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SUMMARY

Paralogous transcription factors (TFs) are oftentimes
reported to have identical DNA-binding motifs,
despite the fact that they perform distinct regula-
tory functions. Differential genomic targeting by
paralogous TFs is generally assumed to be due to in-
teractions with protein co-factors or the chromatin
environment. Using a computational-experimental
framework called iMADS (integrative modeling and
analysis of differential specificity), we show that,
contrary to previous assumptions, paralogous TFs
bind differently to genomic target sites even
in vitro. We used iMADS to quantify, model, and
analyze specificity differences between 11 TFs from
4 protein families. We found that paralogous TFs
have diverged mainly at medium- and low-affinity
sites, which are poorly captured by current motif
models. We identify sequence and shape features
differentially preferred by paralogous TFs, and we
show that the intrinsic differences in specificity
among paralogous TFs contribute to their differential
in vivo binding. Thus, our study represents a step
forward in deciphering the molecular mechanisms
of differential specificity in TF families.

INTRODUCTION

Transcription factors (TFs) interact with DNA in a sequence-spe-

cific manner, and these interactions represent a key mechanism

in the regulation of gene expression. In eukaryotes, most TF-

coding genes have undergone gene duplication and divergence

during evolution (Chen and Rajewsky, 2007; Hsia and McGinnis,

2003; Lynch and Conery, 2000; Taylor and Raes, 2004), resulting

in many TFs having highly similar DNA-binding domains (DBDs)

and recognizing similar DNA sequence motifs. TFs with such

properties that also belong to the same species are called
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paralogous TFs. Some paralogous TFs have partly (or

completely) redundant functions. Most mammalian TFs, how-

ever, have evolved regulatory functions that are distinct from

their paralogs in the cell (Chen and Rajewsky, 2007; Hsia and

McGinnis, 2003; Vaquerizas et al., 2009). In general, paralogous

TFs accomplish awide variety of independent or complementary

molecular functions to regulate cellular phenotypes.

Many methods have been developed to learn TF-DNA

binding specificity models from high-throughput in vivo and

in vitro experimental data, ranging from simple position weight

matrices (PWMs) to state-of-the-art deep learning models (Weir-

auch et al., 2013; Jolma et al., 2013; Alipanahi et al., 2015; Wang

et al., 2013; Agius et al., 2010). According to such models,

paralogous TFs, especially the oneswith high amino acid identity

in their DBDs, tend to have indistinguishable DNA-binding spec-

ificities (Weirauch et al., 2014). As an important consequence,

this restricts the inference of TF-DNA interactions to family-

wide predictions, rather than predictions for individual family

members.

Since paralogous TFs are often co-expressed in the same

cells but they perform different, sometimes even opposite, bio-

logical functions, being able to identify genomic binding sites

of individual TF family members is critical. For example, while

c-Myc is a well-known oncoprotein that promotes transcriptional

amplification, its co-expressed paralog Mad is a tumor suppres-

sor and represses gene expression (Meyer and Penn, 2008;

Dang, 2012). Currently, little is known about the mechanisms

that explain the differential genomic targets of paralogous TFs.

Furthermore, when analyzing in vivo TF-DNA-binding data,

such as data from chromatin immunoprecipitation sequencing

(ChIP-seq) assays (Johnson et al., 2007), many genomic studies

do not even take into account the presence of paralogous TFs, or

the fact that TF family members present in a cell are likely to

influence each other’s binding to the genome. Overall, given

that most mammalian TFs are part of large protein families with

multiple paralogs expressed at the same time, it is surprising

how little we know about how paralogous TFs achieve their

unique specificities in the cell.

Here, we show that despite having similar DBDs, paralogous

TFs have different intrinsic DNA-binding preferences and this
blished by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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contributes to their differential in vivo binding and functional

specificity. We focus on closely related TFs reported to have

indistinguishable DNA-binding motifs, but distinct sets of targets

in vivo. We design custom DNA libraries containing putative

TF binding sites in their native genomic sequence context, and

we use in vitro genomic-context protein-binding microarray

(gcPBM) assays (Gordan et al., 2013) to quantitatively measure

binding of each TF to the genomic sequences in our custom li-

brary. The quantitative, high-throughput gcPBM measurements

revealed extensive differences in binding specificity between pa-

ralogous TFs. Most differences are concentrated in the medium-

and low-affinity ranges, which explains why they were missed by

previous DNA-binding data and models. To quantify the differ-

ences in specificity between TF paralogs, we developed a new

modeling approach that combines binding data for paralogous

TFs with data from replicate experiments to derive weighted

least-square regression (WLSR)models of differential specificity.

We integrate our high-throughput data and computational

models into a general framework called iMADS (integrative

modeling and analysis of differential specificity), which we pro-

vide as a publicly available web tool (http://imads.genome.

duke.edu). Using iMADS data and models, we show that

genomic sites differentially preferred by TF paralogs have

different sequence features and DNA shape profiles. This diver-

gence in intrinsic specificity contributes to differential in vivo

binding and has important implications for the analysis of TF

binding changes due to non-coding genetic variants.

RESULTS

Closely Related Paralogous TFs Bind Differently to Their
Genomic Target Sites In Vitro

Paralogous TFs have similar DBDs. However, their DBDs are not

identical, and the amino acid sequences outside the DBD region

are quite different. We hypothesized that these differences in

protein sequence could lead to differences in DNA-binding

specificity. To test this hypothesis, we focused on 11 closely

related human TFs from 4 distinct structural families: basic-helix-

loop-helix (bHLH), E26 transformation-specific (ETS), E2 factor

(E2F), and Runt-related transcription factors (RUNX). The factors

were chosen based on: (1) availability of high-quality ChIP-seq

data showing both overlapping and unique in vivo genomic tar-

gets for the paralogous TFs (Wang et al., 2013; Encode Project

Consortium, 2012), and (2) previous reports that the paralogous

TFs have identical binding specificities (Weirauch et al., 2014;

Wei et al., 2010; Jolma et al., 2013; Matys et al., 2006). Focusing

on putative genomic target sites in their native DNA sequence

context, we asked whether paralogous TFs have identical

DNA-binding preferences, as expected from their indistinguish-

able PWM models trained on either in vitro (Figure 1A) or in vivo

(Figure S1) data. In vitro PWMs for human TFs are typically

derived from high-resolution binding data for a large set of artifi-

cial or randomized DNA sequences (e.g., universal PBM [Berger

et al., 2006] or systematic evolution of ligands by exponential

enrichment sequencing [Jolma et al., 2010] data), while in vivo

PWMs are derived from low-resolution data on binding to

genomic DNA (e.g., ChIP-seq [Johnson et al., 2007] data). Our

experimental approach, using gcPBM assays, is different from

previous approaches in that we measure TF binding to genomic
DNA sequences, i.e., sequences that the TFs also encounter in

the cell, but at high resolution and in a controlled environment.

Thus, we take advantage of critical aspects of both in vitro and

in vivo approaches.

The gcPBM assay measures the level of binding of a TF

to tens of thousands of genomic regions simultaneously. In

brief, double-stranded DNA molecules attached to a glass

slide (microarray) are incubated with an epitope-tagged TF.

To detect the amount of TF bound to each DNA spot, the micro-

array is labeled with a fluorophore-conjugated antibody specific

to the epitope tag, and scanned using a standard microarray

scanner. The gcPBM protocol is similar to the universal PBM

protocol of Berger and Bulyk (2009). The critical difference

between the widely used universal PBMs (Berger et al., 2006;

Badis et al., 2009; Wei et al., 2010; Weirauch et al., 2013,

2014) and the gcPBM assays in our study is in the design of

the DNA library synthesized on the array. Universal PBMs use

artificial sequences that cover all possible 10-bp DNA sites.

Thus, they provide a comprehensive view of TF-binding speci-

ficity for short sequences, but miss important information about

the influence of flanking regions, which can significantly affect

genomic binding (Gordan et al., 2013). In addition, universal

PBMs suffer from significant spatial and location bias, due to

the position of a probe on the microarray and the position of

a TF binding site on the probe, respectively (Berger et al.,

2006; Annala et al., 2011). In comparison, gcPBM libraries

contain �30,000 genomic sequences, 36-bp long, centered

on putative binding sites for particular TFs or TF families (Fig-

ure S2A). Each sequence is represented six times in DNA spots

randomly distributed across the array, and we use median

values over replicate spots as TF-binding specificity measure-

ments. Our gcPBM libraries are carefully designed to: (1) cap-

ture the influence of flanking regions on TF-DNA binding by

centering probes on the putative TF binding sites; (2) minimize

spatial bias by using median values over replicates spots; and

(3) eliminate positional bias in the data by fixing the position

of TF binding sites within probes. These critical characteristics

of the experimental design lead to TF binding measurements

that are highly reproducible, cover a wide range of binding

affinities, and are in great agreement with independent binding

affinity data (Figures S2B and S2C). In addition, as shown in our

proof-of-concept study (Gordan et al., 2013), gcPBM measure-

ments are sensitive enough to capture differences in specificity

among related TFs.

To directly compare the binding specificities of TFs within

each family, we designed family-specific DNA libraries contain-

ing putative binding sites in their native genomic context, and

we used gcPBM assays to test in vitro binding of each family

member to the selected genomic sites (Figure 1B). The 11 TFs

tested in our study are: c-Myc (henceforth referred to as Myc),

Max, and Mxd1 (or Mad1, henceforth referred to as Mad) from

the bHLH family; Ets1, Elk1, and Gabpa from the ETS family;

E2f1, E2f3, and E2f4 from the E2F family; and Runx1 and

Runx2 from the RUNX family. For all 11 TFs, the gcPBM assays

provided quantitative measurements of in vitro specificity for

tens of thousands of genomic sites. The vast majority of

these sites were bound with affinities higher than negative con-

trols, indicating that the selected genomic targets are specifically

bound.
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Figure 1. Paralogous TFs with Indistinguishable PWMs Show Distinct In Vitro Specificities

(A) Examples of paralogous TF pairs with indistinguishable PWMs: Myc versus Mad (bHLH family), Elk1 versus Ets1 (ETS family), E2f1 versus E2f4 (E2F family),

and Runx1 versus Runx2 (RUNX family). Similar PWMs derived from in vivo data are shown in Figure S1.

(B) Design of a gcPBM library containing putative binding sites for paralogous TFs, selected from unique (red and blue) and overlapping (purple) in vivo genomic

targets, as identified by ChIP-seq. We used the gcPBM assay to quantitatively measure in vitro binding of TF1 and TF2 to all selected genomic sites. Figure S2

provides a more detailed description of gcPBM assays.

(C) Direct comparisons of the binding specificities of paralogous TFs for genomic sites (top panels), in contrast to comparisons between replicate gcPBM da-

tasets (bottom panels). Each point in the scatterplot corresponds to a 36-bp genomic region tested by gcPBM. Black points correspond to genomic sequences

centered on putative TF binding sites. Gray points correspond to negative control regions, i.e., sequences without binding sites.

(D) Squared Pearson correlation coefficient (R2) for all pairs of paralogous TFs in our study (colored bars) and for representative replicate experiments (gray bars).

The lower panels show example 3D structures for one TF in each family, as reported in the PDB (Rose et al., 2015). From left to right: Mad:Max (PDB: 1NLW), Ets1

(PDB: 2STT), E2F4:DP2 (PDB: 1CF7), and Runx1 (PDB: 1HJC). See Figure S3 for a comparison of the similarity in DNA binding specificity versus the amino acid

identity in the DNA binding domains of paralogous TFs.
We analyzed the gcPBM data and, for most pairs of paralo-

gous TFs, we found extensive differences in their in vitro binding

specificity for genomic sites, more than expected due to exper-

imental noise (Figures 1C and 1D). In addition, considering all

11 pairs of paralogous TFs in our study, we did not see a corre-

lation between DBD amino acid identity and the similarity in

DNA-binding specificity (R2 = 0.01; Figure S3), indicating that

amino acid identity might not be predictive for whether paralo-

gous TFs prefer similar DNA target sites. The way in which paral-

ogous TFs differ is different for each family (Figure 1C, top

panels). bHLH proteins Mad and Myc bind similarly to many of

their putative genomic targets, but there is a subset of sites

bound with higher affinity by Myc than by Mad. ETS proteins
472 Cell Systems 6, 470–483, April 25, 2018
Elk1 and Ets1 bind similarly to their high-affinity genomic sites,

but they diverge in specificity for medium- and low-affinity sites.

E2F proteins E2f1 an E2f4 show differences across the entire af-

finity range, but mostly in the medium-affinity sites. We note that

although single gcPBM assays do not directly provide affinity

measurements, the DNA-binding intensities measured by

gcPBM do correlate very well with independently measured af-

finities (Figure S2C). The paralogous TFs most similar to each

other are Runx1 versus Runx2 (rightmost panels in Figures 1C

and 1D), which act in different tissue types and are not typically

co-expressed under normal cellular conditions (Komori, 2008;

Elagib et al., 2003; Lacaud et al., 2002; Hyde et al., 2015; Komori,

2011; Liu and Lee, 2013).

https://www.rcsb.org/structure/1NLW
https://www.rcsb.org/structure/2STT
https://www.rcsb.org/structure/1CF7
https://www.rcsb.org/structure/1HJC


Overall, our gcPBM data show that most TF pairs converge

in their specificity for high-affinity sites, but bind differently to

low- and medium-affinity sites. This explains why many previous

studies reported indistinguishable PWMs for these paralogous

TFs (Jolma et al., 2013; Weirauch et al., 2014): PWMs are best

at capturing high-affinity sites (Siggers andGordan, 2014), which

are indeed bound the sameway by the paralogous factors. How-

ever, medium- and low-affinity TF binding sites, which can play

important regulatory roles in the cell (Siggers and Gordan,

2014; Scardigli et al., 2003; Gaudet and Mango, 2002; Jaeger

et al., 2010; Tanay, 2006), are oftentimes bound differently

by TF family members, and may contribute to the differential

genomic binding and functional specificity of closely related TFs.

Generalizing TF-Binding Specificities beyond the
gcPBM Measurements
In a single gcPBM experiment we can test up to �30,000

genomic sites. However, a library of this size is still not sufficient

to cover all putative genomic targets of human TFs. To generalize

our TF-DNA binding measurements beyond the genomic

sites tested on gcPBMs, we used ε-support vector regression

(Drucker et al., 1997) to train positional k-mer regression models

for all 11 TFs in our study. We used binary features to encode the

identities of mononucleotides (1-mers), dinucleotides (2-mers),

and trinucleotides (3-mers) at each position in the TF binding

sites and their flanking regions (Figure S4), similar to our previous

work (Gordan et al., 2013; Zhou et al., 2015; Mordelet et al.,

2013; Yang et al., 2014). For increased accuracy, here we build

‘‘core-stratified’’ SVR models, i.e., a separate SVR model is

trained and tested for each ‘‘core motif’’ of a TF (Figure 2A).

Core motifs are defined based on gcPBM data and, if available,

based on prior structural knowledge about the interactions be-

tween DNA and TFs from each family (STARMethods). Coremo-

tifs are short (4–6 bp) and capture the region within TF binding

sites that has little degeneracy, likely because of direct interac-

tions with residues in the DBD of the TF (Figures 2B and 2C).

For example, for the bHLH TF Mad, the core-stratified SVR

model is based on five E-box or E-box-like cores (Figure 2D).

For all 11 TFs in our study, the core-stratified SVR models

achieved high prediction accuracy (R2 = 0.82–0.96) on indepen-

dent, held-out data, indicating that the models accurately cap-

ture TF-DNA binding specificity (Figures 2E and S5; Table S1).

All validations were performed using nested 5-fold cross-valida-

tion tests (STAR Methods). As baseline, we applied a nearest-

neighbor approach to the same folds as the core-stratified

SVR, using Hamming distance as the similarity metric. The near-

est-neighbor models had significantly lower accuracy (Fig-

ure S6), showing that sequence similarity alone is not sufficient

for accurate predictions. Given the high accuracy of our core-

stratified SVR models, we can confidently use these models to

predict TF binding to DNA sites not included in our gcPBM li-

braries. We note that the core-stratified SVR models have a pre-

diction accuracy close to replicate experiments. Thus, while

more complex models of specificity can be derived from our

high-quality gcPBM data, we do not expect such models to

show large improvements in prediction accuracy compared

with the core-stratified SVR models. Our simple, core-stratified

approach is motivated by our observation that, for different

core motifs, the sequences flanking the core contribute differ-
ently to the binding affinity (Figures S7A and S7B). Training a

separate SVRmodel for each core allows us to take into account

the dependencies between the core motif and the flanking re-

gions without resorting to complex computational models.

Modeling the Differential DNA-Binding Specificity of
Paralogous TFs
Our gcPBM data revealed clear differences in the binding prefer-

ences of paralogous TFs for putative genomic target sites (Fig-

ure 1). As with all high-throughput technologies that do not mea-

sure DNA-binding affinities directly, the binding measurements

obtained by gcPBM are not directly comparable between TFs

(one reason being that samples used in the experiments may

have different concentrations of active TF protein). To address

this limitation and perform a robust comparison between paral-

ogous TFs, we developed a weighted regression approach (Fig-

ure 3). As described below, this approach allows us to quantify

specificity differences and to identify genomic sites differentially

preferred by paralogous TFs.

In brief, we apply WLSR to fit the gcPBM data for two paralo-

gous TFs (Figure 3A), as well as replicate gcPBM datasets (Fig-

ure 3B). Next, we integrate information about the variance

learned from replicate datasets into the weighted regression

model for the paralogous TFs, in order to calculate a ‘‘99% pre-

diction band’’ that comprises all genomic sites bound similarly

by the two factors, i.e., sites for which the difference in binding

specificity between TF1 and TF2 is within the noise expected

for replicate experiments. Intuitively, one can interpret the 99%

prediction band as follows: if TF1 and TF2 were replicates,

then we would expect 99% of their target sites to fall within the

prediction band. We consider the sites outside the prediction

band as differentially preferred by TF1 versus TF2, and for

each such site we compute a quantitative ‘‘preference score’’

(Figure 3C; STAR Methods). We used the WLSR-based

approach to compare all pairs of paralogous TFs in our study

(Figure S8). For all TF pairs except Runx1 versus Runx2, we

found that between 15% and 55% of the genomic sites tested

by gcPBM were differentially preferred (Figure 3D; Table S2).

Thus, our WLSR approach allows us to identify genomic sites

differentially preferred by paralogous TFs, i.e., sites for which

the difference in binding between TFs is larger than the variability

observed in replicate experiments.

To facilitate the use of our WLSR models of differential

specificity between paralogous TFs, as well as our core-strati-

fied SVR models of binding specificity for individual TFs, we

developed the iMADS web server: http://imads.genome.duke.

edu. The web server allows users to apply our models for each

TF or TF pair to make predictions on any genomic or custom

DNA sequence.

Sequence and Structural Characteristics of Genomic
Sites Differentially Preferred by Paralogous TFs
We analyzed the differentially bound genomic sites to determine

sequence and structural features preferred by each TF. We

found that the observed specificity differences between paralo-

gous TFs are due both to the core binding site and the flanking

regions, demonstrating the importance of including genomic

flanks when measuring and comparing in vitro binding of these

TFs. To identify significant differences in core and flanking
Cell Systems 6, 470–483, April 25, 2018 473
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Figure 2. Core-Stratified SVR Approach to Model TF-DNA Binding Specificity

(A) To build core-stratified SVR models of TF specificity, we start with normalized gcPBM data, apply an inverse logistic transformation, separate the gcPBM

probes by their core motifs, derive features (Figure S4), and train one SVR model for each core. The predictions made by the SVR models are mapped back to a

0–1 range by applying the logistic transformation (see STAR Methods).

(B) The core motif sequences for each group/family of TFs are shown. Heatmaps show the DNA sequences for all gcPBM probes with binding intensity above the

negative control range.

(C) DNA bases that have direct interactions with TF residues, according to available X-ray crystal structures (PDB: 1NKP for Myc/Max; PDB: 2STT for Ets1; PDB:

1CF7 for E2f4/Dp2; and PDB: 1HJC for Runx1). DNA sequences tested in the crystal structure are shown. Core motifs are underlined, and bases that have direct

interactions with protein residues are highlighted in bold.

(D) Comparison of measured versus predicted DNA-binding specificity for Tad (from nested 5-fold cross-validation test; STAR Methods). The cores used in the

core-stratified SVR model are shown. Figure S5 shows similar plots for all other TFs.

(E) Prediction accuracy of core-stratified SVR models, assessed as the squared Pearson correlation coefficient (R2) between measured and predicted

DNA-binding specificity (from nested 5-fold cross-validation test; STARMethods). Gray bars show the correlation (R2) between replicate experiments. Figure S6

shows comparison with nearest-neighbor models.

(F) Core-stratified SVR models (motivated by the results shown in Figure S7) can be used to make binding specificity predictions for any genomic region.

474 Cell Systems 6, 470–483, April 25, 2018
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Figure 3. Modeling Differential DNA-Binding Specificity

(A) Weighted least-square regression (WLSR) is used to fit the gcPBM data of two paralogous TFs (here, Elk1 versus Ets1), and learn a linear or quadratic

function bf , as well as the variance s2pi at every data point (i.e., genomic site) i.

(B) WLSR is used to learn the variance structure for replicate gcPBM datasets.

(C) By combining the variance learned from replicate data with theWLSRmodel for paralogous TFs, we compute a ‘‘99%prediction band for replicate TFs’’ (gray),

which contains genomic sites bound similarly by the two TFs. Genomic sites outside the prediction band are preferred by one of the two paralogous TFs (red, Elk1;

blue, Ets1). The color intensity reflects the quantitative preference score computed according to the WLSR model. Similar plots for all paralogous TFs pairs are

shown in Figure S8.

(D) Fraction of genomic sites, among the sites tested by gcPBM, which are differentially preferred by the paralogous TFs in our study.
preferences between TF1 and TF2, we applied the Mann-

Whitney U test to determine, for each core sequence and each

1-mer, 2-mer, and 3-mer feature in the flanking regions, whether

the sequence feature is enriched in the set of TF1- or TF2-

preferred genomic sites (Table S3).

Core motifs play critical roles in TF-DNA recognition through

direct interactions, mostly hydrogen bonds, between the pro-

teins and DNA. This direct readout mechanism is a major

contributor to the binding specificity of TFs. In particular, direct

readout in the core binding region is known to be different for

different TF families (Rohs et al., 2010). Our results show that

even within TF families, the core binding region can contribute

to differences in binding specificity between factors (Figures

4A, S9A, and S9B). For example, within the ETS family, the

GGAT core is strongly preferred by Ets1 compared with both

Elk1 (p = 3.5 3 10�99; Figure 4A) and Gabpa (p = 1.8 3 10�202;

Table S3). Focusing on sequence features in the flanking re-

gions, we identified numerous 1-mer, 2-mer, and 3-mer features

differentially preferred by paralogous TFs (Figures 4B, S9A, and

S9B; Table S3), which highlights the important role of genomic

sequence context in establishing differential DNA binding be-

tween TF family members.

Flanking regions are likely contributing to TF-DNA binding

specificity through indirect (i.e., shape) readout mechanisms.

Using DNAshape (Zhou et al., 2013) predictions of minor groove

width, roll, propeller twist, and helix twist, we found that paralo-

gous TFs differ significantly in their preference for certain DNA

shape features, especially for minor groove width and roll (Fig-

ures 4C, S9C, and S9D; Table S4). These findings are in agree-

ment with previous hypotheses that DNA shape readout is often

exploited to distinguish between TF family members (Rohs et al.,

2010). Our data and models provide a way to comprehensively

study the differences in DNA shape profiles preferred by paralo-

gous TFs.
Differential In Vitro Specificity Contributes to
Differential In Vivo Binding of Paralogous TFs
The analyses above demonstrate that, despite their amino acid

sequence similarities, paralogous TFs do have distinct intrinsic

DNA-binding preferences. The next obvious question is whether

these preferences are exploited in vivo to produce differential,

TF-specific patterns of genomic binding. Answering this ques-

tion requires a comparison between our in vitro gcPBM data

and data produced in vivo using an orthogonal method. Here,

we focus on in vivo data obtained using ChIP-seq, as this is

the predominant assay for addressing questions of TF-DNA

binding in the cell.

To test whether the differences in intrinsic binding specificity

between paralogous TFs, as observed in our gcPBM data, are

relevant for differential in vivo binding, we applied iMADSmodels

to make predictions of individual specificity and differential

specificity on ChIP-seq peaks forMad andMyc fromH1SC cells,

Elk1 and Ets1 from K562 cells, and E2f1 and E2f4 in K562 cells

(Encode Project Consortium, 2012). We selected these datasets

because they were not included in the gcPBM design, and thus

are independent of our training data. For each TF pair, we pro-

cessed the ChIP-seq data to identify peaks for each TF, we

merged the two lists of peaks, and for each peak we computed

the natural logarithm of the ratio between TF1 and TF2 ChIP-seq

signals (STARMethods). We then scanned the peak regions and

used iMADS models to predict differential binding of TF1 versus

TF2 (e.g., Figure 5A).

We first analyzed the data in their entirety, by performing

a direct comparison between iMADS preference scores and

differential ChIP-seq signal, computed for all peaks. The overall

correlation between iMADS preference scores and differential

ChIP-seq signal is significant (p < 10�15 for Mad versus Myc

and E2f1 versus E2f4, p = 0.003 for Elk1 versus Ets1), although

moderate (Spearman correlation r = 0.28 for Mad versus Myc,
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Figure 4. DNA Sequence and Shape Prefer-

ences Contribute to the Differential Speci-

ficity of Paralogous TFs

(A) Core motif GGAT shows significant specificity

preference for Ets1 versus Elk1. The p value shows

the enrichment of the core in Ets1-preferred sites

(Mann-Whitney U test).

(B) 1-mer and 2-mer sequences most differentially

preferred by Elk1 or Ets1, among sites with the

GGAA core. The p values were computed using the

Mann-Whitney U test.

(C) Left: schematic of the minor groove width

(MGW) and roll structural features. Right: MGW and

roll profiles for genomic sites preferred by Elk1

versus Ets1. Asterisks (*) mark the positions within

the binding sites (core or flanking region) that are

significantly different between the two profiles

(p < 10�5; Mann-Whitney U test). Shaded regions

show the 25th–75th percentile ranges at each po-

sition. See Figure S9 for comparisons of additional

paralogous TF pairs.
0.44 for E2f1 versus E2f4, and 0.06 for Elk1 versus Ets1). For

comparison, this correlation is similar to or better than the corre-

lation obtained for individual TFs by comparing their ChIP-

seq data versus individual in vitro binding specificity models

(r = 0.14 for Mad, 0.22 for Myc, 0.2 for E2f1, 0.26 for E2f4, 0.4

for Elk1, and 0.05 for Ets1; see STAR Methods). As expected

based on the low quality of the Ets1 ChIP-seq data (Figures 5G

and S10), we found a lower correlation for ETS compared with

bHLH and E2F proteins (Figures 5B–5D).

Interpreting these results, however, is challenging because it is

unclear what degree of correspondence between gcPBM and

ChIP-seq data should be expected in principle. We note that

there are at least three reasons for this. First, differences may

accurately reflect the influence of biological factors present in

the cellular environment but missing in our in vitro system. Sec-

ond, the resolution of the two methods is inherently different. In

gcPBM assays we test TF binding to 36-bp genomic regions

containing individual binding sites, and this resolution is inde-

pendent of the TF measured and the experimental conditions.

By contrast, ChIP-seq data have a resolution of 100–500 bp,

dependent on both the exact experimental conditions (e.g., anti-

body used, sonication conditions, etc.) and themethods used for

data analysis (e.g., peak calling). Third, ChIP-seq data contain

numerous technical biases (Kidder et al., 2011), including form-

aldehyde crosslinking bias (Solomon and Varshavsky, 1985; Lu

et al., 2010; Gavrilov et al., 2015), antibody specificity and vari-

ability problems (Parseghian, 2013; Schonbrunn, 2014; Wardle

and Tan, 2015) (Figure S15), technical artifacts due to highly

expressed regions of the genome (which are not corrected by

regular input controls) (Teytelman et al., 2013; Park et al.,

2013; Jain et al., 2015), bias due to genome fragmentation and

PCR amplification (Bardet et al., 2011; Poptsova et al., 2014),
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etc. These biases can lead to false-posi-

tive and false-negative peaks, and they

also significantly affect any quantitative

estimates of in vivo TF binding levels

derived from ChIP-seq data, in ways

that we do not understand well enough
to correct (Gavrilov et al., 2015). In contrast, gcPBM measure-

ments are quantitative and they directly reflect the in vitro TF

binding level to each tested genomic region.

In an effort to overcome the limitations discussed above, we

performed receiver operating characteristic (ROC) curve ana-

lyses, an approach that is widely used to evaluate the predictive

power of DNA-binding models with respect to in vivo ChIP-seq

data (Kulakovskiy et al., 2016; Orenstein and Shamir, 2014;Weir-

auch et al., 2013; Alipanahi et al., 2015; Mariani et al., 2017;

Gordan et al., 2009; Arvey et al., 2012; Isakova et al., 2017). In

brief, this approach allowed us to evaluate how well our iMADS

models of differential specificity can distinguish between TF1-

and TF2-preferred ChIP-seq peaks, defined as the top N%

and bottom N% of peaks, respectively, sorted according to log

ratio of ChIP signals (Figure 5H). For example, for bHLH proteins

Mad versus Myc, the iMADS model achieved areas under the

ROC curve of 0.69–0.77, depending on the fraction of peaks

chosen for the classification test (top and bottom 5%–30% of

peaks; Figures 5I and 5J).

To gauge the performance of iMADS models in the ROC an-

alyses, we provide two comparisons. First, we trained in vitro

PWMs on the same gcPBM data as the iMADS models, and

then tested them on the ChIP-seq data. By this comparison,

the performance of iMADS models was superior, as they pre-

dicted TF1- and TF2-preferred ChIP-seq peaks with higher ac-

curacy than PWMs (Figures 5I–5M). Second, we collected

in vivo-derived PWMs trained on the same ChIP-seq datasets

used for testing. Despite the important advantage this gives

to in vivo PWMs (see STAR Methods), our iMADS models of dif-

ferential specificity performed best (Figures 5I–5M). Even in the

case of ETS proteins, which have poorer quality ChIP-seq data,

the performance of our iMADS models (trained on independent



Figure 5. In Vitro Binding Preferences of Paralogous TFs Partly Explain Their Differential In Vivo Binding

(A) Genomic region bound in vivo by Elk1, but not Ets1 (according to ChIP-seq data [Ayer et al., 1993]) contains binding sites with high preference for Elk1.

(B–D) TF1 versus TF2 in vitro binding preferences, as predicted using our iMADS preference models, have a significant correlation with in vivo binding prefer-

ences, as reflected by the log ratios of TF1 versus TF2 ChIP-seq pileup signal (STAR Methods). The Spearman correlation coefficient (r) and its statistical

significance (p value computed using the asymptotic t approximation [Best and Roberts, 1975]) is shown for each pair of TFs. Due to outlier data points, the

scatterplot for E2F factors is limited to peakswith log ratios in the [–3,2.5] interval, and iMADS preference scores in the [–4,4] interval. The full set of peaks, with log

ratios in the [–7.79,5.41] interval and iMADS scores in the [–5.89,6.97] interval, are available in Table S5. The full datasets (3,726 peaks for bHLH proteins, 13,004

peaks for E2F proteins, and 2,208 peaks for ETS proteins) were used to assess the correlations and to compute the best fit lines (shown in black).

(E–G) Pearson correlation coefficients between the ChIP-seq pileup signals computed from replicate ChIP-seq datasets. All datasets used in this analysis show

good correlation, except for the Ets1 ChIP-seq data. Additional analyses of ChIP-seq data quality are shown in Figure S10.

(H) ChIP-seq data for Mad and Myc, with peaks sorted in decreasing order of the log ratio of Mad versus Myc signal. Regions of 1,000 bp centered at the peak

summits are shown. The data can be used to identify ‘‘Mad-preferred’’ and ‘‘Myc-preferred’’ peaks, selected as the top and bottom N% of peaks, respectively.

For different values of N, we tested how well iMADS models can distinguish between the peaks preferred by each TF.

(I and J) Receiver operating characteristic (ROC) curves showing the performance of iMADS models of differential specificity, as well as PWMmodels trained on

in vitro or in vivo data, in distinguishing Mad- fromMyc-preferred peaks. In vitro PWMs were derived from the same gcPBM data used to train iMADS preference

models. In vivo PWMs were trained on the ChIP-seq datasets used for testing (STAR Methods). The area under the ROC curve (AUC) is shown for each model.

AUC values vary between 0 and 1, with 0.5 corresponding to a random model. Results are shown for N = 5, 10, and 30.

(L and K) Similar to (I and J), but for E2F proteins E2f1 versus E2f4.

(M) Similar to (I–K), but for ETS factors Elk1 and Ets1, and showing the results for N = 5 and 10. Additional results are available in Table S6. Additional analyses are

shown in Figures S11 and S12.
data) was comparable with the performance of in vivo

motifs (trained on the ChIP-seq data itself), especially when

focusing only on the top versus bottom 5%–10% of the

peaks (Figure 5M). Taken together, these results suggest that

the in vitro binding specificity captured by our iMADS models

contribute, to a significant extent, to the differential in vivo bind-

ing of paralogous TFs.
Accordingly, when we focused on the genomic sequences

in gcPBM data that are differentially preferred by paralogous

TFs and we compared the biological functions of genes in the

neighborhood of these genomic binding sites, we successfully

recovered different gene ontology terms that are enriched for

genes associated with differentially preferred sites (Figure S12).

In these analyses, many of the terms we recovered had been
Cell Systems 6, 470–483, April 25, 2018 477
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Figure 6. Analyzing Non-coding Somatic

Mutations Using iMADS Models of Speci-

ficity and Differential Specificity

(A) Example of iMADS predictions for variant

rs786205688. Plots show predicted ETS sites

in a 300-bp genomic region centered on the

variant (chr5:74893909). Binding sites (1), (2), and

(3) are present both in the wild-type (reference)

and the mutant (tumor) sequences. Binding site

(4) is created in the tumor by the somatic

mutation. The color of the binding sites reflects

the Elk1 versus Ets1 preferences, as computed

by iMADS. Scatterplots show the binding

specificities and preferences of sites (4) and (2)

(marked by stars) compared with the genomic

sites tested by gcPBM in our study. See Fig-

ure S14 for the precise steps users can follow

to reproduce the predictions shown here for

rs786205688.

(B) Scatterplot of the absolute change in Elk1

binding score compared with the absolute change

in preference score of Elk1 versus Ets1, for non-

coding somatic mutations identified in melanoma

cancer patients (ICGC dataset SKCA-BR). Ovals

highlight sets of mutations discussed in the main

text.

(C) Boxplot showing the changes in preference

score for non-coding somatic mutations identified

in different types of tumors, compared with

a control set of non-coding variants from the

1000 Genomes Project. The somatic variants

were identified from either whole-genome (light

orange bars) or whole-exome (dark orange bars)

sequencing data from ICGC (STAR Methods). The

control variants (gray bar) were randomly selected

among common variants with minor allele fre-

quency >0.01 (Zhou and Troyanskaya, 2015).

For each dataset, the box shows the median

change in preference score and the 25th and 75th

percentiles. Whiskers extend to the most extreme data points that are no more than 1.5 times the interquartile range from the box. For all tumor types,

preferences changes are significantly larger for somatic mutations than for common variants: one-sided Mann-Whitney U test p value < 2.2 3 10�16.
reported previously in independent studies for the individual ETS

factors (Alberstein et al., 2007; Boros et al., 2009; Bories et al.,

1995; Teruyama et al., 2001; Soldatenkov et al., 2002).

To facilitate analysis of differential in vivo binding and func-

tional specificity of paralogous TFs, our iMADS web server pro-

vides easy access to genome-wide predictions of TF binding

specificity (from core-stratified SVR models; Figures S13A and

S13B) and differential specificity (from WLSR models; Fig-

ure S13C). In addition, users can focus on specific regions

around genes, specify custom lists of genes or genomic coordi-

nates to analyze, view predictions in the web server or in the

UCSC genome browser, and make predictions of TF binding

specificity and differential specificity for any DNA sequence of

interest.

Disease-Related Genetic Variants Have Differential
Effects on the Specificity of Paralogous TFs
Current studies of the effects of non-coding variants on TF-DNA

binding focus on predicting changes in the DNA-binding speci-

ficity of individual TFs, assessed using simple PWMs (Andersen

et al., 2008; Thomas-Chollier et al., 2011; Ward and Kellis, 2016;

McVicker et al., 2013) or complex models (Zhou and Troyan-
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skaya, 2015; Alipanahi et al., 2015; Lee et al., 2015), but ignoring

the fact that multiple paralogous factors are co-expressed in the

cell and can influence each other’s binding to the genome. The

iMADS models allow us to test whether non-coding variants/

mutations have differential effects on the binding specificity of

paralogous TFs.

To illustrate the use of our iMADS models and web server to

analyze non-coding variants, we focused on somatic mutation

rs786205688, associated with malignant prostate cancer (Yadav

et al., 2015). The mutation resides in the POLK gene region,

which is important for DNA damage repair, and it creates a bind-

ing site for the ETS family of TFs. According to current models,

the newly created binding site has similar specificities for Ets1

and Elk1. However, according to the iMADS model of Elk1

versus Ets1 binding preference, the new site is highly preferred

by Elk1, and bound only non-specifically by Ets1, indicating

that the functional effect of this mutation could be due to

increased Elk1 binding (Figure 6A). This hypothesis is consistent

with the fact that upregulation and activation of Elk1 has been re-

ported to associate with malignancy of prostate cancer, and in-

hibition of Elk1 has been proven effective on inhibiting growth of

prostate cancer cells (Patki et al., 2013). In Figure S14wepresent
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Figure 7. The iMADS Framework for Integrative Modeling and Analysis of Differential DNA-Binding Specificity between Paralogous TFs

(A) iMADS uses as input gcPBM data for the paralogous TFs, based on a DNA library that contains genomic sites bound by either TF in the cell.

(B) iMADS models are trained using support vector regression (to describe the DNA-binding specificity of individual TFs) and weighted least-square regression

(to describe the differential specificity between two TFs).

(C) gcPBM data and iMADS models can be used to analyze sequence and shape preferences of paralogous TFs (left), to make genomic predictions of binding

specificity and differential specificity (middle), and to analyze the contribution of differential in vitro specificity to differential in vivo binding (right).
the simple steps that users can follow to analyze non-coding

variants, such as rs786205688, for their effect on binding of

paralogous TFs. We note that the goal of such an analysis is

not to conclusively identify a causal relationship between the

variant and the phenotype, but to generate mechanistic hypoth-

eses for follow-up analyses.

The case of Elk1 versus Ets1 illustrates how disease-related

mutations may affect TF specificity versus preference indepen-

dently. We analyzed iMADS predictions for somatic mutations

from melanoma whole-genome sequencing data (International

Cancer Genome Consortium et al., 2010) and found a subset

of mutations (Figure 6B, left oval) that have almost no change

in Elk1 binding specificity, but large changes in Elk1 versus

Ets1 preference. In addition, mutations with the largest change
in Elk1 specificity tend to have small changes in preference score

(Figure 6B, right oval). This was expected, as large changes in

binding specificity will correspond to high-affinity sites (in either

wild-type ormutant sequences), which are bound similarly by the

two TFs. Finally, we also found that mutations that maximize the

change in Elk1 versus Ets1 preference (Figure 6B, top oval) are

not the ones thatmaximize the change in Elk1 binding specificity.

Thus, in order to study the effects of such sites on Elk1 binding

in vivo, one needs to consider the competitive binding of Elk1

versus Ets1, and potentially other ETS family members.

Next, we extended our analysis of non-coding somatic

mutations to several tumor types with publicly available whole-

genome or whole-exome sequencing data from the International

Cancer Genome Consortium (International Cancer Genome
Cell Systems 6, 470–483, April 25, 2018 479



Consortium et al., 2010). (We note that non-coding mutations in

close proximity to coding regions can be identified from exome

sequencing data.) We analyzed non-coding mutations frommel-

anoma, breast cancer, liver cancer, pancreatic cancer, prostate

cancer, and lymphoma, as well as a control set of common

non-coding variants (STAR Methods). We found that cancer

mutations lead to significantly larger changes in Elk1-Ets1 pref-

erences scores (Figure 6C), suggesting that changes in the rela-

tive preferences of paralogous TFs could have important pheno-

typic effects. Thus, our iMADS models of differential specificity

allow us to study the effects of non-coding somatic mutations

on the genomic binding of individual TF family members, taking

into account the fact that a particular TF can be affected either

directly (by mutations that change its specificity) or indirectly

(by mutations that change the specificity of competing TF family

members).

DISCUSSION

DNA-binding specificity is a fundamental characteristic of TFs.

Nevertheless, the contribution of intrinsic sequence specificity

to the differential in vivo binding of paralogous TFs is a largely

unexplored area of research. Focusing on 11 paralogous TFs

across 4 distinct protein families, we show that differences in

intrinsic specificity, not captured by current DNA motif models,

can be critical for TF familymembers to distinguish between their

genomic targets and achieve functional specificity in the cell. The

integrated computational-experimental approach described in

our study (Figure 7) is general and can be applied to any pair

of paralogous TFs.

Our observation of differential binding specificity between

closely related TFs has implications for interpreting the effects

of non-coding genetic variants and mutations. Some disease-

causing mutations could significantly affect binding of a TF by

changing its preference relative to other family members ex-

pressed in the same cells. To our knowledge, no previous

studies of non-coding genetic variations takes into account the

potential influence of competing TF family members. Our anal-

ysis of somatic non-coding mutations shows that mutations

that maximize the change in preference between paralogous

TFs are not those that maximize change in specificity for either

TF. This suggests that focusing only on changes in binding

specificity for individual TFs, as in previous studies, has limited

power in understanding the effects of non-coding mutations on

TF binding.

Given that most mammalian TFs are part of large protein fam-

ilies with multiple TF paralogs expressed at the same time, it is

surprising how little we know about how paralogous TFs achieve

their unique specificities in the cell. The in vivo binding of a TF is a

result of many factors, including not only the intrinsic DNA-bind-

ing specificity of that TF and its paralogs, but also the concentra-

tions of the paralogous TFs, the presence and concentrations of

co-factor proteins (Siggers et al., 2011; Slattery et al., 2011;

Mann et al., 2009), the chromatin environment, etc. Our study

takes an important step in deciphering the molecular mecha-

nisms of differential specificity in TF families, by identifying

differences in intrinsic preferences between paralogous TFs

and showing that these in vitro differences contribute to differen-

tial in vivo binding. We envision that more quantitative high-
480 Cell Systems 6, 470–483, April 25, 2018
throughput technologies and computational models will be

developed to gain an even deeper understanding of the differen-

tial genomic binding and function of paralogous TFs.
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STAR+METHODS
KEY RESOURCE TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alexa488-conjugated anti-His Qiagen Cat# 35310

Alexa488-conjugated anti-GST Invitrogen Cat# A-11131; RRID: AB_2534137

Bacterial Strains

BL21-CodonPlus (DE3)-RIL Agilent Cat# 230245

Deposited Data

Protein-DNA binding data This study GEO: GSE97794

Software and Algorithms

Perl The Perl Foundation https://www.perl.org/

Python Python Software Foundation www.python.org

R 3.2.4 R Development Core Team https://www.R-project.org

Universal Protein Binding Microarray (PBM) Analysis Suite Martha Bulyk’s laboratory http://the_brain.bwh.harvard.edu/software.html

LIBSVM GitHub https://github.com/cjlin1/libsvm
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Raluca

Gordan (raluca.gordan@duke.edu).

METHOD DETAILS

Protein Expression and Purification
The Life Technologies Gateway cloning system (Liang et al., 2013) was used to insert full length human E2f1, E2f3, and E2f4 genes

into the pET-60 destination vector with a C-terminal GST tag. Cells (BL21- CodonPlus (DE3)-RIL, Agilent 230245) were grown in LB

culture to an OD600 of 0.4, then protein expression was induced with 1mM IPTG at 30�C for 2hrs (E2f1), or 20�C overnight (E2f4).

Pelleted cells were frozen, then thawed cells were lysed in PBS lysis buffer for two hours at 4�C while gently rocking. The lysate

was centrifuged, and the protein was recovered from the soluble lysate using a GE GSTrap FF GST tag affinity column according

to manufacturer’s instructions.

Gateway-compatible clones containing the full-length genes for Ets1, Elk1, Gabpa, Runx1, and Runx2 were purchased from

GeneCopoeia and the genes were transferred into pDEST15 using the LR Clonase reaction (Life Technologies). This vector enables

the production of N-terminally GST-tagged proteins. Cells were grown in LB broth to an OD600 of 0.4 to 0.6 and then expression was

induced with IPTG at 30� to 37� C. Pelleted cells were frozen, stored at -20 C, and thawed cells were lysed with lysozyme. GST-

tagged protein was purified from the soluble portion of the lysate using GST resin (GE Healthcare) according to manufacturer’s

instructions.

Full length Myc, Max, and Mad proteins with C-terminal 6xHis tags, as well full-length untagged Max protein were generously pro-

vide by Peter Rahl and Richard Young (Whitehead Institute and MIT). The proteins were expressed in bacteria and purified as

described by Lin et al. (Lin et al., 2012). As Myc requires heterodimerization with Max to bind DNA efficiently, all Myc universal

PBM and gcPBM experiments were performed using both Myc andMax on the samemicroarray. As in our previous work (Munteanu

and Gordân, 2013; Mordelet et al., 2013), we used a 10 times higher concentration of Myc compared with Max to ensure that mostly

Myc:Max heterodimers, and not Max:Max homodimers, are formed. Similarly, all Mad universal PBM and gcPBM experiments were

performed using both Mad and Max on the same microarray, with a 10 times higher concentration of Mad.

Design of DNA Libraries for gcPBM Assays
The DNA libraries used in gcPBM assays were designed based on genomic data from ChIP-seq assays combined with comprehen-

sive, unbiased, 8-mer E-score data fromuniversal PBMassays. Selected genomic probe sequenceswere aligned so that the putative

TF binding sites were located in the center of the 36-bp probes.

Specifically, to design the gcPBM DNA library for each TF family, we focused on genomic regions bound by the paralogous TFs

in vivo, according to available ChIP-seq data. Alternatively, DNase-seq data can be used to design gcPBM libraries; however, we

focused on ChIP-seq peaks because these genomic regions are most likely to contain functional TF binding sites. All gcPBM probes
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designed in this study are 60-bp long, and they contain a 36-bp variable genomic region followed by a constant 24-bp sequence

(GTCTTGATTCGCTTGACGCTGCTG) that is complementary to the primer used for DNA double-stranding. The 36-bp genomic re-

gions were selected to contain either: 1) putative TF binding sites in their native genomic sequence context, selected according to

ChIP-seq data; or 2) negative control sequences, i.e. genomic sequences without potential binding sites, selected from accessible

genomic regions (i.e. DNase-seq peaks) that do not overlap any ChIP-seq peaks. All gcPBM designs contain 6 replicate DNA spots

for each genomic probe, randomly distributed across the array surface. The microarrays were synthesized de novo by Agilent. Using

the 4x180k Agilent array format (4 chambers that can be used for 4 different tests, with �180k spots per chamber) we were able to

test at most 30,000 distinct genomic sites in each gcPBM assay.

Probes Containing Putative Binding Sites

For each ChIP-seq dataset, we scanned the peaks to identify putative TF binding sites using as prior information 8-mer enrichment

scores (E-scores) derived from universal PBM data, similar to our previous studies (Gordan et al., 2013; Mordelet et al., 2013; Boyd

et al., 2015). The E-score quantifies the relative binding preference of a TF for each 8-mer. The score is a modified form of the Wil-

coxon-Mann-Whitney statistic and ranges from -0.5 (least favored sequence) to +0.5 (most favored sequence), with values above

0.35 corresponding, in general, to sequence-specific DNA binding of the tested TF (Berger et al., 2006). Thus, for each TF in our study

we performed a universal PBM experiment before designing the gcPBM library. Notably, we note that the experimental protocols for

universal PBM and gcPBM assays are very similar, the only difference being the design of the DNA library. Thus, performing universal

PBM assays for the TFs in our study was an easy, fast, and cost-effective preliminary step. In addition, the use of 8-mer E-score data

to select putative binding sites for the gcPBM design, as opposed to using DNA motifs reported in the literature, ensured that our

selection of putative sites was not biased by existing binding models.

Negative Control Probes

Control probes were randomly selected from accessible genomic regions not bound by paralogous TFs (i.e. DNase-seq peaks not

overlapping ChIP-seq peaks) and not containing any putative TF binding sites (i.e. with all 8-mers having E-score < 0.2 or 0.3 accord-

ing to universal PBM data). The specific design for each TF family is described below. Using a stringent cutoff for negative control

probes is important to ensure that these probes do not contain any sites bound specifically by the paralogous TFs. As recommended

by the microarray manufacturer (Agilent), probe sequences that contained 5 consecutive Cs or 5 consecutive Gs were filtered out in

order to eliminate potential technical difficulties during DNA synthesis. In addition, probe sequences with potential binding sites in the

flanks were filtered out to ensure that the TF of interest would bind only in the center of the probe, and thus the gcPBMmeasurements

reflect individual TF-DNA binding events. We note that filtering out some the genomic sites is not a problem for our study, as the

gcPBM libraries are not meant to be comprehensive. Instead, in designing these libraries we aimed to cover a large and diverse

set of TF binding sites in their native genomic context. Computational modeling can be used to generate reliable TF binding predic-

tions for any new DNA sequence (Figure 2).

bHLH Family

We used ENCODE ChIP-seq data for c-Myc (Myc), Max, and Mxi1 (Mad) in HelaS3 and K562 cell lines. We scanned each peak with

8-mer E-score data for Myc, Max, and Mad, and selected regions that contain at least two consecutive 8-mers with E-score R 0.4.

Next, we usedMyc,Max, andMad PWMs to align the selected genomic binding sites to each other. The PWMswere derived from the

universal PBM data generated in our lab, as described previously (Berger et al., 2006; Berger and Bulyk, 2009), and trimmed to the

most informative w=10 positions. To properly align each putative genomic binding site, we expanded the selected genomic

sequence (i.e. the sequence will all 8-mer E-scores R 0.4) upstream and downstream by (w-8) base-pairs, we calculated PWM

scores for all w-mers in this region, and then we expanded the selected genomic sequence to 36-bp by centering it on the w-mer

site with the highest PWM score. Notably, PWMs were not used to select TF binding sites, but only to align them to each other

such that the resulting 36-bp probes were all centered on the binding sites. To design negative control probes for the bHLH family,

for each protein we randomly selected, from open chromatin regions as identified by DNase-seq (in HelaS3 and K562 cell lines),

300 probes with E-scores < 0.2. 757 negative control probes were selected having E-scores < 0.2 for all three bHLH TFs.

ETS Family

Weused ENCODEChIP-seq data for Ets1, Elk1, andGabpa in theGm12878 cell line. Similarly to bHLHproteins, we selected putative

binding sites as regions with at least two consecutive 8-mers with E-scores R 0.4 for any of the three TFs. 187 negative control

probes were selected at an E-score cutoff of 0.3.

E2F Family

We scanned ChIP-seq peaks for E2f1 in HelaS3 and MCF7 cell lines (for E2f1 and HA-tagged E2f1), E2f4 in Gm12878, HelaS3, and

K562 cell lines, and also E2f6 fromHelaS3 cell line (to supplement the set of E2F sites). From all the putative binding sites selected, we

randomly picked 16,808 probe sequences to use for the gcPBM library. 1000 negative control probes were selected at an E-score

cutoff of 0.3.

RUNX Family

We focused on genomic regions bound by Runx1 in primary human HSPC cells and Runx2 in induced osteoblast cells, defined as

300-bp genomic regions surrounding the summits of ChIP-seq peaks called at a MACS2 q-value cutoff of 0.001. To identify putative

binding sites from the 300-bp genomic regions, we scanned the peaks for sequences that contain two consecutive 8-mers with

E-score R 0.4 for at least one of the paralogous TFs. 6757 negative control probes were selected at an E-score cutoff of 0.3.
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Universal and Genomic-Context PBM Assays
Universal PBM and gcPBMexperiments were carried out following the standard PBMprotocol (Berger and Bulyk, 2009; Berger et al.,

2006). Briefly, we first performed primer extension to obtain double-stranded DNA oligonucleotides on the microarray. Next, each

microarray chamber was incubated with a 2%milk blocking solution for 1 h, followed by incubations with a PBS-based protein bind-

ingmixture (Berger andBulyk, 2009) for 1 h andwith Alexa488-conjugated anti-His antibody (1:20 dilution, Qiagen 35310) or anti-GST

antibody (1:40 dilution, Invitrogen A-11131) for 1 h. The array was gently washed as previously described (Berger and Bulyk, 2009)

and then scanned using a GenePix 4400A scanner (Molecular Devices) at 2.5-mm resolution. Data were normalized with standard

analysis scripts(Berger and Bulyk, 2009; Berger et al., 2006). For gcPBM assays, the normalized data were further processed to

compute median values over replicate spots containing identical DNA sequences.

For each TFwe performed PBM experiments at different concentrations of the TF, in order to select a concentration that resulted in

awide range of fluorescent intensity values according to themicroarray scans. Concentrations that resulted in very dim signal, as well

as concentrations that resulted in saturated DNA spots at low scanner intensity settings, were avoided. For bHLH TFs we used

100nM total dimer concentration of His-tagged Myc:Max, Max:Max, and Mad:Max, for both universal PBM and gcPBM assays.

For ETS factors, concentrations of 50-100nM were used. For E2F TFs, concentrations of 200nM for both E2f1 and E2f4 were

used in universal PBMs, and 200nM and 250nM for E2f1, 250nM for E2f3, and 500nM and 800nM for E2f4 were used in gcPBM.

For RUNX family TFs, concentrations of 200nM for both Runx1 and Runx2 were used in universal PBMs, and10nM and 50nM for

both Runx1 and Runx2 were used in gcPBM. We note that the concentrations above reflect the total protein in each sample, and

not the amount of active protein, which is difficult tomeasure. The precise concentration of active protein can vary between biological

replicates, and thus concentrations reported for different biological replicates are not necessarily comparable.

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP-Seq and DNase-Seq Data
The ChIP-seq (Johnson et al., 2007) data for transcription factors c-Myc, Mad1(Mxi1), Max, E2f1, E2f4, Ets1, Elk1, and Gabpa were

retrieved from ENCODE (Encode Project Consortium, 2012). We used ChIP-seq experiments generated in Gm12878, HelaS3,

H1hesc, K562, and MCF7 cell lines. ChIP-seq data for Runx1 and Runx2 were retrieved from the NCBI Gene Expression Omnibus

database (Edgar et al., 2002), with accession number GSE45144 for Runx1 in human hematopoietic stem and progenitor cells

(HSPCs) (Beck et al., 2013), and GSE49585 for Runx2 in cultured human osteoblasts (Hakelien et al., 2014).

All ChIP-seq data sets were downloaded as bam files, and we applied two peak calling methods: 1) MACS2 (Zhang et al., 2008)

peak caller with q-value cutoff = 0.001, using as input merged bam files from replicate ChIP-seq experiments, and 2) IDR (Li et al.,

2011) pipeline, with cutoff of false discovery rate = 0.05, as recommended by the authors. The peaks called by MACS2 were used

to design DNA libraries for gcPBM experiments (Figures 1B and S2A), while the more stringent IDR peaks were used for the in vivo

analyses in this study (Figures 5, S10–S12, and S15).

For each set of peaks, we ran themotif finding tool MEME-ChIP (Machanick and Bailey, 2011) to verify that themost enrichedmotif

corresponds to the TF tested in the ChIP experiment. In only one set of peaks, corresponding to Ets1 replicate 1 ChIP-seq data in

Gm12878 cells, themotif was not correct, i.e. MEME-ChIP could not recover the knownGGAAmotif. Thus, we only used peaks called

by MACS2 from replicate 2 ChIP-seq data for Ets1 in Gm12878 cells.

DNase-seq (Song and Crawford, 2010) data were used in the gcPBM design to generate negative control probes, i.e. probes not

bound by the TFs of interest. All DNase-seq data were downloaded as peak files from the ENCODE database (Encode Project Con-

sortium, 2012).

gcPBM Data Processing. Identifying Cores
The raw gcPBM data for each TF was processed using standard PBM software (Berger and Bulyk, 2009), then log-transformed using

the natural logarithm. Next, we computedmedian log fluorescent intensities over replicate DNA spots (i.e. DNA spots containing iden-

tical sequences), andweperformed twofiltering steps to removeprobeswithputative bindingsites in the flanking regions. First, for TFs

that bind as homodimers, we filtered out probes with large differences in fluorescent intensity between probe orientations (relative to

the glass slide). Such differences are likely caused by secondary binding sites in one of the flanking regions, different from the main

binding site located in the center of the probe. The cutoff used for this filtering step was the 95th percentile of the difference in log

intensity between the two orientations, as observed for negative control probes. Second, we filtered out probes for which the central

12-bp regions did not contain at least twoconsecutive 8-merswith E-score > 0.4 (i.e. forwhich the putative TFbinding sitewas likely to

be shifted relative to the center of the probe, due to the PWMalignment step described in section 2 above), aswell as probes for which

the flanking regions outside the central 10-bp contain one or more 8-mers with E-score >0.35. These filtering steps were applied

to ensure that each probe contained a single putative TF binding site, located in the center of the probe. The total number of probes

with putative binding sites is available in Figure S7C. For each final gcPBM data set, the log-transformed binding intensities were

normalized to values between 0 and 1 in order to facilitate the interpretation of our binding data and predictions.

For each TF family, we used the DNAmotifs of the TFs (as generated from our universal PBMdata), as well asmotif information and

TF-DNA co-crystal structures available from literature (Werner et al., 1997; Nair and Burley, 2003; Ferré-D’Amaré et al., 1993; Tahirov

et al., 2001; Zheng et al., 1999) to determine the length of the core motif. We used a length of 6-bp for bHLH factors, 4-bp for ETS

factors, 4-bp for E2F factors, and 5-bp for RUNX factors (Figure 2). Next, we analyze the gcPBM data for each TF family to determine
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which cores are bound specifically (i.e. with signal above the 95th percentile of negative controls) by at least one family member. The

list of cores for each family is available in Figure 2B.

Core-Stratified SVR Models of TF-DNA Binding
To build core-stratified support vector regression (SVR) models that accurately reflect TF-DNA binding specificity, we applied the

following procedure for each TF:

1) Starting with gcPBM data for the TF, obtained and processed as described above, we first trimmed each 36-bp probe to the

center 20 base pairs. We performed this step for two reasons. First, we noticed that including nucleotides outside the central

20-bp region results in insignificant improvements in predictions accuracy. Second, using shorter regions reduces the computa-

tional time required to train the models, as well as the prediction time for new DNA sequences. For most sequences in our DNA

libraries, there is a one-to-one mapping between the original 36-bp sequences and the trimmed, 20-bp sequences. For cases

where two ormore 36-bp probes contain the same central 20-mer, themedian binding intensity over the 36-mer probeswas taken

to represent the binding intensity for the 20-mer.

2) We applied an inverse logistic transformation to the normalized gcPBM data. We performed this step because our normalized

gcPBM data contains binding scores ranging from 0 to 1, and regression models based on this data can run into extrapolation

problems, i.e. predict values smaller than 0 or greater than 1. In order to overcome this problem and improve the stability of

our models, we applied the inverse logistic transformation to the (0,1)-normalized gcPBM data, and we used the transformed

values during the model-training step.

3) We split the set of 20-mer sequences based on their core motifs, with the cores defined for each TF family as described in sec-

tion 5 above, and in Figure 2.

4)We generated the feature vector for each 20-mer sequence. The feature vector consists of binary values reflecting the presence

(1) or absence (0) of each possible nucleotide (1-mer), dinucleotide (2-mer), or trinucleotide (3-mer) at each position in 20-mer

sequence (Figure S4) (Mordelet et al., 2013; Zhou et al., 2015).We note that using feature vectors consisting of only 1-mer features

would be equivalent to training position weight matrix (PWM) model. Using 2-mer and 3-mer features allows us to capture depen-

dencies between neighboring positions within TF binding sites and their flanking regions, which can significantly improve the ac-

curacy of binding specificity models (Zhou et al., 2015).

5) We then split the gcPBM datamatrix into several datamatrices, each corresponding to one core motif (Figure 3A). Using the data

matrix for each core, we built an epsilon support vector regression (ε-SVR)model using 1-mer, 2-mer, and 3-mer sequence features.

We tested linear and radial basis function (rbf) kernels, and for each TF we used the kernel that performed best in a cross-validation

test. For each linear SVR model, we applied nested 5-fold cross-validation to determine the best values for the hyper-

parameters C (cost) and ε. We tested the following parameter values: C ˛ {0.001, 0.01, 0.05, 0.1, 0.5, 1, 10}, and

ε ˛ {0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1}. For each rbf-kernel SVR model, we applied nested 5-fold cross validation

with C ˛ {0.01, 0.05, 0.1, 0.5, 1, 5, 10}, ε ˛ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}, and g ˛ {0.0001,

0.0005, 0.001, 0.005, 0.01, 0.1, 1, 10}. To perform the nested 5-fold cross validation, we split each data set into 5 folds (Table S1).

Using each fold for testing, we trained a model on the remaining 4 folds, and on these 4 folds we used 5-fold cross-validation

to learn the values of the hyper-parameters. Thus, we ensure that the test data points are completely independent of the training pro-

cess. For thegenome-widepredictionsand themodels released through iMADS,wetraineda ‘‘final’’model for eachTF, for eachcore,

by 5-fold cross-validation. Our models and predictions can be downloaded from https://imads.genome.duke.edu/datasources .
Modeling Differential Specificity with WLSR
To identify sites preferred by TF1 or TF2, we used a weighted regression approach that incorporates data from replicate gcPBM ex-

periments. gcPBMdata is highly reproducible (Figures 1C and S2B). However, bindingmeasurements vary slightly between replicate

experiments, and for some TFs the variance in binding intensity is not constant across the intensity range. In addition, replicate

gcPBMexperiments are not always done at the same concentration of active TF, because determining this concentration is not trivial.

Instead, the protein concentration specified in our binding assays is the total protein concentration in the sample.When different con-

centrations of active TF are used in replicate experiments, the binding measurements still correlate very well, but the correlation may

not be linear (see, for example, the E2f1 replicates in Figure 1C). In order to capture the characteristics of replicate gcPBM datasets,

we build the following weighted regression model:

yi = fðxiÞ+ εi

εi � N
�
0; s2

i

�
where f() is a linear or quadratic function, in order to capture potentially non-linear correlations resulting from different concentra-

tions of active TF. We note that the SD is not constant, but depends on each data point xi. For all the replicate data generated in this

project, we observed that the variance either increased or decreased with the binding intensity. Therefore, we model the variance

structure using an exponential function with a tuning parameter t:

s2
i = e2txi
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After parameterizing the function f(), we can estimate the parameters by maximizing the likelihood function, thus obtaining a

weighted least square solution.

A similar WLSR approach can be applied when comparing two paralogous TFs TF1 and TF2, in order to capture those genomic

sites bound with similar specificity by the two factors. For paralogous TFs, the variance may be larger and the variance structure may

be different than what we observe for replicate datasets. We use bf to denote the regression function estimated for paralogous TFs,cs2p to denote the variance estimated for paralogous TFs, and cs2r to denote the variance estimated for replicate datasets. Next, for

each data point (xs, ys), where xs is the TF1 binding intensity for site s, and ys is the TF2 binding intensity for site s, we want to ask

whether the two binding intensities are ‘different’ given the uncertainty in our estimated function bf and the variance observed between

replicate experiments. To answer this question we adapted the variance structure estimated from replicate data to the paralogous

TFs regression function. LetN be the number of observations (i.e. sequences) in the gcPBM data for paralogous TFs, and x1,.,xN be

the binding measurements for TF1. For any site s whose TF1 binding intensity is xs, the total variance is predicted by:

cs2
t =
cs2
r +

 
1

N
+

ðxs � xÞ2PN
i = 1ðxi � xÞ2

!cs2
p

Given the large sample size N, we can approximate cs2t zcs2r and thus substantially reduce the time required to compute the total

variance.

The total variance term allows us to derive a 99% ‘prediction band’ that reflects the variation we would expect if TF1 and TF2 were

replicate TFs (Figure 3C, gray band). Using this 99%prediction band for replicate variation, we can next define differentially preferred

sites as the sites outside the band. In addition, for each differentially preferred site swe can calculate a ‘preference score’ z defined as

the normalized difference between the real and the predicted data:

zðxs; ysÞ=
bf ðxsÞ � ysffiffiffiffiffiffics2

t

q
Positive values for z correspond to TF1-preferred sites, while negative values for z correspond to TF2-preferred sites (Figure 3C).

Preference scores are not limited to the sites tested by gcPBM, but can be computed for any DNA site s by using core-stratified SVR

models to predict xs and ys.

Finally, we note that gcPBM experiments are typically done on 4-chamber arrays, i.e. 4 PBM experiments are performed simulta-

neously but in different chambers of the same microarray slide. In general, the results of replicate gcPBM assays done on the same

array (‘within-array replicates’) agree better than those of replicates done on different arrays (‘between-array replicates’). Thus, in our

WLSR approach, when we compare TFs tested on the same array we use within-array replicate data, and when we compare TFs

tested on different arrays we use between-array replicates.

The iMADS Framework
iMADS is an integrative approach that combines quantitative high-throughput experiments and computational modeling to study the

differential DNA-binding properties of closely related TFs (Figure 7). For two paralogous TFs of interest, TF1 and TF2, iMADS takes as

input high-throughput quantitative binding data for the two proteins. Here, we generate such data using gcPBM assays (see

Sections 4 and 5 above), which are carefully designed to provide binding measurements that are highly reproducible, cover a

wide range of affinities, are in great agreement with independent binding affinity data, and are sensitive enough to capture differences

in specificity among closely-related TFs (Gordan et al., 2013) (Figure 1C). iMADS uses as input gcPBM data for individual TFs as well

as biological replicates (Figure 7A).

iMADS contains two main modeling components (Figure 7B): 1) building quantitative DNA-binding specificity models for individual

TFs using support vector regression (SVR)(Drucker et al., 1997), and 2) building models of differential specificity between paralogous

TFs using weighted least squares regression (WLSR). TheWLSR approach allows us to identify genomic sites differentially preferred

by paralogous TFs, i.e. sites for which the difference in binding between TFs is larger than the variability observed in replicate

experiments. iMADS models are publicly available through our web server (http://imads.genome.duke.edu), and can be used to

make predictions for any DNA sequence.

In the sections below we illustrate the use of iMADS data and models to: 1) explore the DNA sequence and structural features that

contribute to differential specificity of paralogous TFs; 2) make quantitative predictions of TF binding and TF preference across the

genome, as well as predictions of the effect of DNA mutations; and 3) determine the role of differential DNA binding specificity in the

in vivo genomic targeting and functional specificity of paralogous TFs (Figure 7C).

Enrichment Analysis for Sequence Features
The enrichment of specific sequence features in the set of genomic regions preferred by TF1 or by TF2 was calculated using a

one-sided Mann-WhitneyU test. For testing a core motif X, the null hypothesis is that the preference scores of sequences containing

core X are from the same distribution as for the background sets of sequences, where the background is defined as the union of all

differentially preferred sites; the alternative hypothesis is that the preference scores of sequences containing core X are either larger

or smaller than the scores of background sequences. For testing a flanking sequence feature X, a similar approachwas used, with the
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background set of sequences defined as the union of differentially preferred sites that also contain a common coremotif. All p-values

were adjusted using the Benjamini-Hochberg procedure.

DNA Shape Analysis
The DNA shape profiles of differentially preferred sequences were predicted using the DNAshape tool (Zhou et al., 2013). For each

pair of TFs, we report the median of each DNA shape feature at each position, and the p-value reflecting the significance of the dif-

ferential DNA shape profiles between TF1- and TF2-preferred sites (Table S3).

Differential In Vivo Binding Analysis
We ran MACS2 for each replicate ChIP-seq data for paralogous TFs (p-value cutoff of 0.01). Then we used the bedgraph file gener-

ated by MACS2 to calculate the total normalized read counts (i.e. the pileup score) in the stringent peak regions identified using IDR-

2.0.2, with an IDR cutoff of 0.05 (see section 1 above). We used the sets of reproducible peaks to test the correlation between our

in vitro preference predictions and the in vivo ChIP-seq data.

To calculate preference scores from the ChIP-seq data, we focused on fixed-size genomic regions around the ChIP-seq peaks

summits for the TFs of interest. We used 300-bp regions for bHLH proteins Mad and Myc, and E2F proteins E2f1 and E2f4, and

180bp regions for ETS proteins Elk1 and Ets1 (we chose smaller regions for ETS factors due to the higher resolution of the ChIP

data and the higher frequency of putative binding sites in genomic regions). For each pair of paralogous TFs, we first normalized

the pileup scores using the DEseq2 tool (Love et al., 2014), and then we computed the natural logarithm of the ratio of pileup scores

for each fixed-sized peak. The log ratio of pileup scores reflects the in vivo DNA-binding preference of TF1 versus TF2.

To compute the in vitro binding preferences, for each ChIP-seq peak we used iMADS models to make binding predictions in the

peak region (Figure 5A). Briefly, we scanned the region to identify putative TF binding sites, defined as 20-bp sequences centered at a

core motif for the TF family of interest. (20-mers that do not meet this criterion are unlikely to be bound specifically by TFs in this fam-

ily, and thus are not considered.) Next, each 20-mer centered at a core motif was scored using the SVR models for that core, for the

TFs of interest (TF1 and TF2). The predicted binding specificity scores for TF1 and TF2 were then used in the WLSRmodel of TF1 vs.

TF2 binding preference. For peak regions containing multiple putative binding sites, we averaged the TF1-vs-TF2 preference scores

over all sites in the same peak region. We applied this procedure to analyze ChIP-seq peaks for Mad vs. Myc in H1SC cells

(3,726 peaks), E2f1 vs. E2f4 in K562 cells (13,004 peaks), and Elk1 vs. Ets1 in K562 cells (2,208 peaks). We selected these three

data sets, among all ChIP-seq data available for the TFs in our study, because they were not included in the gcPBM designs, and

thus are completely independent of our training data. For analyses of individual TFs, we used the natural logarithm of the ChIP-

seq read pileup at each peak. For analyses of pairs of paralogous TFs, we used the log ratio of the read pileups for the two proteins.

We compared the preference scores computed from ChIP-seq data and iMADS predictions and we computed the Spearman cor-

relation coefficients and their significance (Figures 5B–5D, left panels). In this analysis we used Spearman correlation coefficients, as

opposed to Pearson correlation coefficients, because we expect the ranks in the two data sets to correlate, but not necessarily the

values. We also performed analyses on binned ChIP-seq data. Specifically, peaks with similar ChIP-seq preference scores were

grouped into 10 fixed-size bins. Next, we compared the distributions of iMADS scores in different bins (Figures 5B–5D, right panels)

and found statistically significant differences between bins, with higher iMADS preference scores corresponding, in general, to bins

with higher ChIP-seq differential signal. We use Mann Whitney U-tests to compare the iMADS distributions between bins.

We evaluated the in vivo predictive power of our iMADSmodels using receiver operating characteristic (ROC) curve analyses of the

ChIP-seq data. For these analyses, we sorted the ChIP-seq peaks in decreasing order of the differential ChIP signal, as shown in

Figure 5H (the heatmaps were generated using deepTools (Ramirez et al., 2014)). We used to top N% of peaks as TF1-preferred

(or positives) and the bottom N% of peaks as TF2-preferred (or negatives), for different values of N (5, 10, 15, 20, 25, 30, 35, 40,

45, and 50). Next, we used the iMADS scores of differential specificity to compute ROC curves showing how well the iMADS scores

can distinguish TF1-preferred from TF2-preferred peaks. We found that iMADSmodels perform remarkably well: the areas under the

ROC curves (AUCs) were 0.69-0.76 for Mad vs. Myc (for N=5-30), 0.8-0.9 for E2f1 vs. E2f4 (for N=5-30) and 0.59-0.6 for Elk1 vs. Ets1

(for N=5-10; larger values of N lead to insignificant AUCs, which is not surprising given the poor quality of available Ets1 ChIP-

seq data).

We also compared the performance of iMADS models of differential specificity against the performance of PWMs derived from

in vitro and in vivo data. Specifically, we used TF1 and TF2 PWMs to compute differential binding scores by taking the natural log-

arithm of the ratio between the best TF1 PWM score and the best TF2 PWM score in each peak. As ‘in vitro PWMs’ we used motifs

derived from our gcPBMdata, as they allow a direct comparison to the iMADS preference scores. As ‘in vivo PWMs’ we chosemotifs

derived from the same ChIP-seq data sets used for testing. These motifs are expected to have the best performance among PWMs,

as they were derived from the test data. For TF Myc we used the top motif reported by ENCODE in the Factorbook database (Wang

et al., 2013) (for the H1-hESC ENCSR000EBY data set). For Mad we used the third motif reported by ENCODE in Factorbook (for the

H1-hESC ENCSR000EBR data set), because the first motif did not pass the Factorbook quality criteria, and the second reported

motif was a wide motif not resembling typical bHLH motifs and present only in a small fraction of peaks. For Elk1, Ets1, and E2f1,

the motifs reported in Factorbook did not pass their quality criteria. For this reason, we used HOCOMOCO (Kulakovskiy et al.,

2016) motifs derived from the ENCODE ChIP-seq data (motifs IDs: Elk1: ELK1_HUMAN.H11MO.0.B, ETS1_HUMAN.H11MO.0.A,

E2F1_HUMAN.H11MO.0.A, E2F4_HUMAN.H11MO.0.A). We also tested several motifs from Jaspar (Mathelier et al., 2016) (IDs

MA0470.1, MA0024.1, MA0024.2, MA0024.3, MA0028.2, MA0098.3) but their performance was poor so we decided to focus on
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the gcPBM-derived motifs and the Factorbook/HOCOMOCOmotifs. For the motifs downloaded from Factorbook and HOCOMOCO

we added 0.000001 or 0.0000000001 pseudocounts (respectively) for each nucleotide at each position, in order to avoid values of 0 in

the probability matrices. The pseudocount values were chosen based on the precision of the motifs in each database. We only

considered motif matches with scores > 0 (according to the log ratio of PWM probability versus uniform background probability),

as they are more likely to be generated from the motif models rather than from the background model.

For the Elk1 vs. Ets1 analysis presented in Figure S11, ChIP-seq peaks that are differential for Elk1 versus Ets1 were identified us-

ing the DEseq2 tool (Love et al., 2014). DEseq2 was applied to estimate the dispersion, and an adjusted p-value cutoff of 0.05 and a

fold-change cutoff of 2 were applied to call differential peaks. We refer to differential peaks that have significantly higher ChIP-seq

signal for TF1 as ‘TF1-unique’ peaks, and to differential peaks that have significantly higher ChIP-seq signal for TF2 as ‘TF2-unique’

peaks. We note that TF1-unique and TF2-unique peaks can be also be identified by first generating a set of peaks for each TF, and

then considering only the peaks that do not overlap between the two sets. However, such an approach is highly sensitive to the cut-

offs used to call peaks for each TF, and we noticed that ‘unique’ peaks called according to this method were oftentimes barely above

the cutoff for one TF and barely below the cutoff for the other TF. To overcome this problem, we used the DEseq2-based approach

described above.

Focusing on Elk1 vs. Ets1, we asked whether differential specificities between TF family members account, at least in part, for their

differential in vivo targets. For each TF1-unique and TF2-unique peak with at least one occurrences of a core motif, we identified the

20-mer with the highest TF1 preference. Next, we asked whether the distribution of these TF1 preferences is higher for TF1-unique

compared to TF2-unique peaks (Figure S11, left plot). Similarly, focusing on TF2-preferred sites (i.e. sites with a negative preferences

score according to the TF1 vs. TF2 preference model), we identified the most TF2-preferred site in each TF1- and TF2-unique peak,

and we asked whether TF2-unique peaks have higher TF2 preference scores (in absolute value, since TF2 preferences are negative)

(Figure S11, right plot). We used Mann-Whitney U tests to assess significance.

Functional Analysis
We used GREAT (McLean et al., 2010) to perform functional analysis of differentially preferred sites. From all ETS sites tested in the

gcPBM assay, we first selected the sequences differentially preferred by Elk1 and Ets1, as defined by ourWLSR approach using Elk1

vs. Ets1 binding specificities (with the 99% prediction interval defined based on Elk1 replicates). Next, we identified the genomic co-

ordinates of ChIP-seq peaks mapped by differentially preferred sites, and used the selected regions as input for the GREAT tool. We

identified 278 and 464 genomic regions mapped for Elk1 and Ets1 preferred sites respectively, and ran the GREAT tool with default

parameters to identify enriched GO categories.

Analysis of Non-Coding Genetic Variants
Genomic coordinates of non-coding somatic mutations identified in different tumor types were downloaded from the ICGC project (In-

ternational Cancer GenomeConsortium et al., 2010) data portal. The data sets used in our study are ICGC_BRCA_EU, ICGC_LIRI-JP,

ICGC_MALY-DE, ICGC_PACA-AU, ICGC_PRAD-UK, ICGC_SKCA-BR, and ICGC_SKCM-US. These data sets are either not under

embargo, or, for the data sets released within the last two years, we have acquired approval from the data owners. From each data

set we used all mutations with the mutation type ‘single base substitution’, and annotated as ‘intergenic_region’, ‘intragenic_variant’,

‘upstream_gene_variant’, ‘downstream_gene_variant’, ‘3_prime_UTR_variant’, ‘5_prime_UTR_variant’, and ‘intron_variant’.

From each genomic coordinate, we fetched the 39-bp genomic sequence centered at the mutated base pair. Each 1-bp mutation

affects 20 overlapping 20-mers, over a region of 39 base pairs. Thus, for each mutation we fetched the 39-bp genomic sequence

centered at the mutated site. Given that we want to focus on mutations that can affect binding of ETS factors, we filtered out all mu-

tations for which neither the wild-type (WT) nor the mutated (MT) 39-bp regions contained any 20-mers centered at one of the ETS

core motifs (GGAA or GGAT). For the remaining mutations, we applied iMADS to make predictions of Elk1 binding, Ets1 binding, and

Elk1 vs Ets1 preference for both the WT andMT sequences. To assess the change in binding or preference between WT andMT, we

calculate the maximum absolute change in binding score or preference score, over the 20-mers in each 39-bp sequence centered at

a mutation. A total of 1,266,609 somatic mutations in melanoma cancer patients with whole genome sequencing were selected and

used for the analyses presented in Figures 6B and 6C. The number of somatic mutations selected for other tumor types are:

1,033,656 for breast cancer, 804,713 for liver cancer, 333,992 for pancreatic cancer, 65,482 for themelanomawhole-exome dataset,

36,554 for the prostate cancer whole-exome dataset, and 89,180 for malignant lymphoma whole-exome dataset.

To generate the control dataset of genetic variants, we used 456,285 common (minor allele frequency > 1%) variants from the 1000

Genomes project (1000 Genomes Project Consortium et al., 2012), as reported and used as controls in (Zhou and Troyanskaya,

2015). The common variants were processed similarly to the somatic mutations.

DATA AND SOFTWARE AVAILABILITY

iMADS Web Application and Prediction Server
To allow convenient querying, visualization, and generation of binding scores (for individual TFs) and preference scores (for TF1 vs.

TF2), we created the iMADS web application and prediction server. The application was implemented in the Python and JavaScript

programming languages, using the Flask (http://flask.pocoo.org) and React (https://facebook.github.io/react/) frameworks, respec-

tively. Users can query TF predictions by genomic regions, as determined by UCSC gene lists (hgdownload.cse.ucsc.edu), or by
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user-provided custom gene lists or genomic coordinate ranges. Genome-wide predictions are available as genome annotation

tracks at http://trackhub.genome.duke.edu/gordanlab. These predictions were combined and stored in a de-normalized

PostgreSQL database.

The prediction engine was implemented in Python using libSVM (Chang and Lin, 2011) and Biopython (Cock et al., 2009). Prefer-

ence scores were generated in R using the nlme (Pinheiro et al., 2018) package. To generate predictions for custom DNA sequences

provided by the user, iMADS uses a computational workflow defined in the Common Workflow Language (http://www.commonwl.

org; https://dx.doi.org/10.6084/m9.figshare.3115156.v2), an emerging standard for reproducible and reusable computational work-

flows, and a reproducible software environment in the form of a Docker container to run the prediction engine.

PBM Data Availability
All the raw and processed gcPBMdata generated and used in this study are available in GEO: GSE97794. The 36-mer gcPBMprobes

(both putative binding sites and negative controls) and their genomic coordinates are available in Table S7. The numbers of 36-mer

probes and 20-mer genomic sequences used in our analyses are available in Table S8.

An archived version of release 1.0.0 of iMADS is availble at Zenodo: https://zenodo.org/record/1205525. All the source code is

available on Github.

d Website: github.com/Duke-GCB/iMADS

d Worker for prediction server: github.com/Duke-GCB/iMADS-worker

d Binding predictions for individual TFs: github.com/Duke-GCB/Predict-TF-Binding

d Preference predictions for TF1 vs. TF2: github.com/Duke-GCB/Predict-TF-Preference
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Figure S1. Related to Figure 1. DNA motifs derived from in vivo binding data. PWM motif models 
derived from ChIP-seq data (ENCODE(Consortium, 2012)) using the MEME-ChIP software tool 
(Machanick and Bailey, 2011). For TF E2f3, which does not have ChIP-seq data in human cells, the motif 
was downloaded from the TRANSFAC database, and it was derived from a small, curated set of E2f3 
genomic binding sites (Matys et al., 2006).  
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Figure S2. Related to Figure 1. The genomic-context protein-binding microarray (gcPBM) assay. 
(A) gcPBM design. A set of ~30,000 distinct genomic sequences, centered on putative TF binding sites, 
are selected according ChIP-seq data (see Methods for details). The sequences are synthetized de novo 
on microarrays (Agilent, 4x180k array format), with each genomic sequence being represented in 6 
replicate DNA spots randomly distributed across the microarray. After DNA double stranding (Berger and 
Bulyk, 2009), the microarray is incubated with an epitope-tagged TF, and labeled with a fluorophore-
conjugated antibody to the epitope. The array is gently washed to remove non-specifically bound 
proteins, and then scanned to quantify the amount of protein bound to each DNA spot. (B) 
Representative example of the agreement between replicate gcPBM data set. Plots show the natural 
logarithm of the gcPBM fluorescence intensity (median over 6 replicate spots, randomly distributed across 
the array) for human TF Mad. Higher values correspond to higher affinity binding sites. (C) Correlation 
between gcPBM and MITOMI data. High affinity TF binding sites have high PBM fluorescent intensities 
and low equilibrium dissociation constants (Kd). We note that binding affinity data is only available for a 
few human TFs and a few DNA sites. The only medium-scale Kd data available for human TFs is the 
MITOMI data for TF Max (Maerkl and Quake, 2007). We analyzed 24 TTGnnnnGTGGGTG DNA sites 
that were tested both by MITOMI and by gcPBM, and found a remarkable correlation of gcPBM intensities 
with MITOMI affinities. For comparison, the agreement between the Max affinity data and predictions 
made using existing Max-DNA binding models is much lower (R2 < 0.59), as reported in previous work 
(Mathelier and Wasserman, 2013). Importantly, gcPBM and MITOMI data correlate over a wide affinity 
range (40nM - 1.2uM), which includes medium and low affinity sites. This is important for characterizing 
TF binding because low and medium affinity sites can play important regulatory roles, especially during 
development. 
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Figure S3. Related to Figure 1. Correlation between amino-acid similarity and DNA binding 
specificity similarity for paralogous TF. Scatter plot shows that the % identify in the amino-acid 
sequence of the DNA-binding domains of paralogous TFs does not correlate well with their similarity in 
DNA-binding specificity. 
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Figure S4. Related to Figure 2. Feature derivation for a 20-bp DNA sequence centered on a 
putative TF binding site.  
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Figure S5. Related to Figure 2. Accuracy of core-stratified SVR models. Scatter plots show 
measured versus predicted DNA binding scores for sequences not used during for model training. For 
each TF, sequences containing different cores are shown in different colors.  
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Figure S6. Related to Figure 2. Comparison of the prediction accuracies for core-stratified SVR models 
versus nearest-neighbor models. Both types of models were evaluated on 20-mer data, split by cores. For 
each core, embedded 5-fold cross-validation was performed, using the exact same folds (Table S1) for 
both types of models. 
 
 

	  
Figure S7. Relate to Figure 2. Results and data supporting our core-stratified approach for 
modeling TF-DNA binding specificity. (A) For TF Myc, flanking sequence features contribute differently 
to Myc-DNA binding specificity for sites with the CACGTG versus the CACATG core. Scatter plot shows 
the feature weights for each 1mer, 2mer, and 3mer features in the flanking regions, according to linear 
kernel SVR models trained on sequences with each core. (B) Similar to (A), for TF Ets1 and core 
sequences GGAA and GGAT. (C) Sample sizes for individual cores in our gcPBM data. Plot shows that 
we have sufficient data to train a separate SVR model for each core. 
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Figure S8. Related to Figure 3. DNA sites differentially preferred by paralogous TFs. Scatter plots 
show, in grey, the 99% prediction intervals for each pair of TFs, computed using the WLSR model (see 
Figure 3 and related text). The sequences inside the prediction interval are not differentially preferred by 
the paralogous TFs. The sequences outside the interval, shown in red or blue, are preferred by one of the 
two TFs being compared. Color intensity shows the magnitude of the preference score (see Methods).  
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Figure S9. Related to Figure 4. Sequence and shape features of DNA sites differentially bound by 
paralogous TFs. (A) Scatter plots highlighting the most differentially preferred core, as well as the most 
differentially preferred 1-mer and 2-mer features for the canonical core CACGTG, for paralogous bHLH 
factors Mad versus Myc. P-value shows the enrichment in Myc-preferred or Mad-preferred sites, 
according to a Mann-Whitney U test (Methods). (B) Similar to (A), but for E2F factors E2f1 versus E2f4. 
(C) MGW and roll profiles for genomic sites preferred by Mad vs. Myc. Stars (*) mark the positions within 
the binding sites (core or flanking region) that are significantly different between the two profiles (p-value 
< 10-5 according to Mann-Whitney U test). Shaded regions show the 25th-75th percentile ranges at each 
position. (D) Similar to (C), but for E2F factors E2f1 versus E2f4. 
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Figure S10. Related to Figure 5. ChIP-seq data quality. (A) Scatter plots illustrate the quality of the 
ChIP-seq data, as evaluated using the IDR pipeline (Li et al., 2011) (Methods). Plots show the correlation 
between ChIP-seq replicate data sets, before data normalization. Black points show the “reproducible” 
peaks identified by the IDR analysis. Red points show the peaks considered “irreproducible”. All data sets 
used in this analysis have high correlation for the reproducible peaks, except for the Ets1 ChIP-seq data 
(lower-right panel). (B) Scatter plots illustrate the agreement between ChIP-seq replicates after data 
normalization (Methods). Axes show the natural logarithm of the ChIP-seq pileup signal (i.e. number of 
reads) in the peak regions. All data sets show good correlation, except for the Ets1 ChIP-seq data (lower-
right panel). 
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Figure S11. Related to Figure 5. Genomic sites with differential in vitro specificity are enriched in 
differentially bound in vivo regions. Left: genomic sites with higher Ets1 preference, as predicted by 
iMADS, are enriched in Ets1-specific in vivo targets (as determined using DESeq2; n=736 and 106, 
respectively; see Methods). Right: genomic sites with higher Elk1 preference are enriched in Elk1-specific 
in vivo targets (n=318 and 51, respectively). P-values were computed using one-sided Man-Whitney U-
test.  
 
 
 
 
 
 
 
 
 

 
 
Figure S12. Related to Figure 5. GO enrichment analysis. GO categories enriched in the set of genes 
with nearby (A) Ets1-preferred or (B) Ets1-preferred genomic sites. Categories with literature support 
(Alberstein et al., 2007, Boros et al., 2009, Bories et al., 1995, Teruyama et al., 2001) are highlighted in 
bold. 
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Figure S13. Related to Figure 5. Screen shots illustrating the use of the iMADS web server to 
analyze gene promoters. (A) Using iMADS to identify Mad binding sites in the genomic regions 1000-bp 
upstream and 500-bp downstream of the transcription start sites of eight genes known to be regulated by 
Myc (Zeller et al., 2003). (B) Similar to (A), but showing Myc binding sites. (C) Similar to (A), but showing 
preference scores reflecting the differential DNA binding specificity between Mad and Myc.	  	  

A 

B 

C 
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Figure S14. Related to Figure 6. Example of iMADS analysis of non-coding variants. 

Step1. Identify variant of interest 

Step2. Extract genomic region around the variant 
rs786205688 (chr5:74893909)  

To obtain the 300-bp regions centered around rs786205688, we can use  
http://genome.ucsc.edu/cgi-bin/das/hg19/dna?segment=chr5:74893759,74894059  

Step3. Generate the sequences of interest in a fasta format 

>wild-type 
ccaggattgatgacaaagtactcaacatcaaagaaaataaaaccaaacaatcccaaacatacccttgatatattttttaagtaaacattgaacattttatcattaattttta
attgaaactagttattttataatcaatgaatttgttctttctgattttaagtttgcagatttatttagtgaaggcaagtgcaataatccttcctcagatgatgtttgcttttctaagata
catatactgattctgtgtatcttttttataaccatgagaattttacttccattatacatcaattggaa 
>mutant 
ccaggattgatgacaaagtactcaacatcaaagaaaataaaaccaaacaatcccaaacatacccttgatatattttttaagtaaacattgaacattttatcattaattttta
attgaaactagttattttataatcaatgaatttgttccttctgattttaagtttgcagatttatttagtgaaggcaagtgcaataatccttcctcagatgatgtttgcttttctaagata
catatactgattctgtgtatcttttttataaccatgagaattttacttccattatacatcaattggaa 

Step 4. Input sequences of interest into the iMADS PREDICTION tool, set the title for the job 
(e.g. “Example rs786205688”), and set the model 

Step 5. Click “Generate Predictions” 

Step 6. Click on the prediction heatmap in the “Values” column to see details of the predictions 
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Figure S15. Related to Figure 5. Agreement between ChIP-seq data sets obtained for different 
antibodies. Among the 11 proteins tested in our study, Runx1 is the only protein for which ChIP-seq data 
is available, in the same cell line (K562), for 2 different primary antibodies (ENCAB000BIM and 
ENCAB000BDQ) that both gave ChIP-seq data of acceptable quality according to ENCODE guidelines. 
The total number of peaks, after combining the two ChIP-seq experiments, is 926. R2 = squared Pearson 
correlation coefficient.	  
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