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Abstract 14 

Background 15 

New generation of sequencing platforms coupled to numerous bioinformatics tools has led to 16 

rapid technological progress in metagenomics and metatranscriptomics to investigate 17 

complex microorganism communities. Nevertheless, a combination of different bioinformatic 18 

tools remains necessary to draw conclusions out of microbiota studies. Modular and user-19 

friendly tools would greatly improve such studies. 20 

Findings 21 

We therefore developed ASaiM, an Open-Source Galaxy-based framework dedicated to 22 

microbiota data analyses. ASaiM provides a curated collection of tools to explore and 23 

visualize taxonomic and functional information from raw amplicon, metagenomic or 24 

metatranscriptomic sequences. To guide different analyses, several customizable workflows 25 

are included. All workflows are supported by tutorials and Galaxy interactive tours to guide 26 

the users through the analyses step by step. ASaiM is implemented as Galaxy Docker 27 

flavour. It is scalable to many thousand datasets, but also can be used a normal PC. The 28 

associated source code is available under Apache 2 license at 29 

https://github.com/ASaiM/framework and documentation can be found online 30 

(http://asaim.readthedocs.io) 31 

Conclusions 32 

Based on the Galaxy framework, ASaiM offers sophisticated analyses to scientists without 33 

command-line knowledge. ASaiM provides a powerful framework to easily and quickly 34 

explore microbiota data in a reproducible and transparent environment. 35 
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Findings 38 

Background 39 

The study of microbiota and microbial communities has been facilitated by the evolution of 40 

sequencing techniques and the development of metagenomics and metatranscriptomics. 41 

These techniques are giving insight into phylogenetic properties and metabolic components 42 

of microbial communities. However, meta’omic data exploitation is not trivial due to the large 43 

amount of data, high variability, incompleteness of reference databases, difficulty to find, 44 

configure, use and combine the dedicated bioinformatics tools, etc. Hence, to extract useful 45 

information, a sequenced microbiota sample has to be processed by sophisticated workflows 46 

with numerous successive bioinformatics steps [1]. Each step may require execution of 47 

several tools or software programs. For example, to extract taxonomic information with the 48 

widely used QIIME [2] or Mothur [3], at least 10 different tools with at least 4 parameters 49 

each are needed. Designed for amplicon data, both QIIME and Mothur can not be directly 50 

applied to shotgun metagenomics data. In addition, the tools can be complex to use; they 51 

are command-line tools and may require computational resources specially for the 52 

metagenomics datasets. In this context, selecting the best tools, configuring them to use the 53 

correct parameters and appropriate computational resources and combining them together 54 

in an analysis chain is a complex and error-prone process. These issues and the involved 55 

complexity are blocking scientist from participating in the analysis of their own data. 56 

Furthermore, bioinformatics tools are often manually executed and/or patched together with 57 

custom scripts. These practices raise doubts about a science gold standard: reproducibility 58 

[3,4]. Web services and automated pipelines such as MG-RAST [5] and EBI metagenomics 59 

[6] offer solutions to the accessibility issue. However, these web services work as a black 60 
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box and are lacking in transparency, flexibility and even reproducibility as the version and 61 

parameters of the tools are not always available. Alternative approaches to improve 62 

accessibility, modularity and reproducibility can be found in open-source workflow systems 63 

such as Galaxy [6–8]. Galaxy is a lightweight environment providing a web-based, intuitive 64 

and accessible user interface to command-line tools, while automatically managing 65 

computation and transparently managing data provenance and workflow scheduling [6–8]. 66 

More than 4,500 tools can be used inside Galaxy environments. The tools can be selected 67 

and combined to build Galaxy flavors focusing on specific type of analysis, e.g. the Galaxy 68 

RNA workbench [9].  69 

In this context, we developed ASaiM (Auvergne Sequence analysis of intestinal Microbiota), 70 

an Open-Source opinionated Galaxy-based framework. It integrates tools and workflows 71 

dedicated to microbiota analyses with an extensive documentation 72 

(http://asaim.readthedocs.org) and training support. 73 

Goals of ASaiM 74 

ASaiM is developed as a modular, accessible, redistributable, sharable and user-friendly 75 

framework for scientists working with microbiota data. This framework is unique in combining 76 

curated tools and workflows and providing easy access for scientists. 77 

ASaiM is based on four pillars: 1) easy and stable dissemination via Galaxy, Docker and 78 

conda, 2) a comprehensive set of metagenomics related tools, 3) a set of predefined and 79 

tested workflows, and 4) extensive documentation and training to help scientists in their 80 

analyses. 81 

A framework built on the shoulders of giants 82 

The ASaiM framework is built on existing tools and infrastructures and combine all their 83 

forces to build an easily accessible and reproducible analysis platform. 84 
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ASaiM is implemented as portable virtualized container based on Galaxy framework [8]. 85 

Galaxy provides researchers with means to reproduce their own workflows analyses, rerun 86 

entire pipelines, or publish and share them with others. Based on Galaxy, ASaiM is scalable 87 

from single CPU installations to large multi-node high performance computing environments. 88 

Deployments can be archived by using a pre-built ASaiM Docker image, which is based on 89 

the Galaxy Docker project (http://bgruening.github.io/docker-galaxy-stable) or by installing all 90 

needed components into an already existing Galaxy instance. This ASaiM Docker instance 91 

is customized with a variety of selected tools, workflows, Interactive tours and data that have 92 

been added as additional layers on top of the generic Galaxy Docker instance. The 93 

containerization keeps the deployment task to a minimum. The selected Galaxy tools are 94 

automatically installed from the Galaxy ToolShed [10] (https://toolshed.g2.bx.psu.edu/) using 95 

the Galaxy API BioBlend [11] and the installation of the tools and their dependencies are 96 

automatically resolved using packages available through Bioconda 97 

(https://bioconda.github.io). We migrated then 10 tools/suites of tools and their 98 

dependencies to Bioconda (e.g. HUMAnN2) and integrated 14 suites into Galaxy (e.g. 99 

QIIME with around forty tools). 100 

The containerization as well as the packaging with conda enables automatic continuous 101 

integration tests at different levels: dependencies (BioConda), tool integration in Galaxy, 102 

Galaxy itself and at ASaiM level. Together with strict version management on all levels, this 103 

contributes to a high degree of error-control and reproducibility. 104 

 105 

Tools for microbiota data analyses 106 

The tools integrated in ASaiM can be seen in Table 1. They are expertly selected for their 107 

relevance with regard to microbiota studies, such as Mothur [3], QIIME [2], MetaPhlAn2 [12], 108 

HUMAnN2 [13] or tools used in existing pipelines such as EBI Metagenomics’ one. We also 109 

added general tools used in sequence analysis such as quality control, mapping or similarity 110 

search tools. 111 
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Table 1: Available tools in ASaiM 112 

Section Subsection Tools 

File and meta tools Data retrieval EBISearch, ENASearch, SRA Tools 

 Text manipulation Tools from Galaxy ToolShed 

 Sequence file manipulation Tools from Galaxy ToolShed 

 BAM/SAM file manipulation SAM tools [14–16] 

 BIOM file manipulation BIOM-Format tools [17] 

Genomics tools Assembly FastQ joiner [18], FastQ-join  

 Quality control FastQC, PRINSEQ [19], Trim 
Galore!, Trimmomatic [20], MultiQC 
[21] 

 Clustering CD-Hit [22], Format CD-HIT outputs 

 Sorting and prediction SortMeRNA [23], FragGeneScan 
[24]  

 Mapping BWA [25,26], Bowtie [27] 

 Similarity search NCBI Blast+ [28,29], Diamond [30] 

 Alignment HMMER3  

Microbiota dedicated 
tools 

Metagenomics data 
manipulation 

VSEARCH [31] 

 Amplicon sequence processing Mothur [3], QIIME [2] 

 Taxonomy assignation on WGS 
sequences 

MetaPhlAn2 [12], Format 
MetaPhlan2, Kraken [32] 

 Metabolism assignation HUMAnN2 [13], Group HUMAnN2 
to GO slim terms, Compare 
HUMAnN2 outputs, PICRUST [33], 
InterProScan 

 Combination of functional and 
taxonomic results 

Combine MetaPhlAn2 and 
HUMAnN2 outputs 

 Visualization Export2graphlan, GraPhlAn [34], 
KRONA [35]  

This table presents the tools, organized in section and subsections to help users. A more detailed 113 

table of the available tools and some documentation can be found in the online documentation 114 

(http://asaim.readthedocs.io) 115 
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 116 

An effort in development was made to integrate these tools into Conda and the Galaxy 117 

environment, with the help and support of the Galaxy community. We also developed two 118 

new tools to search and get data from EBI Metagenomics and ENA databases using the API 119 

of the databases (EBISearch and ENASearch) and a tool to group HUMAnN2 outputs into 120 

Gene Ontology Slim Terms. Tools inside ASaiM are organized to make them findable and 121 

documented (http://asaim.readthedocs.io). 122 

Diverse source of data 123 

Any easy way to upload user-data into ASaiM is provided by an web-interface or more 124 

sophisticated via FTP or SFTP. Moreover, we added specialised tools that can interact with 125 

external databases like NCBI, ENA or EBI Metagenomics to query them and download data 126 

into the framework. 127 

Visualization of the data 128 

An analysis often ends with summarizing figures that conclude and represent the findings. 129 

ASaiM includes standard interactive plotting tools to draw bar charts and scatter plots from 130 

all kinds of tabular data. Phinch visualization is also included to interactively visualize and 131 

explore any BIOM file, and generate different types of ready-to-publish figures. We also 132 

integrated two other tools to explore and represent the community structure from outputs of 133 

MetaPhlAn: KRONA [35] and GraPhlAn. Moreover, as in any Galaxy instance, other 134 

visualization are included such Phyloviz for phylogenetic trees or the Genome browser 135 

Trackster for visualizing SAM/BAM, BED, GFF/GTF, WIG, bigWig, bigBed, bedGraph, and 136 

VCF datasets. 137 

Workflows 138 

Each tool can be used separately in an explorative manner or multiple tools can be 139 

orchestrated inside workflows passing raw data to the data reduction step, to information 140 
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extraction and visualization. To assist in microbiota analyses, several default but 141 

customizable workflows are proposed in ASaiM. All the available workflows with tool and 142 

parameter choices are documented (http://asaim.readthedocs.io). 143 

Analysis of raw metagenomic or metatranscriptomic shotgun data 144 

A workflow quickly produces, from raw metagenomic or metatranscriptomic shotgun data, 145 

accurate and precise taxonomic assignations, wide extended functional results and 146 

taxonomically related metabolism information (Figure 1). This workflow consists of i) 147 

processing with quality control/trimming (FastQC and Trim Galore!) and dereplication 148 

(VSearch [31]; ii) taxonomic analyses with assignation (MetaPhlAn2 [12]) and visualization 149 

(KRONA , GraPhlAn); iii) functional analyses with metabolic assignation and pathway 150 

reconstruction (HUMAnN2 [13]); iv) functional and taxonomic combination with developed 151 

tools combining HUMAnN2 and MetaPhlAn2 outputs. 152 

This workflow has been tested on two mock metagenomic datasets with controlled 153 

communities (Supplementary material). We have compared the extracted taxonomic and 154 

functional information to such information extracted with the EBI metagenomics’ pipeline and 155 

to the expectations from the mock datasets. With ASaiM, we generate more accurate and 156 

precise data for taxonomic analyses (Figure 2): we can access information at the level of the 157 

species. More informative data for metabolic description (gene families, gene ontologies, 158 

pathways, etc) are also extracted with ASaiM compared to the ones available on EBI 159 

metagenomics. With this workflow, we can investigate which taxons are involved in a 160 

specific pathway or a gene family (e.g. involved species and their relative involvement in 161 

different step of fatty acid biosynthesis pathways, Figure 3). 162 

For the tests, ASaiM was deployed on a computer with Debian GNU/Linux System, 8 cores 163 

Intel(R) Xeon(R) at 2.40 GHz and 32 Go of RAM. The workflow processed the 1,225,169 164 

and 1,386,198 454 GS FLX Titanium reads of each datasets in 4h44 and 5h22 respectively, 165 

with a stable memory usage (Supplementary material). With this workflow, it is then easy 166 

and quick to process raw microbiota data and extract diverse useful information. 167 
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Analysis of amplicon data 168 

To analyze amplicon data, the Mothur and QIIME tool suites are available to ASaiM. We 169 

integrated the workflows described in tutorials of Mothur and QIIME websites, as example of 170 

amplicon data analyses as well as support for the training material. These workflows, as any 171 

workflows available in ASaiM, can be adapted for a specific analysis or used as 172 

subworkflows by the users. 173 

Running as in EBI metagenomics 174 

The tools used in the EBI Metagenomics pipeline are also available in ASaiM. We integrate 175 

then also a workflow with the same steps as the EBI Metagenomics pipeline. Analyses made 176 

in EBI Metagenomics website can be then reproduced locally, without having to wait for 177 

availability of EBI Metagenomics or to upload any data on EBI Metagenomics. However the 178 

parameters must be defined by the user as we can not find them on EBI Metagenomics 179 

documentation.  180 

Documentation and training 181 

A tool or software is easier to use if it is well documented. Hence extensive documentation 182 

helps the users to be familiar with the tool and also prevents mis-usage. For ASaiM, we 183 

developed an extensive online documentation (http://asaim.readthedocs.io), mainly to 184 

explain how to use it, how to deploy it, which tools are integrated with small documentation 185 

about these tools, which workflows are integrated and how to use them.  186 

In addition to this online documentation, Galaxy Interactive Tours are included inside the 187 

Galaxy instance. Such tours guide users through an entire analysis in an interactive (step-188 

by-step) way. Some tours, included in every Galaxy instance, explains how to use Galaxy. 189 

We also developed such tours dedicated specifically to the ASaiM workflows.  190 

These interactive tours are used to complement tutorials and trainings. Some tutorials about 191 

the integrated workflows have been developed to explain step-by-step the workflows with 192 
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small example datasets. Hosted in the Galaxy Training Network (GTN) GitHub repository 193 

(https://github.com/galaxyproject/training-material), the tutorials are available online at 194 

http://training.galaxyproject.org. They have been used during several workshops on 195 

metagenomics data analysis with ASaiM as training support. These tutorials are also 196 

accessible directly from ASaiM and its documentation for self-training. 197 

Installation and running ASaiM 198 

Running the containerized ASaiM simply requires to install Docker and to start the ASaiM 199 

image with: 200 

$ docker run -d -p 8080:80 quay.io/bebatut/asaim 201 

Thanks to Docker, ASaiM can be installed under every operating systems, even with a 202 

graphical tool (Kitematic: https://kitematic.com) on OSX and Windows. 203 

ASaiM is production-ready. It can also be configured to use external accessible computer 204 

clusters or cloud environments.  205 

It is also possible and easy to install all or only a subset of tools of the ASaiM framework on 206 

existing Galaxy instances. The set of available tools can be easily extended either only a 207 

given instance using the Galaxy admin interface or for ASaiM more generally thanks to the 208 

simple definition of the installed tools in YAML files available in ASaiM GitHub repository. In 209 

the latter case, the Docker image will be automatically rebuilded and the already integrated 210 

tools will be updated to keep ASaiM up-to-date. For reproducibility reason, every version of 211 

the Docker image is associated to a tag and is conserved. 212 

Conclusion 213 

ASaiM provides a powerful framework to easily and quickly analyze microbiota data in a 214 

reproducible, accessible and transparent way. Built on a Galaxy instance wrapped in a 215 

Docker image, ASaiM can be easily deployed with a comprehensive set of tools and their 216 

dependencies. These tools are complemented with a set of predefined and tested workflows 217 
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to address the main microbiota questions (community structure and functions). All these 218 

tools and workflows are extensively documented online (http://asaim.readthedocs.io) and 219 

supported by Galaxy Interactive Tours and tutorials. 220 

With this complete infrastructure, ASaiM offers a good environment for sophisticated 221 

microbiota analyses to scientists without computational knowledge, while promoting 222 

transparency, sharing and reproducibility. 223 

Methods 224 

For the tests, ASaiM was deployed on a computer with Debian GNU/Linux System, 8 cores 225 

Intel(R) Xeon(R) at 2.40 GHz and 32 Go of RAM. The workflow has been run on two mock 226 

community samples of Human Microbiome Project (HMP), containing a genomic mixture of 227 

22 known microbial strains. The details of comparison analyses are described in the 228 

Supplementary Material. 229 

Availability of supporting source code and requirements 230 

● Project name: ASaiM 231 

● Project home page: https://github.com/ASaiM/framework 232 

● Operating system(s): Platform independent 233 

● Other requirements: Docker 234 

● License: Apache 2 235 

All tools described herein are available in the Galaxy Toolshed 236 

(https://toolshed.g2.bx.psu.edu). The Dockerfile to automatically install deploy ASaiM is 237 

provided in the GitHub repository and a pre-built Docker image is available at 238 

https://quay.io/repository/bebatut/asaim-framework. 239 
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Figure 1: Main ASaiM workflow to analyze raw sequences. 340 

This workflow takes as input a dataset of raw shotgun sequences (in FastQ format) from 341 

microbiota, preprocess it (yellow boxes), extracts taxonomic (red boxes) and functional 342 

(purple boxes) assignations and combines them (green boxes). 343 

Image available under CC-BY license (https://doi.org/10.6084/m9.figshare.5371396.v3)  344 

 345 

Figure 2: Comparisons of the community structure for SRR072233. 346 

This figure compares the community structure between the expectations (mapping of the 347 

sequences on the expected genomes), data found on EBI Metagenomics database 348 

(extracted with the EBI Metagenomics pipeline) and the results of the main ASaiM workflow 349 

(Figure 1). 350 

 351 

Figure 3: Example of an investigation of the relation between community structure and 352 

functions. 353 

The involved species and their relative involvement in fatty acid biosynthesis pathways have 354 

been extracted with ASaiM workflow (Figure 1) for SRR072233 355 

 356 
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