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Figure S1. Related to Figure 1. DNA motifs derived from in vivo binding data. PWM motif models 
derived from ChIP-seq data (ENCODE(Consortium, 2012)) using the MEME-ChIP software tool 
(Machanick and Bailey, 2011). For TF E2f3, which does not have ChIP-seq data in human cells, the motif 
was downloaded from the TRANSFAC database, and it was derived from a small, curated set of E2f3 
genomic binding sites (Matys et al., 2006).  
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Figure S2. Related to Figure 1. The genomic-context protein-binding microarray (gcPBM) assay. 
(A) gcPBM design. A set of ~30,000 distinct genomic sequences, centered on putative TF binding sites, 
are selected according ChIP-seq data (see Methods for details). The sequences are synthetized de novo 
on microarrays (Agilent, 4x180k array format), with each genomic sequence being represented in 6 
replicate DNA spots randomly distributed across the microarray. After DNA double stranding (Berger and 
Bulyk, 2009), the microarray is incubated with an epitope-tagged TF, and labeled with a fluorophore-
conjugated antibody to the epitope. The array is gently washed to remove non-specifically bound 
proteins, and then scanned to quantify the amount of protein bound to each DNA spot. (B) 
Representative example of the agreement between replicate gcPBM data set. Plots show the natural 
logarithm of the gcPBM fluorescence intensity (median over 6 replicate spots, randomly distributed across 
the array) for human TF Mad. Higher values correspond to higher affinity binding sites. (C) Correlation 
between gcPBM and MITOMI data. High affinity TF binding sites have high PBM fluorescent intensities 
and low equilibrium dissociation constants (Kd). We note that binding affinity data is only available for a 
few human TFs and a few DNA sites. The only medium-scale Kd data available for human TFs is the 
MITOMI data for TF Max (Maerkl and Quake, 2007). We analyzed 24 TTGnnnnGTGGGTG DNA sites 
that were tested both by MITOMI and by gcPBM, and found a remarkable correlation of gcPBM intensities 
with MITOMI affinities. For comparison, the agreement between the Max affinity data and predictions 
made using existing Max-DNA binding models is much lower (R2 < 0.59), as reported in previous work 
(Mathelier and Wasserman, 2013). Importantly, gcPBM and MITOMI data correlate over a wide affinity 
range (40nM - 1.2uM), which includes medium and low affinity sites. This is important for characterizing 
TF binding because low and medium affinity sites can play important regulatory roles, especially during 
development. 
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Figure S3. Related to Figure 1. Correlation between amino-acid similarity and DNA binding 
specificity similarity for paralogous TF. Scatter plot shows that the % identify in the amino-acid 
sequence of the DNA-binding domains of paralogous TFs does not correlate well with their similarity in 
DNA-binding specificity. 
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Figure S4. Related to Figure 2. Feature derivation for a 20-bp DNA sequence centered on a 
putative TF binding site.  
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Figure S5. Related to Figure 2. Accuracy of core-stratified SVR models. Scatter plots show 
measured versus predicted DNA binding scores for sequences not used during for model training. For 
each TF, sequences containing different cores are shown in different colors.  
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Figure S6. Related to Figure 2. Comparison of the prediction accuracies for core-stratified SVR models 
versus nearest-neighbor models. Both types of models were evaluated on 20-mer data, split by cores. For 
each core, embedded 5-fold cross-validation was performed, using the exact same folds (Table S1) for 
both types of models. 
 
 

	
  
Figure S7. Relate to Figure 2. Results and data supporting our core-stratified approach for 
modeling TF-DNA binding specificity. (A) For TF Myc, flanking sequence features contribute differently 
to Myc-DNA binding specificity for sites with the CACGTG versus the CACATG core. Scatter plot shows 
the feature weights for each 1mer, 2mer, and 3mer features in the flanking regions, according to linear 
kernel SVR models trained on sequences with each core. (B) Similar to (A), for TF Ets1 and core 
sequences GGAA and GGAT. (C) Sample sizes for individual cores in our gcPBM data. Plot shows that 
we have sufficient data to train a separate SVR model for each core. 
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Figure S8. Related to Figure 3. DNA sites differentially preferred by paralogous TFs. Scatter plots 
show, in grey, the 99% prediction intervals for each pair of TFs, computed using the WLSR model (see 
Figure 3 and related text). The sequences inside the prediction interval are not differentially preferred by 
the paralogous TFs. The sequences outside the interval, shown in red or blue, are preferred by one of the 
two TFs being compared. Color intensity shows the magnitude of the preference score (see Methods).  
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Figure S9. Related to Figure 4. Sequence and shape features of DNA sites differentially bound by 
paralogous TFs. (A) Scatter plots highlighting the most differentially preferred core, as well as the most 
differentially preferred 1-mer and 2-mer features for the canonical core CACGTG, for paralogous bHLH 
factors Mad versus Myc. P-value shows the enrichment in Myc-preferred or Mad-preferred sites, 
according to a Mann-Whitney U test (Methods). (B) Similar to (A), but for E2F factors E2f1 versus E2f4. 
(C) MGW and roll profiles for genomic sites preferred by Mad vs. Myc. Stars (*) mark the positions within 
the binding sites (core or flanking region) that are significantly different between the two profiles (p-value 
< 10-5 according to Mann-Whitney U test). Shaded regions show the 25th-75th percentile ranges at each 
position. (D) Similar to (C), but for E2F factors E2f1 versus E2f4. 
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Figure S10. Related to Figure 5. ChIP-seq data quality. (A) Scatter plots illustrate the quality of the 
ChIP-seq data, as evaluated using the IDR pipeline (Li et al., 2011) (Methods). Plots show the correlation 
between ChIP-seq replicate data sets, before data normalization. Black points show the “reproducible” 
peaks identified by the IDR analysis. Red points show the peaks considered “irreproducible”. All data sets 
used in this analysis have high correlation for the reproducible peaks, except for the Ets1 ChIP-seq data 
(lower-right panel). (B) Scatter plots illustrate the agreement between ChIP-seq replicates after data 
normalization (Methods). Axes show the natural logarithm of the ChIP-seq pileup signal (i.e. number of 
reads) in the peak regions. All data sets show good correlation, except for the Ets1 ChIP-seq data (lower-
right panel). 
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Figure S11. Related to Figure 5. Genomic sites with differential in vitro specificity are enriched in 
differentially bound in vivo regions. Left: genomic sites with higher Ets1 preference, as predicted by 
iMADS, are enriched in Ets1-specific in vivo targets (as determined using DESeq2; n=736 and 106, 
respectively; see Methods). Right: genomic sites with higher Elk1 preference are enriched in Elk1-specific 
in vivo targets (n=318 and 51, respectively). P-values were computed using one-sided Man-Whitney U-
test.  
 
 
 
 
 
 
 
 
 

 
 
Figure S12. Related to Figure 5. GO enrichment analysis. GO categories enriched in the set of genes 
with nearby (A) Ets1-preferred or (B) Ets1-preferred genomic sites. Categories with literature support 
(Alberstein et al., 2007, Boros et al., 2009, Bories et al., 1995, Teruyama et al., 2001) are highlighted in 
bold. 
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Figure S13. Related to Figure 5. Screen shots illustrating the use of the iMADS web server to 
analyze gene promoters. (A) Using iMADS to identify Mad binding sites in the genomic regions 1000-bp 
upstream and 500-bp downstream of the transcription start sites of eight genes known to be regulated by 
Myc (Zeller et al., 2003). (B) Similar to (A), but showing Myc binding sites. (C) Similar to (A), but showing 
preference scores reflecting the differential DNA binding specificity between Mad and Myc.	
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Figure S14. Related to Figure 6. Example of iMADS analysis of non-coding variants. 

Step1. Identify variant of interest 

Step2. Extract genomic region around the variant 
rs786205688 (chr5:74893909)  

To obtain the 300-bp regions centered around rs786205688, we can use  
http://genome.ucsc.edu/cgi-bin/das/hg19/dna?segment=chr5:74893759,74894059  

Step3. Generate the sequences of interest in a fasta format 

>wild-type 
ccaggattgatgacaaagtactcaacatcaaagaaaataaaaccaaacaatcccaaacatacccttgatatattttttaagtaaacattgaacattttatcattaattttta
attgaaactagttattttataatcaatgaatttgttctttctgattttaagtttgcagatttatttagtgaaggcaagtgcaataatccttcctcagatgatgtttgcttttctaagata
catatactgattctgtgtatcttttttataaccatgagaattttacttccattatacatcaattggaa 
>mutant 
ccaggattgatgacaaagtactcaacatcaaagaaaataaaaccaaacaatcccaaacatacccttgatatattttttaagtaaacattgaacattttatcattaattttta
attgaaactagttattttataatcaatgaatttgttccttctgattttaagtttgcagatttatttagtgaaggcaagtgcaataatccttcctcagatgatgtttgcttttctaagata
catatactgattctgtgtatcttttttataaccatgagaattttacttccattatacatcaattggaa 

Step 4. Input sequences of interest into the iMADS PREDICTION tool, set the title for the job 
(e.g. “Example rs786205688”), and set the model 

Step 5. Click “Generate Predictions” 

Step 6. Click on the prediction heatmap in the “Values” column to see details of the predictions 
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Figure S15. Related to Figure 5. Agreement between ChIP-seq data sets obtained for different 
antibodies. Among the 11 proteins tested in our study, Runx1 is the only protein for which ChIP-seq data 
is available, in the same cell line (K562), for 2 different primary antibodies (ENCAB000BIM and 
ENCAB000BDQ) that both gave ChIP-seq data of acceptable quality according to ENCODE guidelines. 
The total number of peaks, after combining the two ChIP-seq experiments, is 926. R2 = squared Pearson 
correlation coefficient.	
  
  


