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Dear Dr. Edmunds,

We are resubmitting a revised manuscript of “FAST-SG: An alignment-free algorithm
for hybrid assembly”.  We have carefully considered all the minor points raised by the
reviewers and editors.
Our point-by-point answers to the editor’s and to the reviewers’ minor points are the
following:

Point raised by the Editor:

Your manuscript "Fast-SG: An alignment-free algorithm for hybrid assembly" (GIGA-D-
17-00335R1) has been assessed by our reviewers. Based on these reports, and my
own assessment as Editor, I am pleased to inform you that it is potentially acceptable
for publication in GigaScience, once you have carried out some very minor revisions
suggested by our reviewers and have also created a snapshot of the code and any test
data in our GigaDB repository that you will need to cite in an "Availability of supporting
data" section. I've cc'd our curators here and they can help you put this together.

A: We have followed the Editor’s suggestion and we deposited a snapshot of the Fast-
SG code as well as all the datasets and results described within the manuscript in the
GigaDB repository. Currently, the GigaDB page describing this information is the
following:

http://gigadb.org/dataset/view/id/100437/token/hyKuNQtlVs0v5R2D

The GigaDB curators on 16/04/2018 should finish the page and provide the final link to
the Fast-SG repository.

Points raised by Reviewer #1:

Reviewer #1: Thank you for addressing my comments to satisfaction. Addition of
"Procedure for effective hybrid assembly with FAST-SG" section would be very useful
for the users.

Suggestion:
I think that Pie-chart representation of scaffolding errors (in previous version) appears
neat as compared to current bar-chart. I only requested a minor change to convert the
percentage values in pie chart to real numbers. Sometimes, percentage values in pie
charts could be a misleading comparison because same percentage value in two pie
chart could represent very different real numbers.

Authors can decide which figure to include in the manuscript and I have no reservation
with that decision.

A: We followed the Reviewer’s suggestion and we went back to the pie chart figure.
We do thank again the Reviewer for this positive overview of our work.
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in the figure legends.
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Abstract
Background: Long read sequencing technologies are the ultimate solution for genome repeats, allowing near reference
level reconstructions of large genomes. However, long read de novo assembly pipelines are computationally intense and
require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes.
Alternatively, hybrid assembly methods which combine short and long read sequencing technologies can reduce the time
and cost required to produce de novo assemblies of large genomes.
Results: In this paper, we propose a new method, called FAST-SG, which uses a new ultra-fast alignment-free algorithm
speci�cally designed for constructing a sca�olding graph using light-weight data structures. FAST-SG can construct the
graph from either short or long reads. This allows the reuse of e�cient algorithms designed for short read data and
permits the de�nition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and
benchmarks, we show how FAST-SG outperforms the state-of-the-art short read aligners when building the sca�olding
graph, and can be used to extract linking information from either raw or error-corrected long reads. We also show how a
hybrid assembly approach using FAST-SG with shallow long read coverage (5X) and moderate computational resources can
produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878).
Conclusions: FAST-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low e�ort,
high portability and low cost.
Key words: Hybrid assembly; Genome sca�olding; Alignment-free;
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Findings

Background

The major challenge of whole genome de novo assembly is to solve repeats [1, 2]. These correspond to nearly identical genomic
sequences that occur at multiple locations in a genome. To address this challenge, two major types of approaches have been
proposed, one using paired short reads [3] and the other long reads [4].
In the second case, the aim is to hopefully entirely capture the repeats within the long reads. The non repeated su�x and pre�x

sequences of such long reads are used to compute unique overlaps, which then allow to unambiguously expand the original reads
into larger ones, called contigs, in a process that may sometimes (but not always) directly lead to inferring the entire genomic
sequence.
The �rst type of approach instead needs to be associated to an operation called genome sca�olding. The short reads are still

�rst assembled into contigs as above, either by also computing overlaps [5] or by using de Bruijn graphs [6]. The contigs obtained
in this case will however not span the whole genome. Indeed, most often they will be much shorter. They then need to be joined
(i.e. linked together) in a second step. The linking information is in general provided by paired-end or mate-pair sequencing.
Commonly, genomic fragments larger than 1kb from which both ends are sequenced are denoted as mate-pair libraries, otherwise
they are referred to in the literature as pair-end libraries. Genome sca�olding that uses paired short reads introduce gaps (i.e.
unknown sequences) between the contigs, thereby once again not leading to the entire genomic sequence but to a set of so-called
sca�old sequences, or sca�olds for short. A sca�old thus represents a set of ordered and oriented contigs.
The genome sca�olding problem was �rst formulated by Huson et al. [7]. The method proposed by the authors started by

building what is called a sca�olding graph where the nodes represent the contigs and the edges encode the number of mate-pairs
(weight), the orientation and the distance between two di�erent contigs. A greedy algorithm is then used to heuristically obtain
optimal paths that will correspond to the sca�old sequences.
Most of the sca�olding methods that have been developed since use the same type of graph, built with ultra-fast short-read

aligners [8, 9, 10] as a foundation for the sca�olding [3]. Algorithmic innovations in the area are mainly focused on how to
select optimal paths (usually those of maximal weight) and thus obtain large and accurate sca�olds. Various approaches have
been proposed, based on dynamic programing [11], breadth-�rst search [12], maximum weight matching [13], or branch and
bound [14], among others.
The new long read sequencing technologies (Paci�c Biosciences, Oxford Nanopore) suddenly changed the genome assembly

scene by producing very long (>10kb) reads that however contain a high level of errors (on average 15% at the current
time). These new technologies nevertheless extended the landscape of solvable repeat sequences [15]. Currently, de novo assem-

blers that use such long reads [4, 16] are thus able to �nish bacterial genomes and to produce highly continuous reconstructions of
human genomes [4, 17]. However, de novo assemblies of large genomes based on computing overlaps [5] are computationally in-
tense [4] and require a considerable amount of coverage (50X) to error-correct the inaccurate long read sequences by self-correction
methods, thereby hindering a broad application of these methods to the de novo assembly of large genomes [17].
De novo assemblies using long reads have nevertheless proven to be scalable to chromosomes [18, 19] when associated with

complementary long range information from novel library preparation techniques [20, 21]. Such new experimental libraries are
sequenced on Illumina machines leading to conventional paired-end reads. DOVETAIL genomics [20] thus produces useful linking
information in the range of 1-200kb, while 10X genomics [22] produces, by using barcodes in a clever manner, linked-reads in the
range of up to 100kb. Both technologies then use such long-range information within their assembly pipelines [20, 22] to build
a sca�olding graph to which they apply their own algorithmic solutions to obtain the sca�old sequences. Both technologies were
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conceived with the aim of replacing the expensive and time consuming experimental protocols required to produce long-range
mate-pair libraries [23, 24] with short-read sequencing.
In principle, long-range information can be extracted directly from long reads in ranges restricted to the latter’s actual sizes.

Such information can then be used to devise a hybrid assembly method, where high quality contigs from short read assemblies
are used as nodes of the sca�olding graph, edges are created using linking information from the long reads, and the sca�olds are
generated by a short read sca�older. However, there is currently a lack of algorithms for building a sca�olding graph from the
long reads. Such algorithm would allow the reuse of e�cient existing short-read algorithms to compose novel hybrid assembly
pipelines.
Being able to (i) build such a graph from either short or long reads in an ultra-fast way, with moderate computational resources,

while (ii) keeping the structure standard enough to be compatible with the existing e�cient short read sca�olders are the main
challenges that we address in this paper. The method that we propose, called FAST-SG, uses an alignment-free algorithm [25]
strategy as well as information from varied sequence sources (Illumina, Paci�c Biosciences and Oxford Nanopore), and was con-
ceived to maximize scalability, speed, and modularity. The latter characteristic in particular allows to de�ne novel hybrid assembly
pipelines, which permits the e�cient assembly of large genomes.
FAST-SG was extensively tested using a comprehensive set of standard datasets [3, 26] and benchmarks. We show that FAST-SG

enables the hybrid assembly of large genomes and is especially e�ective with shallow long read coverage data (5X-10X). Our hybrid
strategy consists in the construction of several synthetic mate-pair libraries which could have insert size up to BACs (180kb) and
can be combined with a short read sca�older to generate long-range sca�olds. Such strategy scales to human size genomes with
moderate computational resources. Moreover, we show that FAST-SG is faster (7-15X) than classic short read aligners and is a
powerful alternative for sca�olding with short mate-pair data.
We conclude by providing a procedure for an e�ective hybrid assembly with FAST-SG and we discuss how the strategy that we

propose can be extended to use long reads to �ll the gaps and error-correct the sca�old sequences.

Algorithm

FAST-SG index

The FAST-SG index consists of all the unique k-mers present in the set of target contigs at a given k-mer length. For each of them,
we store the position, the strand and the contig of origin, using lightweight data structures such as Minimal Perfect Hashing [27]
and Probabilistic Dictionary [28]. In a �rst step, we de�ne the unique k-mers as being those having a frequency equal to 1 from
the total set of distinct k-mers present in the target contig/genome sequences. To identify unique k-mers, we use KMC3 [29],
an ultrafast, parallel and memory frugal k-mer counter. In a second step, each unique k-mer is hashed to the space of [20, 264]
using a rolling hash function [30] and with hash values written on the �y to a binary �le. Rolling hashing has the nice property
of computing hash values for consecutive k-mers in a sequence in O(k + l) time, where k is the k-mer length, l is the sequence
length, and k < l. We use an e�cient library implementation of rolling hash algorithms called NTHASH [31], which implements a
barrel shift function and a seed table of integers to compute hash values in both DNA strands faster.
In a third step, the static hash values stored in the binary �le are used as input to create a Minimal Perfect Hash Function

(henceforth denoted by MPHF). MPHF provides a collision-free and minimal space way to store and look-up hash values in constant
worst-case access time for static sets. We use the library implementation provided by Limasset et al. [27], called BBHASH, which is
simple, parallel, fast and memory frugal. Moreover, it can store 1010 hash values using moderate computational resources (5Gb).
The major feature of MPHF is its ability to map each key of S (in our case, the unique k-mer hashed values) to an integer in the
interval [1,N] (injective function), with N = |S|, while avoiding the implicit storage of hash values by using cascade hash functions
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in conjunction with bit vectors. A signi�cant parameter of BBHASH is the γ (gamma) factor. We use a γ factor equal to 4, which
is an optimal value for fast query time, fast construction and low memory usage [27]. When performing a query in the MPHF
structure, it returns an index in the interval of [1,N] which has the same size of the static set S, allowing to store related data for
each s ∈ S using simple arrays. If we query a key not present in the initial static set S, MPHF could return a value in the interval
[1,N] that is a false positive [28].
In a fourth step, to control the false positive rate (p) of MPHF, we use a probabilistic set [28]. For each indexed element s ∈ S

(unique k-mers), we store a �ngerprint value using 16 bits in an array of size N = |S| at the corresponding MPHF index of s. The
�ngerprint is built by re-hashing the hash value of s using the xor-shift hash function in the range [20, 216] and storing it in a
bit-set array structure. We selected a �ngerprint of size 16 bits, because it has a low false positive rate p = 1/216 = 0.0000152.
Finally, we added the associated contig_id, strand and coordinate values of each unique k-mer stored in the MPHF and the

probabilistic dictionary (MPHF-PD), by performing a single pass through the set of contigs/genome sequences, using the same
k-mer size. For each k-mer hit, we store the values (contig_id, coordinate and strand) in the index returned by the MPHF-PD
structure using three vectors having the same size as the set S. After storing all the associated values, we end our index construction
and return a reference to the new object. This object is the FAST-SG index. The memory required per k-mer is composed of 6 bits
for the MPHF, 16 bits for the probabilistic dictionary, 32 bits for the contig_id, 32 bits for the position, and 1 bit for the strand,
adding to a total memory of 87 bits.

FAST-SG alignment-free method

The core of FAST-SG is an alignment-free algorithm speci�cally designed to construct the sca�olding graph from either short or
long reads using light-weight data structures. Such graphs are built using as information the read pairs that map uniquely to
di�erent contigs. If the mappings are within an expected distance from one another given the respective orientation of the reads,
an edge is added to the graph between the contigs [3]. The uniqueness property of the mapping is ensured by its high quality
score which represents the con�dence that the read indeed belongs to the reported genomic location [9, 10]. When a read belongs
to two possible genomic locations, a score of 0 is commonly assigned.
Current short read aligners identify the high quality score mappings by indexing all the k-mers present in the set of contigs

and using a seed-and-extend [9, 10] alignment approach. Instead, in FAST-SG, only the k-mers having a frequency equal to 1 are
considered and no alignment is performed. After building the FAST-SG index, the contig location for a pair of reads is determined
following a number of steps as illustrated in Figure 1a.
The �rst step performs look-ups of the k-mers of the forward (resp. reverse) read sequence (on both strands by using a rolling

hash function) in the FAST-SG index, and �lls a vector of hits of a prede�ned size. The size of the vector depends on the error
rate of the sequencing technology. The default chosen in FAST-SG is of 10 for Illumina and 20 for the long-read technologies. In
a second step, the forward (resp. reverse) vector of the k-mer hits is sorted by contig and, inside each contig, by coordinate. In
the third step, a score is computed for the forward (resp. reverse) read that corresponds to the maximum number of hits falling
inside a window of size equal to the length of the read. If the score of both reads in a pair reaches a prede�ned minimum, in a
fourth step the genomic location of the pair is reported. Otherwise, a pair rescue is attempted (�fth step) by �xing the location of
the best scored read and looking for a k-mer hit in the mate-pair that satis�es the expected distance and orientation (Figure 1a).
A major parameter of the algorithm is the k-mer size as this governs the number of unique k-mers to be indexed in a given

genome, or in our case, a set of contigs. In Figure 1b, we show how the number of unique k-mers increases as a function of the
k-mer size in the human genome (GRCh38.p10). However, large k-mers need reads with low error rates for a successful match.
To de�ne an appropriate k-mer size, it is necessary to take into account both the error rate and the length of the query sequence.
Almost all short read aligners use as seeds short k-mers (15-32 base pairs) because they have a low probability of containing
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errors and provide enough speci�city [32, 9, 10]. Additionally, the available long read algorithms such as CANU [4], LORDEC [33],
and MASURCA [34] among others, employ short k-mers (15-19 base pairs) at some stages to deal with the large error rates (15%)
present in the current long read technologies. In practice, FAST-SG supports a k-mer size of up to 256 base pairs, but for the
Illumina reads, values of k between 15 and 80 were tested while for long reads, these ranged from 15 to 22 base pairs,
which according to our benchmarks provide enough speci�city, even for large genomes (Figure 1b). There are for instance 1.83

billion unique 19-mers (Figure 1b) in the human genome, which is a good approximation of the non-repetitive regions for this
genome [2].
Another issue of working with k-mers is the memory required for storing them for fast look-ups. This was addressed by

implementing a novel probabilistic data structure (FAST-SG index) which only requires 87 bits per k-mer, while memory increases
as a function of the number of unique k-mers to store (Figure 1c). To index in memory all the unique k-mers of the human genome
at a given k-mer size (<256bp) therefore requires less than 30Gb of memory (Figure 1c).
Finally, the genomic location of the read pairs is reported using a single representative unique k-mer for each read in SAM

format [35], thus allowing for an easy integration with sca�olders that support this standard format. The steps of scoring and
pair rescuing follow some of the ideas used in the SSAHA [32] and BWA-MEM [36] aligners.

Illumina mate-pair reads alignment

Illumina mate-pair reads are aligned using the algorithm described previously (FAST-SG alignment-free strategy). The forward
read (QF) is iterated k-mer by k-mer where for each k-mer, we ask if it is present in the FAST-SG index until 10 hits are stored in
the vector vectorFUH. If the score of QF is larger than 3, we attempt to �ll the vector vectorRUH (QR) of the reverse read. Then, if
the score of each read is larger than 5, the positions are reported. Otherwise, we attempt pair rescue by �xing the position of the
best-scored read and requiring a minimum score of 4 for the rescued read. These parameters of minimum and pair-rescue scores
were set from empirically derived defaults. Such default short read parameters can be modi�ed by the user.

Extraction of synthetic pairs from long reads

Synthetic pairs of reads (QF and QR) are extracted from the long-read sequences having a default read length of 200 base pairs in
forward-reverse orientation and separated by a distance D (insert size). Multiples values of D can be speci�ed to comprehensively
extract linking information from the long reads. After extracting a synthetic pair, each query sequence (QF and QR) is aligned
using the algorithm described previously (FAST-SG alignment-free strategy). A minimum score of 15 and a minimum rescue score
of 4 are used as default parameters. Then, as default, a moving window of 100bp is adopted to extract another pair, until the
complete long read sequence is scanned. The default long read parameters can be modi�ed by the user.

Estimation of the genomic library parameters

The genomic library parameters for insert size, standard deviation and orientation are estimated using a subset of the mate-
pair sequences in order to use them in the rescue step of FAST-SG. These subsets of mate-pair reads are aligned to the target
contigs/genomes, and the read pairs located within contigs are used to estimate the library parameters. For Illumina, we use a
total of 100,000 pairs which are aligned to the target sequences using a minimum score of 8 and without pair rescue. Then, for
each aligned pair within contigs, we save the pair orientation and distance. To infer the average insert size and standard deviation,
we remove 10 percent outliers from both tails of the values stored by sorting the observed insert sizes by increasing order. The
orientation is computed using a majority rule on the four possible orientations for a pair of reads (FR, RR, FF, RF). For long reads,
we use a total of 1,000 long read sequences and we extract the speci�ed insert sizes to infer the average insert size and standard
deviation as for the Illumina reads. The orientation for the synthetic libraries is not estimated because all pairs are created in
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forward-reverse orientation.

Concurrent steps of FAST-SG

The index construction and alignment steps in FAST-SG are concurrent. The FAST-SG index can use multiple threads to construct
the MPHF [27] and store the associated k-mer information (contig_id, coordinate, strand). Chunks of 5Mb of contig sequences are
used to populate in parallel the FAST-SG index. The FAST-SG alignment step is concurrent by taking chunks of 500,000 and 1,000
for the short and long reads respectively. The concurrent steps are implemented using the PTHREAD library. The user speci�es the
number of CPUs to be used.

Data Description

Datasets and software

We collected a comprehensive collection of standard datasets (Table 1) which are frequently used to benchmark the new sequencing
technologies, sca�olding tools or genome assembly pipelines.
Long read datasets were used to investigate the capacity of FAST-SG to extract linking information from long reads, and then

the performance of short read sca�olders fed with FAST-SG when compared to a dedicated long read sca�older. In the �rst case,
the genome of Escherichia coli K.12 was adopted as it have been sequenced by multiple long read technologies and is commonly
used to validate the long read algorithms [4]. In the second case, both E. coli K12 and Saccharomices cerevisiae W303 (Table 1) were
employed to prove that short read sca�olders can use synthetic mate-pair libraries extracted from long reads.
To explore the amount of long read coverage required by the hybrid solutions, we compared the performance of the latter to the

results obtained by CANU [4], a state-of-the-art long read assembler. In a �rst step, we used the genome of Arabidopsis thaliana,
and then in a second step, a complete human genome (NA12878, Table 1). NA12878 was selected because it was sequenced on a
variety of platforms [17, 22, 20, 37] and assembled by a variety of algorithms [4, 34, 22, 20]. It thus allows to compare the complete
landscape of currently available long-range technologies and assembly pipelines.
To assess the performance of FAST-SG for constructing the sca�olding graph from short reads, we employed all the short

read datasets and Illumina assemblies de�ned in Hunt et al. [3]. These short read datasets include the genomes of Staphylococcus
aureus, Rhodobacter sphaeroides, Plasmodium falciparum and the human chromosome 14 (Table 1), and are commonly used as the
gold standard for validation of the sca�olding tools [14, 13, 12, 11].
We coupled FAST-SG with two well established sca�olders, namely OPERA-LG [11] and BESST2 [12], and two more recently

published ones, namely SCAFFMATCH [13] and BOSS [14], to produce sca�old sequences from short or long read data. All the
chosen sca�olders have di�erent algorithms to select optimal paths from the sca�olding graph and use the SAM/BAM format as
input. BESST2 was excluded from the hybrid sca�olding experiments due to an exception produced while BESST2 computes the
average contig coverage from synthetic mate-pair libraries. All the software and reference genomes used are described in the
Supplementary Material 1.

Short and long reads benchmarks

All sca�old sequences generated from alignments produced by FAST-SG, by the short read aligners, and by LINKS were evaluated
following the standard de�ned by Hunt et al. [3]. For each dataset, the true contig layout is known and the sca�old sequences were
compared against it in order to determine the following sca�olding errors (represented as a bitwise �ag):

0 = Correct pair of contigs.
1 = Contigs originated from same reference sequence, but their orientation in the sca�olds is incorrect.
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2 = Contigs originated from di�erent reference sequences.
4 = Contigs originated from the same reference sequence, but are the wrong distance apart.
5 = 4+1, Contigs originated from same reference sequence, but their orientation and distance in the sca�old are incorrect.
8 = Contigs originated from the same reference sequence, but are not in the correct order.
12 = 8+4, Contigs originated from the same reference sequence, but are not in the correct order and distance.

From the previous values, we computed the F-Score metric, which was �rst introduced by Mandric and Zelikovsky [13], and
adopted in Luo et al. [14] also with the purpose of improving and summarising in a single metric the performance of a sca�olding
tool. In brief, if we denote by P the number of potential joins that can be made, TP the number of correct joins performed by a
sca�older (true positives), and FP the number of wrong joins (false positives), we can calculate the following quality metrics:

Recall = TPP

Precision = TP(TP+FP)

F – Score = 2 (Recall∗Precision)(Recall+Precision)

The structural quality of the hybrid and de novo assemblies was determined via direct comparison against the nearest reference
genomes available using NUCMER [38] and reported using the GAGE statistics [26] which from 1-to-1 alignments evaluates both the
identity and the structural breakpoints (inversions, relocations and translocations). All commands executed in each benchmark
are speci�ed in the Supplementary Materials 2 to 5.

Results

Extracting synthetic mate-pair libraries from long reads

Despite the high per-base error rate of the long reads technologies, the long-range information encoded in a long read has proven
to be highly accurate. On the other hand, current experimental protocols to produce long-range mate-pair libraries using short
read technologies are time-consuming and expensive [23, 24]. Moreover, library contamination occurs when the circularization
step fails during construction, resulting inmate-pairs with short insert size and in the wrong orientation [12]. Extracting synthetic
mate-pair libraries directly from long reads could improve the performance of the current short read sca�olders and replace the
need for sequencing multiple mate-pair libraries for sca�olding.
To demonstrate the utility of FAST-SG to create synthetic mate-pair libraries from long reads, we collected the latest chemistry

data sequenced with the Oxford Nanopore (1D reads sequenced on R9.2 �ow cells) and Paci�c Biosciences (Sequel System) tech-
nologies, respectively denoted by ONT and PacBio from now on, for the genome of Escherichia coli K12 (Table 1). The long reads
were error-corrected using Illumina reads (Supplementary Material 2) with LORDEC [33], a hybrid error-correction method.
FAST-SG was used to generate synthetic mate-pair libraries in the range of 0.5-8kb from the corrected and uncorrected long

reads using a k-mer size of 15, at which 98% of the k-mers are unique in the reference E. coli K12 genome. Synthetic mate-pair
reads were aligned to an Illumina assembly of E. coli K12 (Table 1). Near perfect synthetic mate-pair libraries were obtained with
a low percentage of outliers (<9.85%) for all insert sizes (Figure 2). Moreover, the hybrid error-correction reduced the standard
deviation and allowed the average insert size to get close to the speci�ed size of each synthetic library. However, the hybrid
error-correction increased the number of outliers in both technologies (Figure 2). The observed average insert size (Figure 2) in
the synthetic libraries from ONT are slightly higher than the observed ones in PacBio, thus re�ecting the nature of the error of
each long read technology, which are deletions for ONT [4] and substitutions for PacBio [4].
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We computed the recall achieved by FAST-SG at the levels of the k-mers and of the synthetic mate-pair reads (the length of the
forward and reverse reads equals 200 base pairs) for each long read technology, from either raw or corrected reads (Supplementary
Table S8). At the k-mer level, FAST-SG has a recall of 8.3% and 5.05% for the uncorrected reads of ONT and PacBio, respectively.
The hybrid error-correction increased the k-mer recall by 10% for both long read technologies. At the synthetic mate-pair read
level, we observed a recall of 49.42% and 31.65% for the raw ONT and raw PacBio reads, respectively. The hybrid error-correction
increases the synthetic mate-pair read recall for ONT to 75.12% and for PacBio to 65.02%. We observed that FAST-SG is more
e�ective aligning synthetic mate-pair reads from raw ONT than from raw PacBio reads. We expect that this is due to the nature of
the ONT errors (major deletions) as FAST-SG is designed to deal with short indels. Despite the low k-mer recall, FAST-SG achieved
a decent synthetic mate-pair read recall on this dataset from both long read technologies, and extracted near perfect synthetic
mate-pair libraries. The synthetic mate-pair libraries can be used as input to a short read sca�older to generate sca�old sequences
through a combination of short and long read technologies.

Comparison of FAST-SG coupled with short read sca�olders against LINKS

We compared the results obtained by FAST-SG coupled with OPERA-LG [11], SCAFFMATCH [13] and BOSS [14] against LINKS [39], which
is a sca�older speci�cally designed to extract paired k-mers from long reads and employ them to join contigs.
FAST-SG and LINKS were applied with default parameters (k-mer of size 15) to create the synthetic mate-pair libraries in the

range of 0.5kb to 8kb using as input the uncorrected long reads and Illumina assemblies available for both species (Table 1). Since
LINKS performs better with high long read coverage [39], we subsampled 50X and 30X of coverage from Escherichia coli K12 and
Saccharomyces cerevisiae W303, respectively.
FAST-SG is two times faster than LINKS and requires two orders of magnitude less memory to extract linking information from

the long reads (Supplementary Table S9). The percentages of linked pairs extracted by both methods is comparable (with FAST-SG
being slightly superior) and as expected, the percentage of linked pairs increases as a function of the insert size length for both
long read technologies (Supplementary Table S10).
A more informative comparison involved assessing the quality of the sca�olds [3] produced by LINKS on one hand, and on the

other, by the short read sca�olders coupled with FAST-SG. To evaluate the sca�olding results, the number of correct and erroneous
joins were computed in each test case using the scripts provided in Hunt et al. [3]. Moreover, the F-Score metric (Short and long
reads benchmarks subsection) was employed to summarise in a single statistics the performance of each sca�older. Based on the
F-Score values, the short read sca�olders using FAST-SG reached better or comparable results than LINKS (Figure 3). Moreover,
LINKS produced more sca�olding errors in two out of the three datasets tested (Supplementary Table S11). With respect to the E. coli
dataset, the sca�olding errors made by the short read sca�olders using FAST-SG (Figure 3) were related to the gap size estimation
(type error 4), orientation (type errors 1 and 5), and relocation (type errors 8 and 12). The major source of errors in the sca�olds
produced by LINKS was of type 5. This measures the correct orientation and distance between pairs of contigs (Figure 3). On the S.
cerevisiae W303 dataset, the major source of sca�olding errors was translocation (type error 2) for both methods. However, LINKS
has almost double the number of sca�olding errors compared to FAST-SG coupled with OPERA-LG or BOSS on this dataset (Figure
3, Supplementary Table S11).
Concerning the short-read sca�olders, BOSS and SCAFFMATCH reached higher F-score values than OPERA-LG (Figure 3). However,

they tended to produce more sca�olding errors (Supplementary Table S11). It is important to notice also that the sca�olding errors
observed here can be further reduced because fragmented Illumina assemblies (Table 1) were used in order to maximise the
possibility of the sca�olders to make joins.
Overall, the performance of the short read sca�olders coupled with FAST-SG was superior or comparable to LINKS, a sca�older

speci�cally designed for long reads. FAST-SG thus allows the conversion of tools designed for short read sca�olding into a long
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read sca�older in a fast and modular way.

Using FAST-SG to perform the hybrid assembly of Arabidopsis thaliana (Ler-0)

An important goal of hybrid assembly methods is to reduce the long read coverage required to produce long range genome assem-
blies. Here, we examine the long read coverage required by our hybrid assembly method to produce long range hybrid assemblies
comparable to CANU [4], which is a state-of-the-art de novo long read assembler.
Brie�y, the hybrid assembly using FAST-SG proceeded as follows. In a �rst step, a single Illumina library (Table 1) covering 100X

the Arabidopsis thaliana (Ler-0) genome was assembled using DISCOVARDENOVO [37], which is one of the best tools for assembling
a single Illumina fragment (pair-end) library. The resulting assembly contained a total of 2,384 sca�olds with a N50 of 320kb
and a total size of 119Mb (Table 2). The DISCOVARDENOVO assembly took 6.6 hours on 20 CPUs. In a second step, a total of 50X of
PacBio reads (P5-C3) were error-corrected (Table 1), with the same Illumina reads used for the de novo assembly, using LORDEC.
LORDEC took 14.2 hours on 20 CPUs. In a third step, the error-corrected long reads were randomly subsampled with a coverage
between 5X to 50X, and FAST-SG (using 21-mers) was used to create 12 synthetic mate-pair libraries in the range of 1kb to 20kb
for each subsample. The total number of mate-pair reads aligned at each coverage value ranged from 11.85 to 104.99 million for
5X to 50X, respectively (Supplementary Table 12). On average, 7.2% of the synthetic mate-pair reads aligned by FAST-SG were
linking (i.e. connecting two di�erent contigs) in each subsample. Moreover, a near perfect insert size distribution and a low
percentage of outliers were observed for each synthetic library (Supplementary Figure S1). FAST-SG took 2.15 hours on 20 CPUs to
process the whole dataset. Finally, OPERA-LG, BOSS and SCAFFMATCH were fed with the FAST-SG alignments to produce the sca�old
sequences (Table 2). All short read sca�olders generated sca�old sequences in at most half an hour (OPERA-LG 22min, BOSS 24m
and SCAFFMATCH 30min) using a single CPU.
The hybrid and the CANU assemblies available were structurally validated by a whole genome alignment against the reference

Arabidopsis thaliana TAIR10 genome (Table 2, Supplementary Material 2).
As can be seen from Table 2, all hybrid assembly pipelines were able to produce long-range sca�olds (N50 > 1Mb) with a high

coverage of the reference genome, low number of errors (<2.2%), low amount of sequence gaps (1.46Mb as maximum), and with
an identity higher than any CANU assembly. All hybrid assemblies at 5X of coverage reached a N50 sca�old size comparable to the
contig N50 obtained by a polished CANU assembly requiring 20X of coverage and 100X of Illumina reads (Table 2). Additionally,
all hybrid assembly pipelines seemed to plateau after 30X of long read coverage as was previously observed on this dataset [4].
However, SCAFFMATCH, the most aggressive sca�older tested, at 10X-30X of coverage produced accurate sca�olds having an N50
comparable to the CANU assemblies requiring 50X or 150X of coverage (Table 2).
All assemblies of Arabidopsis thaliana (Ler-0) were comparable in terms of the number and amount of sequences involved in

structural errors (Table 2). Moreover, the major source of structural errors observed in both assembly strategies were mainly
relocations, which explain more than 50% of the amount of sequences involved in miss-assemblies (Supplementary Figure S3).
Overall, we demonstrated that the hybrid assemblies were comparable in terms of continuity, completeness and accuracy to

the assemblies obtained by CANU, which is considered a state-of-the-art de novo long read assembly pipeline. Furthermore, the
proposed hybrid assembly strategy allowed faster and cheaper reconstructions of the Arabidopsis thaliana (Ler-0) genome and was
remarkably e�cient at shallow long read coverage (5X-10X).

Using FAST-SG to perform the hybrid assembly of a diploid human genome (NA12878)

An ultimate benchmark for any assembly method or sequencing technology is to assemble a complete human genome [40, 20, 22,
4, 34]. We performed a hybrid assembly of the Utah/Ceph NA12878 human diploid genome using a low coverage (5X) of ultra-long
Nanopore reads (Table 1, Jain et al. [17]), a DISCOVARDENOVO assembly built from 50X of 250bp Illumina reads (Table 1, Weisenfeld
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et al. [37]), FAST-SG and SCAFFMATCH [13].
FAST-SG (using 22-mers) was run to create 20 synthetic mate-pair libraries in the range of 2kb-180kb using as input a total of

1.4 million uncorrected Nanopore reads (N50 64.75Kb, Table 1), which have a total size of 23.11Gb and cover about 7X of the human
genome. A total of 455.9 million synthetic mate-pair reads (11.15% linking contigs, Supplementary Table 13) were aligned to the
DISCOVARDENOVO assembly, with a near perfect distribution of insert sizes and a low percentage of outliers observed (Supplementary
Figure S2). FAST-SG required 8 hours using 20 CPUs to complete the task and used a maximum of 25Gb of memory. SCAFFMATCH
was then fed with the alignments of FAST-SG and took 5.18 hours using a single CPU with a peak memory of 30.87Gb to generate
the sca�old sequences. The resulting hybrid assembly is referred here to as the DFS (DISCOVARDENOVO+FAST-SG+SCAFFMATCH)
assembly.
We evaluated the accuracy of the DFS assembly together with the public assemblies of NA12878 that were built using CANU [17],

MASURCA [34], 10X genomics [22] and DOVETAIL genomics [20] by means of whole genome alignments against the complete
human reference genome (Table 3).
In terms of continuity (N50, Table 3), the DFS assembly is more than 4X larger than a MASURCA hybrid assembly built with the

same long read dataset and 100X of Illumina reads (http://masurca.blogspot.cl/2017/06/masurca-assembly-of-na12878-low.html).
Moreover, it is comparable to a polished CANU assembly built with 35X of long read coverage [17]. DOVETAIL genomics and 10X
genomics reached larger N50 sca�olds (Table 3), which are 2.5X and 3.7X larger than the DFS assembly, respectively. All assemblies
are comparable in terms of size, 1-to-1 alignment length and coverage of the reference genome (Table 3).
In terms of identity (Table 3), DOVETAIL genomics and DFS are the leading pipelines. DOVETAIL genomics and DFS both use

the DISCOVARDENOVO assembly as input for sca�olding. Both software maintain the high identity of the DISCOVARDENOVO assembly
because contig bases are not changed in the sca�olding process.
As concerns the structural errors, all assembly pipelines are highly accurate with less than 1% of the total 1-to-1 alignment

length involved in such errors (Table 3, Supplementary Figure S4). Moreover, translocation is the structural error that accumu-
lates the greatest amount of miss-assembled bases on all assembly pipelines (Table 3). A more detailed inspection of the 1-to-1
alignments revealed that DFS, 10X genomics and DOVETAIL genomics tend to skip the short contigs (Supplementary Table S14),
which is a known problem of sca�olding tools [3]. However, more complex miss-assemblies involving several structural errors
were observed in the chimeric contigs assembled by CANU and MASURCA (Supplementary Table S15).
In terms of speed, the whole DFS pipeline (933 CPU hours) was 22X times faster than MASURCA (21.000 CPU hours; personal

communication), 162X times faster than CANU (151.000 CPU hours Jain et al. [17]), and comparable to 10X genomics and DOVETAIL
genomics.
Finally, we call attention to the fact that the hybrid assembly solution which we propose (using 14 �ow cells and 50X of 250bp PE

reads sequenced on Hiseq2500) is approximately 3 times cheaper than the CANU solution (using 53 �ow cells and 50X of Illumina).
In summary, we demonstrated in this experiment that the DFS hybrid assembly pipeline produced an accurate and long-range

reconstruction of a diploid human genome that was faster and cheaper than the current state-of-the-art long read assembly
pipelines.

Compatibility of FAST-SG with Illumina mate-pair libraries

In this section, we explore the usefulness of FAST-SG as an alternative to commonly used short read alignment software for
sca�olding graph construction from short read data. Indeed, Hunt et al. [3] demonstrated that the quality of the sca�olding results
is highly dependent on the short read aligner used, and that precision is more important than maximizing the number of reads
aligned to the contigs.
We assessed the performance of FAST-SG for aligning short reads on simulated Illumina data from the complete human reference
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genome (GRCh38.p10, Supplementary Material 4) together with BOWTIE [8], BOWTIE2 [10], BWA-MEM [36] and BWA [9], which are
commonly used short read aligners for constructing a sca�olding graph [3].

Our results show that the FAST-SG precision is high for any k-mer size (99.21% asminimum), is superior to BOWTIE2-LOCAL (98.17%),
and is comparable to BOWTIE2-GLOBAL (99.74%). However, BWA-MEM (99.97%) is the leading tool (Supplementary Table S16). In
terms of speed, FAST-SG performs the best. Indeed, it is between 7X to 14X times faster (depending on the k-mer size) than the
next fastest program, which is BOWTIE2-GLOBAL (Supplementary Table S16). The recall of FAST-SG depends on the k-mer size used
(Supplementary Table S16, Figure 1b). The recall of FAST-SG (71.67%) is comparable to the one BOWTIE (71.52%) for optimal k-mer
values (k=25-30). Larger k-mer values (k > 50) decrease the recall of FAST-SG due to sequencing errors and read length. To map
short reads of 101 base pairs in length, we therefore recommend to use k-mer values in the range of 25-30 base pairs.

A more informative evaluation consists in assessing the performance of FAST-SG on real Illumina data. Such evaluation was
done on four real test cases (Table 1) and using four short read sca�olders. The short reads were aligned using FAST-SG and the
aforementioned short read aligners. The sca�olders were fed with such alignments and run with identical commands overall (Sup-
plementary Material 5).

In relation to the number of paired reads mapped (Supplementary Figure S5), FAST-SG aligned on average more pairs than
BOWTIE or BWA, and was comparable to BOWTIE2-GLOBAL. It however aligns less pairs than BOWTIE2-LOCAL or BWA-MEM. From the
number of paired reads aligned across the four test cases, we notice that the behaviour of FAST-SG depends on the k-mer size chosen.
With larger sizes, FAST-SG resembles global methods, while with shorter sizes, it is closer to local methods (Supplementary Figure
S5).

The average contig read-coverage statistics which is used to tag the repeated contigs before sca�olding [2] was extracted
from the results of OPERA-LG. Such statistics were employed to compute a pairwise Pearson correlation to determine the linear
relationship between the short read aligners and FAST-SG (Supplementary Figure S6). We observe that the average contig read-
coverage computed from the FAST-SG alignments correlated more on average with BOWTIE (x=0.933), BWA (x=0.905) and BOWTIE2-
GLOBAL (x=0.814) than with BWA-MEM (x=0.772) or BOWTIE2-LOCAL (x=0.725) on the datasets of S. aureus, R. sphaeroides and P.
falciparum (Supplementary Figure S6).

The results of the four test cases in terms of F-score and error rate are illustrated in Figure 4 and detailed in Supplementary
Tables S17 to S20. For almost all the test cases and sca�olding tools, FAST-SG reached the largest F-score (Figure 4) for some
k-mer values. Moreover, FAST-SG had a superior average performance in terms of F-score in relation to the four sca�olders tested
in 2 out of the 5 datasets (Figure 4, vertical lines) and allowed the sca�olding tools to obtain more accurate sca�olding results in
4 out of the 5 datasets (Figure 4, vertical lines).

The low GC content genome of Plasmodium falciparum proved to be particularly challenging to the sca�olders using local align-
ment methods (namely BWA-MEM or BOWTIE2-LOCAL). These indeed tended to produce several wrong joins (Figure 4), indicating
that the local alignment methods are not an appropriate choice for sca�olding this genome. A possible explanation for the poor
performance observed in this particular case is that the local alignment methods mapped 10% more reads than the global ones
and than FAST-SG (Supplementary Figure S5), but there is a low correlation in the average contig read-coverage between the local
alignment methods and FAST-SG (Supplementary Figure S6), suggesting many wrong mappings in the extra 10% aligned reads.

In conclusion, over the four test cases and four sca�olders benchmarked, FAST-SG consistently reached better sca�olding results
than the short read aligners evaluated and may be considered as an e�ective tool for constructing a sca�olding graph from short
reads.
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Procedure for e�ective hybrid assembly with FAST-SG

The de novo assembly of a large genome is a di�cult task. Genome complexity (size, repetitiveness, heterozygosity, polyploidy), as
well as the algorithm and the sequencing platform adopted are all factors that may a�ect the quality of the resulting assembly. In
this paper, we provide a procedure for an e�ective hybrid assembly using FAST-SG that is based on our experience and benchmark
results.
The �rst step is to produce the best possible Illumina contig assembly (Figure 5, N50 > 100kb). To achieve this, we recommend

the use of a single Illumina fragment library (paired-end) prepared using a PCR-free protocol (550 bp insert size). The Illumina
library should be sequenced using either the MiSeq or the HiSeq2500 platform to generate paired reads of 250 bases at about 60X
of genome coverage [37]. The Illumina library must be assembled with a de Bruijn graph assembler supporting a large k-mer size
(k = 200) or a multi k-mer approach [41]. We tested DISCOVARDENOVO (k = 200) and obtained good quality contigs (N50 > 100Kb),
but either ABYSS [42] or SPADES [41] can be used to create the contigs.
The second step is to sequence at shallow coverage (5X-10X) the longest possible reads by using the ONT or PacBio technolo-

gies (Figure 5). At the moment, we recommend the use of 1D ONT reads because the latest ONT machines produce longer reads
than PacBio machines and FAST-SG is more adapted to the error pro�le of ONT than of PacBio. In cases where ONT reads are not
available, we recommend to hybrid error correct the PacBio reads using LORDEC (k = 19 – 21) before applying FAST-SG (Figure 5).
The third step is to use FAST-SG to comprehensively extract linking information from the long reads by creating multiple-

insert-size synthetic mate-pair libraries that lead to an improved sca�olding [43, 44]. In practice, we were able to create synthetic
mate-pair libraries in the range sizes of 2-20 kb and 2-180 kb from PacBio and ONT (ultra-long reads), respectively. The k-mer
size parameter of FAST-SG depends on the quality of the long reads. With raw long reads, we recommend to use short k-mer sizes
(k = 17 – 22) to overcome the high error rate. Larger k-mer sizes (k = 17 – 40) can be used with error corrected long reads or with
Illumina mate-pair libraries (Figure 5). After running FAST-SG, we recommend to verify the quality of each synthetic mate-pair
library generated. To check the synthetic librairies, it is possible to plot the distribution of the observed insert size statistics which
are computed from the read pairs aligned within contigs. Figure 2 and the Supplementary Figures S1 and S2 provide examples of
such distribution. Additionally, statistics of the percentage of outliers and standard deviation can be computed from the observed
insert sizes. For instance, a high percentage of outliers (>30%) or a larger than expected standard deviation (>30% of average) are
both indicative of a low quality synthetic library. The latter must be discarded from the sca�olding step. FAST-SG computes and
reports (log �le) the observed average insert size for each synthetic library, which allows for an easy identi�cation of low quality
synthetic libraries.
The fourth step is to select a short read sca�older. We showed that there are two classes of short read sca�olding tools, one

more conservative (this class includes OPERA-LG and BESST2) and another more greedy (which includes BOSS and SCAFFMATCH).
The greedier sca�olders reach higher F-score values than the conservative ones. However, the greedy ones tend to produce more
sca�olding errors (Figure 3-4). According to our evaluations, we recommend a more greedy sca�older (SCAFFMATCH) when the
Illumina contig assembly is not highly fragmented (N50> 100Kb). Otherwise, a more conservative sca�older (OPERA-LG) should
be used to avoid sca�olding errors.
Finally, a full hybrid assembly example is described step-by-step in the following wiki-page of FAST-SG (https://github.com/

adigenova/fast-sg/wiki/Hybrid-scaffolding-of-NA12878).

Discussion

The proposed hybrid assembly method could be improved by using the sequence between the synthetic mate pairs (inner sequence),
either for assigning a new weight to the edges before sca�olding, or for placing the skipped contigs after sca�olding. An edge
of the sca�olding graph can be re-weighted by computing the edit distance among the inner sequences and then eliminating the
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pairs having a large edit distance. EDLIB [45] is an e�cient library that could be used to perform this task. The skipped contigs
can be unambiguously placed by computing a consensus sequence of the sca�olding gaps from the inner sequences, and then
aligning the skipped contigs to the consensus gap sequence taking into account the lengths of the gap and of the skipped contig.
The consensus of the inner sequences can be computed in a faster way using the SPOA library, which implements a partial order
alignment algorithm [46]. These two improvements coupled with an appropriate ultra-long Nanopore read coverage (10X) could
lead to an hybrid assembly pipeline that is superior to the current long-range mate-pair technologies where these improvements
are not possible due to the fact that, in both technologies, the gap sequence between pairs is unknown.
Clearly, improvement in the base accuracy of long reads will increase the recall of FAST-SG and thus impact positively on

the hybrid assembly process. Notice however that read recall is less important because not all the sequenced reads are useful
for sca�olding, and indeed we showed with the Illumina sca�olding benchmarks that the short read aligners with higher read
recall produced the worst sca�olding results. Additionally, FAST-SG was designed to enable constructing the sca�olding graph
from uniquely mapped read pairs (FAST-SG index). It thus discards any repetitive sequence as they are not useful to build the
sca�olding graph. Oxford Nanopore is a fast evolving technology and the current use of the new 1D2 chemistry or improvement
in the base callers are two alternatives that could lead to an increased base accuracy of the ONT reads.

Conclusions

We introduced in this paper a new method, FAST-SG, that enables to construct a sca�olding graph from either short or long reads,
allowing for an accurate construction of the sca�old sequences as well as for software reuse.
We showed that near perfect synthetic libraries are obtained with FAST-SG from either corrected or uncorrected PacBio and

Nanopore long reads. The insert size is restricted to the actual long read size, but FAST-SG is able, using ultra-long Nanopore
reads, to extract synthetic libraries of even Bacterial Arti�cial Chromosome clone sizes having insert size of 150kb-180kb. Those
kinds of libraries were crucial to reach the high continuity of the current human reference genome [40]. An estimation of the gap
size with the existing long-range mate-pair technologies (10X genomics and DOVETAIL genomics) is more challenging than with
the synthetic libraries due to the fact that in such technologies, the linking information comes from a range of insert-sizes and
the relative orientation of the read pairs may not be known (DOVETAIL genomics).
Clearly, the synthetic libraries eliminate the bottleneck of sequencing a combination of mate-pair libraries, which were typically

required to obtain long-range assemblies [2, 23, 24]. We further showed that short read sca�olders are able to produce accurate
sca�olds when they are fed with the synthetic libraries extracted by FAST-SG, thus leading to results that are superior to or match
those obtained by LINKS, a sca�older speci�cally designed for hybrid long read sca�olding. Futhermore, we showed that FAST-SG
is faster than the current state-of-the-art short read aligners and that better results are achieved by the sca�olding tools when
they are coupled with FAST-SG on illumina mate-pair data.
Finally, we demonstrated that FAST-SG in conjunction with e�cient algorithms designed for Illumina data can be used to

perform a full hybrid assembly of large genomes. The resulting assemblies are superior or comparable to the current state-of-the-
art long read assembly pipelines. Additionally, the modular hybrid pipelines are faster and remarkably e�cient at shallow long
read coverage (5X-10X). The scalability to large genomes, moderate computational resources and the shallow long read coverage
required by the proposed solution, represent signi�cant improvements over the current hybrid assembly methods.
Overall, we believe that FAST-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low

e�ort, high portability and low cost.
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Availability of supporting data

Code snapshots and test data for demonstration of sequence assembly tools available in the GigaScience GigaDB repository [47].

Availability and requirements

• Project name: Fast-SG
• RRID (Research Resource Identi�cation Initiative ID) : SCR_015934
• Project home page: https://github.com/adigenova/fast-sg

• Operating system(s): Unix, Linux and Mac OSX
• Programming language: C++ and PERL
• Other requirements: Compilation was tested with g++ version 5.3 (Linux) and clang version 4.2 (Mac OSX)
• License: MIT
• Any restrictions to use by non-academics: none

Additional �les

Additional �le 1 : The Supplementary-Material.pdf �le contains the following Sections, Tables and Figures: Sections: Supplemen-
tary Material 1: Software and datasets. Supplementary Material 2: Long read sca�olding benchmark. Supplementary Material
3: Arabidopsis thaliana (Ler-0) and human (NA12878) hybrid genome assemblies. Supplementary Material 4: Illumina alignment
benchmark. Supplementary Material 5: Illumina sca�olding benchmark. Tables: Supplementary Table S8 : FAST-SG recall at
k-mer and read level on synthetic mate-pair libraries extracted from corrected or uncorrected long reads using the E. coli K12 dataset.
Supplementary Table S9 : Long read datasets used for comparison against LINKS. Supplementary Table S10: Number of k-mer pairs
and read pairs extracted from raw long reads by LINKS and FAST-SG. Supplementary Table S11 : Long read sca�olding benchmark
results for E. coli K12 and S. cerevisiae W303. Supplementary Table 12 : Number of synthetic read pairs aligned to the DISCOVARDENOVO
assembly of Arabidopsis thaliana (Ler-0). Supplementary Table 13 : Number of synthetic read pairs aligned to the human (NA12878)
DISCOVARDENOVO assembly. Supplementary Table S14 : Example (blue rows) of short contig skipped in chromosome 6. Supplemen-
tary Table S15 : Example (blue rows) of chimeric contigs in chromosome 6 from the CANU and MASURCA assemblies. Supplementary
Table S16 : Short read alignment benchmark. Figures: Supplementary Figure S1: Boxplot of synthetic libraries extracted by FAST-
SG (K21) from the PacBio reads to sca�old the Arabidopsis thaliana (Ler-0) genome. Supplementary Figure S2: Boxplot of synthetic
libraries extracted by FAST-SG (K22) from the ONT ultra-long reads to sca�old the human (NA12878) genome. Supplementary Figure
S3: Amount of bases involved in structural errors by type in the Arabidopsis thaliana (Ler-0) assemblies. Supplementary Figure S4:
NUCMER plots of the human (NA12878) assemblies. Supplementary Figure S5: Percentage of pair-end reads aligned by FAST-SG and
the short read aligners for each Illumina dataset. Supplementary Figure S6: Pairwise contig read coverage correlation between the
short read aligners and FAST-SG. (PDF 2.5 Mb)

Additional �le 2 : The Supplementary_Table_S17.xlsx �le contains the Illumina sca�olding benchmark results for S. aureus using
the SCAFFMATCH, OPERA-LG, BESST2 and BOSS sca�olders. (XLSX 56 Kb)

Additional �le 3 : The Supplementary_Table_S18.xlsx �le contains the Illumina sca�olding benchmark results for R. sphaeroides
using the SCAFFMATCH, OPERA-LG, BESST2 and BOSS sca�olders. (XLSX 85 Kb)

Additional �le 4 : The Supplementary_Table_S19.xlsx �le contains the Illumina sca�olding benchmark results for P. falciparum
using the SCAFFMATCH, OPERA-LG, BESST2 and BOSS sca�olders. (XLSX 132 Kb)

Additional �le 5 : The Supplementary_Table_S20.xlsx �le contains the Illumina sca�olding benchmark results for H. sapiens
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using the SCAFFMATCH, OPERA-LG, BESST2 and BOSS sca�olders. (XLSX 101 Kb)
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Figure 1: A) Overview of the FAST-SG algorithm. B) Number of unique k-mers (y-axis) in the human genome GRCh38.p10 as a
function of the k-mer size (x-axis). C) Memory required for indexing the unique k-mers of the human genome by FAST-SG and
using an exact implementation. The blue dotted-line shows the memory required by FAST-SG as a function of the k-mer size. In
green is shown the memory required by an exact implementation which uses two bits per base. The amount of memory used by
such implementation increases as a function of the k-mer size (x-axis). The memory of the index used in FAST-SG only increases
with the number of k-mers to store.

Figure 2: Boxplots of the insert size distribution observed for each synthetic library in the genome of Escherichia coli K12. The
boxplots were drawn extracting from the FAST-SG alignments a minimum of 5,000 insert sizes from the mate-pair reads mapped
within contigs for each combination of synthetic library and long read technology. The percentage of outliers detected in the raw
ONT reads ranged from a minimum of 0.37% (0.5kb) to a maximum of 4.24% (8kb), while for raw PacBio it ranged from a mini-
mum of 0.25% (0.5kb) to a maximum of 9.85% (8kb). The number of outliers increased with the error-correction for both long
read technologies, reaching an average of 9.32% (std 1.73%) and 8.32% (std 3.74%) for the ONT and PacBio reads, respectively.
The boxplots were drawn excluding outliers.

Figure 3 : Synthetic libraries sca�olding benchmark. The F-Score (Methods Section) was computed with the scripts provided
by Hunt et al. [3] on the sca�old sequences produced by each sca�olding tool. The Pie-chart display the number of sca�olding
error for LINKS and for the short read sca�olders fed with the FAST-SG alignments for both E. coli K12 and S. cerevisiae W303. The
de�nition of the sca�olding errors (colours in Pie-chart) are provided in the short and long reads benchmarks subsection

Figure 4: Illumina sca�olding benchmark. Four real datasets (Table 1), �ve Illumina libraries and four sca�olding tools were
used to assess the performance of FAST-SG and the short read aligners for building the sca�olding graph by means of an F-score
metric and percentage of wrong joins (Algorithms Section, and Supplementary Material 4). FAST-SG was run with various k-mer
sizes in the range of k=12-28, k=12-70, k=15-66 and k=15-80 for Staphylococcus aureus, Rhodobacter sphaeroides, Plasmodium falci-
parum and the human chromosome 14, respectively. Short read aligners were run with the wrapper or instructions provided by
the sca�olding tools when possible, or using the default parameters. Single data points provide the F-Score and error rate for
each combination of sca�olding tool and aligner in each dataset. The vertical lines show for each dataset the average F-score or
Error rate values obtained by each of the short read aligners or FAST-SG together with the four sca�olding tools. Vertical lines for
BOWTIE were not plotted since it cannot be used with BESST2. For the Plasmodium falciparum (short) dataset, the average F-Score
(vertical lines) were omitted for BWA, BWA-MEM and BOWTIE2-LOCAL due to a poor performance (High error rate). The commands
used for the aligners and sca�olding tools are detailed in the Supplementary Material 5.

Figure 5: FAST-SG hybrid assembly work�ow. Thick black lines represent the common path for hybrid assembly with FAST-SG.
Thin black lines show alternative paths when long reads were error corrected or Illumina mate-pair libraries were sequenced.
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Table 1. Sequencing datasets and Illumina assemblies used to evaluate the performance of FAST-SG
Long read datasets

#Reads Average read Technology Machine Illumina assemblies
length (bp) #Contigs N50

E.coli K12
164,472 9,009 ONT R9.2

140 106,2411,192,955 4,412 PacBIO Sequel System
22,391,084 298 Illumina MiSeq

S.cerevisiae W303 594,243 4,795 PacBio PacBio 890 52,324
A. thaliana (Ler-0) 561,176 9,633 PacBio Sequel System 2,384 320,57146,129,480 300 Illumina MiSeq
Human (NA12878) 1,415,868 16,324 ONT R9.4 37,393 202,174
Short read datasets

#Reads Read Insert SRA/ENA Illumina assemblies
length size #Contigs N50

S.aureus 3,494,070 37 3,500 SRR022865 170 47,016
R.sphaeroides 2,050,868 101 3,500 SRR034528 577 15,351
P.falciparum (short) 52,542,302 76 550 ERR034295 9,318 2,995P.falciparum (long) 1,562,080 75 3,000 ERR163027
H.sapiens chr14 22,669,408 101 2,600 SRR067771 19,936 12,963

Further details are provided in the Data description subsection and in the Supplementary Material 1.

Table 2. Hybrid and long read assemblies of Arabidopsis thaliana (Ler-0)
Number Max N50 Size Fold LRC Sca�older / BreakPoints 1-to-1 % Ref
Sca�olds (Mb) Assembler Number Bases (Mb) % Error identity covered
2,384 1,551,485 320,571 119.45 1.00 - DISCOVAR 91 0.48 0.49 99.07 82.044
1,577 5,305,497 1,076,408 120.05 3.36 5X OPERA-LG 174 0.978 1.00 99.07 82.054
1,368 9,953,317 2,475,756 120.26 7.72 10X OPERA-LG 202 1.197 1.22 99.07 82.047
1,249 16,906,870 4,165,132 120.32 12.99 15X OPERA-LG 206 1.237 1.26 99.07 82.052
1,179 18,032,662 4,941,257 120.41 15.41 20X OPERA-LG 218 1.588 1.62 99.07 82.060
1,103 14,710,653 4,756,724 120.43 14.84 30X OPERA-LG 227 1.728 1.76 99.07 82.055
1,049 10,003,725 4,667,601 120.41 14.56 50X OPERA-LG 230 1.732 1.76 99.07 82.060
1,345 8,867,374 1,632,787 120.40 5.09 5X SCAFFM 195 1.620 1.65 99.07 82.058
1,143 8,867,059 5,142,417 120.65 16.04 10X SCAFFM 203 1.319 1.34 99.07 82.045
1,072 11,814,750 6,165,459 120.73 19.23 15X SCAFFM 205 1.330 1.36 99.07 82.045
1,020 11,873,221 6,221,109 120.80 19.41 20X SCAFFM 207 1.477 1.50 99.07 82.039
958 13,946,812 7,073,179 120.90 22.06 30X SCAFFM 209 1.651 1.68 99.07 82.042
923 13,957,620 6,292,557 120.85 19.63 50X SCAFFM 210 1.712 1.74 99.07 82.041
1,593 5,296,335 1,037,785 119.96 3.24 5X BOSS 179 1.171 1.19 99.07 82.061
1,371 13,608,688 2,554,739 120.17 7.97 10X BOSS 200 1.335 1.36 99.07 82.054
1,239 13,643,115 2,829,628 120.22 8.83 15X BOSS 207 1.189 1.21 99.07 82.061
1,173 7,977,908 3,005,451 120.23 9.38 20X BOSS 212 1.564 1.59 99.07 82.060
1,093 9,004,636 2,974,378 120.28 9.28 30X BOSS 219 1.575 1.60 99.07 82.057
1,031 11,011,921 3,179,270 120.29 9.92 50X BOSS 229 2.162 2.20 99.07 82.050
1,439 447,211 80,063 89.84 - 10X CANU 107 0.675 1.10 98.19 51.188
259 4,542,617 1,170,676 118.25 - 20X CANU-P 201 0.969 0.99 99.06 81.907
258 4,543,625 1,170,942 118.31 - 20X CANU-Q 183 0.831 0.85 99.02 81.808
259 4,535,400 1,168,180 118.05 - 20X CANU 185 1.030 1.09 98.82 78.874
119 15,152,700 6,219,401 120.67 - 50X CANU 219 1.766 1.79 99.02 82.565
88 15,945,651 8,307,845 121.45 - 150X CANU 215 1.935 1.95 99.06 82.938

Continuity was measured using maximum and N50 sca�old/contig size, where N50 is the longest sca�old/contig such that sca�olds/contigs of this length
or greater sum at least half of the assembly size. The quality of the assembly was evaluated via a direct comparison against the Arabidopsis thaliana TAIR10
reference genome using NUCMER [38] and reported using the GAGE [26] statistics, which from 1-to-1 alignments evaluates both identity and structural
breakpoints (inversions, relocations and translocations). An optimal assembly has high continuity, low breakpoint errors, high identity and high coverage of
the reference genome. LCR stands for Long Read Coverage. CANU-P and CANU-Q are CANU assemblies polished with PILON [48] and QUIVER respectively.PILON and QUIVER are tools used after a long read assembly to improve the quality of the consensus sequence. All datasets and commands used for the
hybrid assembly of Arabidopsis thaliana (Ler-0) are detailed in Table 1 and the Supplementary Materials 2 and 3.
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Table 3. Hybrid and long read assemblies of NA12878
DISCOVAR DFS 10X DOVETAIL CANU-P MASURCA

Assembly statistics

Number 37,393 7,323 9,926 9,463 2,337 4,885
Min 2,000 2,000 2,000 2,000 2,981 4,103
Max 1,380,479 30,548,185 69,726,354 95,295,052 50,410,306 9,066,374
N50 202,174 6,445,123 16,305,019 24,472,662 7,667,013 1,695,766
Size 2,794,627,041 2,884,349,664 2,835,096,130 2,800,321,128 2,866,880,913 2,849,443,591

Long read coverage - 7X - - 35X 7X
1-to-1 alignments

Length 2,793,980,166 2,797,898,328 2,778,947,064 2,799,630,879 2,811,439,829 2,845,550,340
Identity 99.8 99.8 99.79 99.8 99.28 99.67

% Ref covered 90.16 90.29 89.68 90.35 90.73 91.83
Breakpoints

Relocations Number 120 1151 688 997 501 374
Bases (Mb) 0.361 5.604 4.810 0.582 2.281 2.071

Translocations Number 373 1,856 883 976 1,082 941
Bases (Mb) 4.840 11.279 7.838 6.576 13.781 13.933

Inversions Number 53 768 871 2,813 299 240
Bases (Mb) 0.151 3.886 7.273 0.736 2.903 3.008

Total
Number 546 3,775 2,442 4,786 1,882 1,555
Bases (Mb) 5.353 20.769 19.921 7.894 18.964 19.012
%1-to-1 0.192 0.742 0.717 0.282 0.675 0.668

Assembly statistics: Number - number of contigs/sca�olds assembled, Max/Min - the maximum / minimum contig/sca�old size in base pairs; N50 - con-
tig/sca�old length such that half of the assembly size is obtained by adding contigs/sca�olds sorted in descending order by length; size - total size of the
assembly in base pairs; 1-to-1 alignments: length - total length of non-repetitive alignments between the assembly and GRCh38.p10 detected by NUCMER;
identity - average identity between the assembly and GRCh38.p10 computed from the 1-to-1 alignments; %Ref covered, percentage of the GRCh38.p10 that
is covered by 1-to-1 alignments where the length of the reference was set to 3.1Gb. Breakpoints: structural errors were obtained from 1-to-1 alignments
and reported using the GAGE metrics (Relocations, Translocations and Inversions); number - counts the number of breakpoints by sort; bases (Mb) - adds
the number of bases involved in breakpoints extracted from the DNADIFF report (qdi� �le) in mega bases; %1-to-1 - percentage of structural errors with
respect to the total 1-to-1 alignment length. Public NA12878 assemblies were downloaded and used for validation and comparisons against the DFS hybrid
assembly pipeline.
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