## Supporting Information

# NIR-Induced Spatiotemporally Controlled Gene Silencing by Upconversion Nanoparticle-Based siRNA Nanocarrier

Guojun Chen1, 2, #, Ben Ma2, 3, #, Ruosen Xie1, 2, Yuyuan Wang1, 2, Kefeng Dou3, \*\*,

and Shaoqin Gong1, 2, 4, \*

#### Figure S1:



**Figure S1:** (A) TEM image of the CD-UCNPs. (B) Upconversion emission spectrum of the CD-UCNPs.

### Figure S2:



**Figure S2:** (A) A synthetic scheme of Azo-PEGs. <sup>1</sup>H NMR spectra of (A) mPEG-Azo, (B) Mal-PEG-Azo, (C) GE11-PEG-Azo, and (D) Cy5-PEG-Azo.

Figure S3:



**Figure S3**: Stability test of the UCNP-(CD/Azo)-siRNA/PEG NPs in the cell culture media by DLS analyses.

### Figure S4:



**Figure S4**: *In vitro* gene silencing efficiency assessment with different NIR laser irradiation time. Cells were first treated with UCNP-(CD/Azo)-siRNA/PEG NPs at pH 6.7 for 4 h, followed by NIR irradiation for 10 min or 20 min. \*\*\*: p < 0.001.

### Figure S5:



**Figure S5:** Cell viability tests using an MTT assay in a 2D monolayer cell model. Data are presented as the mean  $\pm$  standard deviation (n = 5). \*: p < 0.05; \*\*: p < 0.01; \*\*\*: p < 0.001.

#### Figure S6:



**Figure S6:** Cell viability tests using an MTT assay in a 3D MCTS model. Data are presented as the mean  $\pm$  standard deviation (n = 5). \*: p < 0.05; \*\*: p < 0.01; \*\*\*: p < 0.001.