
 
 

1 
 

Supplementary material  

The fractured landscape of RNA-seq alignment: The default in our 
STARs  
Sara Ballouz, Alexander Dobin, Thomas Gingeras, Jesse Gillis* 

*Corresponding author 

Table of Contents 
Supplementary Tables .............................................................................................................................. 2 

Supplementary Text .................................................................................................................................. 4 

Additional materials and methods.................................................................................................... 4 

Network analysis as an assessment metric ................................................................................... 4 

ENCODE dataset reproduces the parameter choice paradigm .................................................. 4 

Supplementary Figures ............................................................................................................................. 5 

Additional References ............................................................................................................................. 16 

 

Table of Supplementary tables  
Table S1 Studies used in the benchmark meta-assessment .................................................................. 2 
Table S2 Studies used in the database meta-assessment ..................................................................... 3 
 

Table of Supplementary figures 
Figure S1. Meta-assessment across the three gene expression databases: Gemma, ARCHS4 and 
recount2. ...................................................................................................................................................... 5 
Figure S3. Quantification and X-Y gene misalignment. .......................................................................... 6 
Figure S4. Distinguishing between alignment errors and quantification errors. ................................. 7 
Figure S5. X-Y alignment assessment across three gene expression databases: Gemma, ARCHS4 
and recount2. ............................................................................................................................................... 8 
Figure S6. Co-expression scores across three gene expression databases: Gemma, ARCHS4 and 
recount2. ...................................................................................................................................................... 9 
Figure S2. Gene detection differences and expression levels. ............................................................ 10 
Figure S7. Other mapping statistics and metrics .................................................................................. 11 
Figure S8. The effects of varying parameters on gene detection ........................................................ 12 
Figure S9. The effects of varying parameters on co-expression scores ............................................ 13 
Figure S10. Varying the parameter space of STAR in an ENCODE dataset. ...................................... 14 
Figure S11. Parameter impact on downstream biological interpretation. .......................................... 15 
 



 
 

2 
 

Supplementary Tables  
 

Table S1 Studies used in the benchmark meta-assessment 

Study  

Number of  
datasets/ 
samples  

Number 
of 
methods 

 Notes 

Fraction mapped  
assessment metric    Fraction of unique reads 

mapped out of total reads  
Bao et al. 2011 (1) 4 11   

Baruzzo et al. 2016 (2) 37 16   

Bonfert et al. 2015 (3) 2 7   

Dillies et al. 2012 (4) 23 3   

Dobin et al. 2012 (5) 1 5   

Engstrom et al. 2013 (6) 4 13   

Gran et al. 2011 (7) 2 11   

Langmead et al. 2012 (8) 7 9   

Li et al. 2009 (9) 3 4   

     
Correlation  
assessment metric    Correlations to qPCR 

Bray et al. 2016 (10) 4 8   

Chandramohan et al. 2013 (11)   1 4   

Li et al. 2011 (12) 9 4   

     

Both 

  

 Correlations between 
“known truth” (published 
or simulated ) and 
estimated abundances 

Benjamin et al. 2012 (13) 1 4   

Li et al. 2015 (14) 56 3   
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Table S2 Studies used in the database meta-assessment 

SRA project ID GEO series ID Female samples Male samples Unspecified Total samples 
SRP033135 GSE52529 

  
353 353 

SRP027383 GSE48865 
  

274 274 
SRP051848 GSE64813 

  
188 188 

SRP042620 GSE58135 
  

168 168 
SRP041538 GSE57148 

  
166 166 

SRP011546 GSE36552 
  

124 124 
SRP044668 GSE59612 

  
92 92 

SRP056733 GSE67427 
  

89 89 
SRP042161 GSE57872 

  
84 84 

SRP033393 GSE52834 
  

73 73 
SRP050272 GSE63646 

  
71 71 

SRP028301 GSE49321 
 

7 56 63 
SRP051688 GSE64655 

  
56 56 

SRP029880 GSE50760 
  

54 54 
SRP045352 GSE60216 

  
54 54 

SRP041751 GSE57395 
  

53 53 
SRP043162 GSE58434 

  
53 53 

SRP055390 GSE66117 
  

52 52 
SRP041179 GSE56796 

  
42 42 

SRP021193 GSE46224 
  

40 40 
SRP030041 GSE50893 

  
36 36 

SRP042286 GSE57982 
  

31 31 
SRP016568 GSE41716 

  
29 29 

SRP018525 GSE44183 
  

29 29 
SRP049068 GSE62526 

  
29 29 

SRP042153 GSE57866 
  

28 28 
SRP041620 GSE57253 

  
26 26 

SRP022133 GSE46665 
  

25 25 
SRP041675 GSE57299 

  
25 25 

SRP051765 GSE64741 17 
 

24 41 
SRP033466 GSE52934 

  
24 24 

SRP033569 GSE53094 
  

24 24 
SRP043080 GSE58335 

  
24 24 

SRP046226 GSE61141 
  

24 24 
SRP047233 GSE61491 

  
22 22 

SRP043085 GSE58375 
  

21 21 
SRP032789 GSE52194 

  
20 20 

SRP041159 GSE56785 
  

20 20 
SRP027258 GSE48812 

 
24 12 36 

SRP050036 GSE63452 13 
 

12 25 
SRP041162 GSE56788 

 
40 

 
40 

SRP051083 GSE64098 40 
  

40 
SRP040418 GSE56066 30 

  
30 

SRP042616 GSE58111 24 
  

24 
SRP045421 GSE60296 16 

 
8 24 

*SRP029262 GSE50244 35 54 
 

89 
*SRP043108 GSE58387 12 9 

 
21 

*SRP044917 GSE59810 9 9 9 27 
*SRP043368 GSE58608 12 12 

 
24 

*SRP028336 GSE49379 15 15 
 

30 
*SRP045666 GSE60590 16 17 

 
33 

*SRP043221 GSE56787 19 19 
 

38 
*SRP035599 GSE54308 19 21 

 
40 

*SRP049593 GSE63055 30 27 
 

57 
*SRP047476 GSE61742 41 31 

 
72 

*SRP033566 GSE53080 9 35 
 

44 
*SRP026042 GSE47944 44 40 

 
84 

* Experiments used in the X-Y alignment assessment   
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Supplementary Text  

Additional materials and methods  

We ran STAR version 2.4.2a on an ENCODE dataset which consists of 17 samples from different cell 

lines. We used genome version GRCh38.p2 and GENCODE version 22 (15). The parameters changed 

were the minimum alignment score (minAS, parameter: --outFilterScoreMinOverLread), number of 

mismatches (numMM, --outFilterMismatchNmax), length of reads (lenR, --clip3pNbases), and read 

downsampling. The minimum alignment score was varied to range between 0.55 and 0.99. The number 

of mismatches allowed was varied to range between 0 and 10. Length of reads (trimming reads from the 

3' end) was varied to range between 20 and 76. We downsampled reads with a local script by sampling 

across the mapped reads at random (95% to 50% by increments of 5%). RSEM version 1.2.28 was run to 

quantify the expression levels of the ENCODE dataset. We considered both FPKM and TPM.  

To perform a network enrichment analysis, we first generate co-expression networks using all samples at 

each alignment parameter. Briefly, we calculate a weight between gene pairs by using the Spearman 

correlation coefficient which is then rank standardized. To then measure the information content of the 

network, we use the performance of the n-fold cross validation task of a neighbor voting algorithm. If we 

can hide known information about genes in a gene set and then “learn” this information from the network, 

then our network has, to a degree, information that is reflective of the known biology of that GO term. This 

is based on the "guilt-by-association” principle, which states that genes with shared functions should be 

connected preferentially in the network. The reported performance metric from this task is the averaged 

AUROC (area under the ROC curve) for each group across the n-folds. We used the Bioconductor 

package EGAD (16) and GO (17) to perform this analysis on the individual co-expression networks.  

ENCODE dataset reproduces the parameter choice paradigm   

We repeated all the same analyses on a second, dataset with fewer samples but greater depth, across a 

larger number of parameters within STAR, summarized in Figure S10. We first characterize the effects of 

the choice of parameter on the read depth and gene coverage. Even though read depth ranged between 

~38M and 73M reads, gene coverage only changed between 14.5K and 15.5K (Figure S10A), with some 

parameters changing only a few hundred genes at most. We then calculate the replicability scores for 

each of the parameters. Under default parameters, most samples have good replicability scores (below 0, 

Figure S10B). As in the GEUVADIS dataset, we find very little effects on the replicability score (Figure 
S10D) across all the parameters. Although not significant, for most of the parameters the more stringent 

parameter (grey distribution in the violin plots), has better average scores and heavier negative tails.  

Network analysis as an assessment metric  

As the co-expression between gene pairs can be used to generate weighted gene-gene networks, we can 

perform a network analysis task that measures the amount of information in a network using a “guilt-by-
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association” predictor of Gene Ontology (GO) annotations. As expected from the previous results, the 

average performance across all GO groups is very similar across the different parameter choices 

(average AUROC~0.61), and correlations across the individual GO groups near 0.88  (Figure S11A-
B).The node degrees of the networks generated are also highly correlated (Figure S11C-D). Additionally, 

one could look at the change in co-expression of a gene to all other genes (e.g., XIST  Figure S11E). For 

the approximately 30K transcripts, co-expression pairs remain highly correlated compared to the default 

minAS (average rs=0.90, Figure S11F). Protein-coding genes were also more correlated (average 

rs=0.94). The lowest correlations were again to the most conservative minAS, with scores per gene 

(minAS 0.66 vs 0.99, average rs=0.78).  

 

Supplementary Figures  
 

 

Figure S1. Meta-assessment across the three gene expression databases: Gemma, ARCHS4 and recount2.  

(A) Comparing fraction mapping rates per samples (B) and then averaged per experiment. There are some 
experiments that are outliers. Input reads differed mainly due to PE/SE counting and QC filtering that was not 
described which may have affected mapping rate calculations for some samples.   
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Figure S2. Quantification and X-Y gene misalignment.    

(A) Quantification exacerbates the problem with Y gene expression in female samples. Here we used RSEM under 
default parameters. (B) Comparing fraction of Y genes expressed compared to the effective counts as reported by 
RSEM (C) for TPM (D) and FPKM.  

 



 
 

7 
 

 

Figure S3. Distinguishing between alignment errors and quantification errors.  

Comparing alignment CPM to Effective CPM distinguishes alignment errors from quantification based errors. Here 

we’ve shown a representative female and male sample at default parameters and a stricter parameter (minAS=0.99). 

There are genes that are not expressed (counts based) but appear as expressed once quantified (effective counts), 

labelled as quantification errors. Errors of alignment, on the other hand, appear as both counts and effective counts, 

and can be distinguished in the female samples here.  
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Figure S4. X-Y alignment assessment across three gene expression databases: Gemma, ARCHS4 and recount2.  

(A) Violinplots of the fraction of Y genes mapped by each of the four pipelines (in the three databases). These comparisons are once again between 3,405 samples in 57 
experiments. Recount2 had a few samples missing from the analysis. (B) Two example experiments GSE60590 and GSE61742. (C) Comparison of the fraction mapped to Y genes 
for all samples (D) those labelled as female, (E) those labeled as male and (F) those unspecified.  
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Figure S5. Co-expression scores across three gene expression databases: Gemma, ARCHS4 and recount2.  

(A) Comparison between Gemma and ARCHS4 data (light grey is 1 SD=0.3 from the identity line, rs=0.88). (B) 
Correlations of co-expression scores for the four pipelines (in the three databases). These comparisons are between 
3,405 samples. Recount2 had a few samples missing from the analysis. (C) Correlations of the scores once 
summarized (averaged) per experiment (57 experiments listed in Table S2). (D) Comparisons to fraction mapped 
metrics and correlations between databases (per sample). (E) Distribution of scores  by database (F) and the 
variability of samples by database and samples across databases.  
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Figure S6. Gene detection differences and expression levels.  

(A) Dropouts between parameters versus average expression, in an example sample (ERR188479). Most differences 

across parameters are from low expressing genes, with a few exceptions. (B) Occurrence vs expression for all 

samples at the default parameter (minAS=0.66). Most samples express most genes. (C) Occurrence across samples 

per chromosome for default parameter (minAS=0.66). Majority of dropouts between samples (bottom of boxplots) are 

the Y chromosome genes (medians are the lowest).   
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Figure S7. Other mapping statistics and metrics 

(A) Fraction of uniquely mapped reads with no features. (B) Fraction of ambiguous mapped reads (cross feature 

boundaries). (C) Fraction of multimappers in total. (D) Fraction of unmapped reads.  
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Figure S8. The effects of varying parameters on gene detection  

Effects of gene detection on the GEUVADIS dataset when (A) varying minimum alignment scores, (B) number of 

mismatches, (C) downsampling and (D) filtering low expressing genes 
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Figure S9. The effects of varying parameters on co-expression scores 

 (A) and (B) downsampling. (C) and (D) number of mismatches allowed.  (E) and (F) counts filter. 
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Figure S10. Varying the parameter space of STAR in an ENCODE dataset.  

(A) Mapping statistics and coverage across the parameter space of STAR for the ENCODE dataset (B) Default 

parameter mapping statistics and inset showing the replicability scores. (C) XY misalignment is still a problem (CPM, 

top), that is increased with quantification (TPM, bottom). (D) Distributions of scores for the extreme parameters tested 

on an ENCODE dataset of 17 samples. The purple distribution shows the scores per sample of the most permissive 

parameter and the grey distribution the most stringent. As in the GEUVADIS dataset, the distributions are consistent 

showing little change, with the filtering of low counts showing the most change in distribution (last violin plot).  (E) 

Interpolated co-expression scores showing alignment and post-alignment filter hotspots (light blue to white). Dark 

areas are least replicable. These results are averaged over all 17 samples for 1000 runs, and interpolated between 

the dashed lines. Contours define interpolated score boundaries. The unexplored regions could not be interpolated 

from tested data.  
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Figure S11. Parameter impact on downstream biological interpretation.  

(A) Distribution of AUROC GO term scores (B) and their correlations.  (C) Distribution of node degrees of network (D) 

and their correlations. (E) Similarity of co-expression values of XIST to all other genes. (F) Average similarity between 

co-expression values of all genes to all others. 
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