlaps with other vertebrate domestication events.  364 

Methods 365 

Ethics statement 366 

The entire procedure was carried out in strict accordance with the protocol 367 

approved by the Animal Welfare Committee of China Agricultural University 368 

(Permit Number: XK622). 369 

Sample selection 370 

78 ducks were chosen for sequencing, seven different populations of 371 

domesticated ducks and two population of mallards from different geographic 372 

regions. The domesticated ducks include three meat type populations i.e., 373 

Pekin duck (PK; n=8); Cherry Valley duck (CV; n=8); Maple Leaf duck (ML; n=8), 374 

three egg type populations i.e., Jin Ding duck (JD; n=8); Shao Xing duck (SX; 375 

n=8); Shan Ma duck (SM; n=8), one egg and meat dual-purpose type (DP type) 376 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

population i.e., Gao You duck (GY; n=8), and two wild populations come from 377 

two different provinces in China with separated by nearly 2,000 km distance i.e., 378 

Mallard from Ningxia province (MDN; n=8); Mallard form Zhejiang province 379 

(MDZ; n=14). The classification of production types follow the description of 380 

Animal Genetic Resources in China Poultry [49]. PK, CV, and ML ducks 381 

originated from Beijing; JD and SM ducks originated from Fujian province while 382 

SX and GY ducks originated from Jiangsu province. Whole blood samples were 383 

collected from brachial veins of ducks by standard venipuncture.  384 

In addition, 14 male ducks (MDNM, n=3; MDZM, n=4; PKM, n=1; CVM, 385 

n=1; MLM, n=1; JDM, n=1; SMM, n=1; SXM, n=1; GYM, n=1) were chosen for 386 

RNA-seq.  387 

Sequencing and mapping statistic of individual ducks in genome and 388 

transcriptome analysis were detailed in supplementary files (Supplemental 389 

Table S1, S7). 390 

Sequencing and library preparation 391 

Genomic DNA was extracted using standard phenol/chloroform extraction 392 

method. For each sample, two paired-end libraries (500 bp) were constructed 393 

according to manufacturer protocols (Illumina), and sequenced on the Illumina 394 

Hiseq 2500 sequencing platform. From each populations, we sequenced seven 395 

samples at 5X depth and one at 10X coverage, except for the MDN population, 396 

where we sequenced seven individuals at 5X coverage and one at 20X 397 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

coverage and the MDZ population, where we sequenced all individuals at 10X 398 

coverage. We generated a total of 628.37 Gb of paired-end reads of 100 bp (or 399 

150 bp; MDZ) length (Supplemental Table S1). 400 

mRNA from brain, liver, and breast muscle of 14 individual ducks were 401 

extracted using standard trizol extraction methods. Two paired-end libraries 402 

(500 bp) were constructed according to manufacturer instruction (Illumina). All 403 

samples were sequenced by Illumina Hiseq 4000 sequencing platform, with 404 

32M paired-end 150 bp mapped reads per sample after QC (Supplemental 405 

Table S7). 406 

Read alignment and variant calling 407 

To avoid low quality reads, mainly the result of base-calling duplicates and 408 

adapter contamination, we filtered out sequences according to the default 409 

parameters of NGS QC Toolkit [50]. Those paired reads which passed 410 

Illumina’s quality control filter were aligned using BWA-MEM (v0.7.12) to 411 

version 1.0 of the Anas platyrhynchos genome (BGI_duck_1.0) [1]. Duplicate 412 

reads were removed from individual samples alignments using Picard tools 413 

MarkDuplicates, and reads were merged using MergeSamFiles 414 

(http://broadinstitute.github.io/picard/).  415 

The Genome Analysis Toolkit (GATK, v3.5) RealignerTargetCreator and 416 

IndelRealigner protocol were used for global realignment of reads around 417 

INDELs before variant calling [51,52]. SNPs and small indels (1-50 bp) were 418 
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called used the GATK UnifiedGenotyper set for diploids with the parameter of 419 

minimum quality score of 20 for both mapped reads and bases to call variants, 420 

similarly to previous studies [53-57]. We filtered variants both per population 421 

and per individual using GATK according to the stringent filtering criteria. For 422 

SNPs of population filter: a.) QUAL > 30.0; b.) QD > 5.0; c.) FS < 60.0; d.) MQ > 423 

40.0; e.) MQRankSum > -12.5; f.) ReadPosRankSum > -8.0; Additionally, if 424 

there were more than 3 SNPs clustered in a 10 bp window, all three SNPs were 425 

considered as false positives and removed [58].  426 

We used the following population criteria to identify INDELs: QUAL > 30.0, 427 

QD > 5.0, FS < 200.0, ReadPosRankSum > -20.0. Of individual filter, we also 428 

removed all INDELs and SNPs where the depth of derived variants was less 429 

than half the depth of the sequence. All SNPs and INDELs were assigned to 430 

specific genomic regions and genes using SnpEff [59] based on the Ensembl 431 

duck annotations. After filtering a total of 36,107,949 SNPs and 3,082,731 432 

INDELs were identified (Supplemental Table S2). 433 

SNP validation 434 

In order to evaluate the reliability of our data, we compared our SNPs to 435 

the duck dbSNP database deposited in the Genome Variation Map (GVM) at 436 

the Big Data Center in the Beijing Institute of Genomics, Chinese Academy of 437 

Science (http://bigd.big.ac.cn/gvm/). 7,908,722 SNPs were validated in the 438 

duck dbSNP database, which covered 96.2% of the database (Supplemental 439 
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Table S2). For the 28,199,227 SNPs not confirmed by dbSNPs, 390 nucleotide 440 

sites were further validated by PCR with 100% accuracy, indicating the high 441 

reliability of the called SNP variation identified in this study. 442 

Population structure 443 

We removed all SNPs with a minor allele frequency (MAF) <= 0.1 and kept 444 

only SNPs that occurred in more than 90% of individuals. Vcf files were 445 

converted to hapmap format with custom perl scripts, and to PLINK format file 446 

by GLU v1.0b3 (https://code.google.com/archive/p/glu-genetics/) and PLINK 447 

v1.90 [60,61] when appropriate. We used GCTA [62] for Principle Component 448 

Analysis (PCA), first by generating the genetic relationship matrix (GRM) 449 

followed by the first 20 eigenvectors.  450 

We used all high quality SNPs to infer population structure using FRAPPE 451 

1.1 [7], with 10,000 iterations per run.  452 

A distance matrix was generated by calculating the pairwise allele sharing 453 

distance for each pair of all high quality SNPs. Multiple alignment of the 454 

sequences was performed with MUSCLE [63]. A neighbor-joining maximum 455 

likelihood phylogenetic tree was constructed with the DNAML program in the 456 

PHYLIP package v3.69 [64] and MEGA7 [65,66]. All implementation was 457 

performed according to the recommended manipulations of SNPhylo [67].  458 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

Demographic history reconstruction 459 

The demographic history of both wild and domesticated ducks was inferred 460 

using a hidden Markov model approach as implemented in Pairwise 461 

Sequentially Markovian Coalescence based on SNP distributions [8]. In order 462 

to determine which PSMC settings were most appropriate for each population, 463 

we reset the number of free atomic time intervals (-p option), upper limit of time 464 

to most recent common ancestor (TMRCA) (-t option), and initial value of r =465 

θ/ρ (-r option) according to previous research [12] and online suggestions by 466 

Li and Durbin (https://github.com/lh3/psmc). Based on estimated from the zebra 467 

finch genome, an average mutation rate ( μ ) of 2.95 × 10−9  per base per 468 

generation and a generation time (g) of 1 year were used for analysis [68,69]. 469 

Three-population demographic inference was performed using a diffusion-470 

based approach as implemented in the program ∂a∂i [70]. To minimize potential 471 

effects of selection that could interfere with demographic inference, these 472 

analyses were performed using the subset of noncoding regions across the 473 

whole genome and spanning 750,939,264 bp in length. Noncoding SNPs were 474 

then thinned to 1% to alleviate potential linkage between the markers. The final 475 

dataset consisted of 95,181 SNPs with an average distance of 7,112 bp (± 476 

18,810 bp) between neighbouring SNPs. To account for missing data, the 477 

folded allele frequency spectrum for the three populations (wild, meat and 478 

egg/dual purpose breeds) was projected down in ∂a∂i to the projection that 479 

maximized the number of segregating SNPs, resulting in 92,966 SNPs. 480 
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We tested four different scenarios to reconstruct the demographic history 481 

of the domesticated breeds of mallards: simultaneous domestication of the 482 

meat and egg and dual purpose breeds (Model 1); a single domestication event 483 

followed by divergence of the meat and egg and dual purpose breeds (Model 484 

2); two independent domestication events, with the meat type breed being 485 

domesticated first (Model 3); and two independent domestication events, with 486 

the egg and dual purpose breed being domesticated first (Model 4). Using the 487 

“backbone” of the best model, we then used a step-wise strategy to add 488 

parameters related with variation in population sizes and population growth, 489 

keeping a new parameter only if the Akaike information criterion (AIC) and log 490 

likelihood improved considerably over the previous model with less parameters. 491 

In cases where additional parameters resulted in negligibly improved AIC and 492 

likelihood, we retained the simpler, less parameterized model. Gene flow was 493 

modelled as continuous migration events after population divergence. Each 494 

model was run at least ten times from independent starting values to ensure 495 

convergence to the same parameter estimates. We rejected models where we 496 

failed to obtain convergence across the replicate runs. Scaled parameters for 497 

the best-supported model were transformed into real values using the same 498 

average mutation rate (μ) and (g) as described above for the PSMC analysis. 499 

Parameter uncertainty was obtained using the Godambe Information Matrix 500 

(GIM) [71] from 100 non-parametric bootstraps. 501 
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Selective-sweep analysis 502 

In order to define candidate regions having undergone directional selection 503 

during duck domestication we calculated the coefficient of nucleotide 504 

differentiation (FST) between mallards and domesticated ducks described by 505 

Weir & Cockerham [72]. We calculated the average FST in 10kb windows with 506 

a 5 kb shift for all seven domesticated duck populations combined, and two 507 

mallard populations combined. Only scaffolds longer than 10 kb, 2368 of 78488 508 

scaffolds, were chosen for the analysis. We transformed observed FST values 509 

to Z transformation (Z(FST)) with μ = 0.1154  and σ = 0.0678  according to 510 

previously described methods [73].  511 

To estimate levels of nucleotide diversity ( π ) across all sampled 512 

populations we used the VCFtools software [74] to calculate θπ(wild/513 

domesticated) [75], computing the average difference per locus over each pair 514 

of accessions. As the measurement of FST, averaged π  ratio ( θπ(wild/515 

domesticated)) was calculated for each scaffold in 10kb sliding windows. 516 

Functional classification of GO categories was performed in Database for 517 

Annotation, Visualization and Integrated Discovery (DAVID, ver 6.8) [76]. 518 

Statistical significance was accessed by using a modified Fisher’s exact test 519 

and Benjamini correction for multiple testing. 520 

RNA-seq and data processing 521 

High-quality reads were mapped to reference genome using STAR 522 
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(v.2.5.3a) [77]. The featureCounts function of the Rsubread (v.1.5.2) [78,79] 523 

was used to output the counts of reads aligning to each gene. We detected the 524 

differential expression genes with edgeR [80-83] using a padj < 0.05 threshold. 525 

Data Access 526 

All duck sequence data had been submitted to Genome Sequence Archive 527 

(GSA) database of BIG Data Center in Beijing Institute of Genomics (BIGD) 528 

with accession number of CRA000523. 529 
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