
Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The article “Efficient and self-adaptive in-situ learning in multilayer memristor neural networks” is a
compelling illustration of one of the most elusive challenges to using memristor technology in
machine learning applications – getting learning “on the chip”.

This is an important finding, and one that the authors should be commended for.

That said, the authors tend to rely on scientific exaggeration in several areas of this manuscript;
somewhat unnecessarily so. This both serves to inappropriately emphasize the maturity of these
findings to those unfamiliar with this field and will be offputting to others in the field; and in the end
this will diminish the impact of this paper.

Specifically with regard to the strength of the claims:

1) The title says “self-adaptive.” While I’m not sure what the authors specifically mean by this
term, the system described in the paper is clearly not stand-alone, requiring many of the
computations to be performed off the memristor chip in software. That these steps could in
principle be hardware accelerated with simple circuits is good to point out, but the system being
described in this paper does not appear to be stand-alone.

At minimum, the authors should be explicit about what “self-adaptive” means.

2) The abstract and subsequent descriptions suggest that they are performing “Bayesian
Inference.” While in a broad sense of the word this could be said to be the case (most neural
networks can be described through a Bayesian perspective), the authors appear to be simply
implementing a standard 3 layer neural network (or 2 layers, depending how you count) with a
software log-likelihood softmax as the output and input to the training signal. It isn’t immediately
obvious that this analysis is strictly Bayesian, aside from their probabilistic normalization in equation
5. At least the way described in the paper, it comes off as standard neural network training with a
fancy name. If the authors have a stronger Bayesian rationale or justification, they should be explicit
about it.

3) 91.71% accuracy on MNIST is fairly horrible by computer vision standards. Yes, the images
were reduced in size to 8x8 to fit on the crossbar; but a generic machine learning researcher will see

that number and dismiss the paper. The authors need to acknowledge this discrepancy and address
how larger hardware will likely do better.

a. Related, there is a clear precision concern around memristors and similar devices for analog
computing of neural networks. There is a growing literature around this subject (hardware papers by
Burr and Agarwal and others; machine learning papers by Bengio and others regarding low-precision
networks). The authors should include deeper discussions about precision and machine learning

4) The energy analysis in both the paper and methods reads a bit like a sales brochure. First, I
don’t understand why they are comparing the cost of an analog operation to a FLOP, when clearly
the analog operation is not at the same precision. Whatever alteration (more memristors?) has to be
made to the circuit to achieve comparable digital precision will likely increase cost. There is a
literature around this precision consideration that the authors should cite. Further, the conventional
CMOS operations are generic, so the extra circuitry that seems to be ignored in the analysis of their
own system probably should be accounted for as well (if it is not already, it was not completely
clear). I’m also not entirely sure, but is not the number quoted for TrueNorth (>20pJ per operation)
for spike events? The whole point of TrueNorth is that it is event driven, thus proportionally a lot
more computation occurs with each spike than in a conventional operation.

Again, the value of analog computing is well established if systems can be efficiently trained and
scaled using the technology described here. The authors do not need to use poorly set up apples-to-
oranges comparisons to make their technology look better than competitors. At least not in an
academic publication.

5) The time analysis suffers from a similar problem. They treat the crossbar as a parallel
architecture uniquely, but of course GPUs and CPUs can also be parallelized. The low-level mat-vec
kernels are not as easy to split up in conventional treatments, but training batches are routinely
distributed over many cores and results then brought back together. It is a different parallel model
to be sure, but to say that a GPU can be matched by a 512x256 array ignores the fact that I could
theoretically string together many GPUs to parallelize my training over a very large data set, which is
not that immediately feasible for the analog system.

a. Related, most state-of-the-art neural networks are convolutional (at least in part) or involve
more sophisticated micro-networks, like LSTMs. The simplest way to think of these for the analysis
here is that these algorithms leverage sparse matrices; which presumably the conventional
hardware can take advantage of, while the physical crossbars would benefit minimally from (at least
in terms of time).

All of these points are not to question the overall value of the study. Clearly, the efficient training of
analog memristor accelerators for neural networks is a huge and important win. But the authors do
not need to oversell this by framing comparative analyses in such a way as to make best case
assumptions for their own technology and worst case for alternatives. It is kind of like putting cheap

chrome on a Ferrari. From a distance it may look impressive, but up close it is a waste and
distraction.

Some minor questions / points:

6) Of the 36 citations, the vast majority are to memristor papers, with 28 in the first three lines
of the abstract; whereas there are almost no citations for the algorithm they’re using and minimal to
the broader machine learning applications (ignoring the growing literature around low-precision
ANNs) that could be impacted. For a Nature Communications article, I’d suggest a subset of
references suitable for a broad audience, not a narrow community of device researchers. I’d restrict
the memristor citations to those that are specifically relevant for the work being described here.

7) On the algorithm implementation (Figure 2), how are the errors from each sample
accumulated or stored prior to the update weights (once per batch) on hardware? This accumulation
is in software, right?

8) The ideal algorithm is the exact same network from layer 2A, but performed in floating point
in simulation? Or with approximate analog precision minus the defect noise? Did the authors try a
state-of-the-art computer vision algorithm (e.g., deep convolutional net) on the lower-resolution
images to quantify the impact of the low-res?

9) I’m not sure the confusion matrix (table 1) adds anything here, though it may be interesting
if the software-“ideal” case yielded a qualitatively different confusion matrix

10) Top of page 10, the authors state “an advantage of online training is the ability to update the
weights continuously during use, to compensate for conductance drift over time and changes in the
input data distribution”. This is true; however, the authors should point out that neural networks
suitable for transfer learning / adapting to concept drift are still very preliminary.

The case they point out about using this online training to compensate for hardware drift is a very
important observation, and probably merits more discussion.

11) Page 11 (And in methods) As mentioned above, TrueNorth’s power consumption is ~22pJ
per spike event, not per algorithmic operation (the event-driven nature of the chip means that they
pay ~0pJ when nothing is communicated). This is a subtle but very important distinction – it shifts
the burden of energy use onto the algorithm; but it is not fair to imply that TrueNorth is 1000 times
more power hungry per operation.

12) It is probably more fair to communicate “error rate” on MNIST as opposed to “accuracy”

Reviewer #2 (Remarks to the Author):

The paper presents a memristive neural network with linear relation between the voltage and the
memristor conductance and therefore it can be trained in-situ reliably.

Overall, the paper is well-written and the results are interesting and important. The reviewer thinks
that this work is with high quality and deserves publication.

The reviewer feels that there is too much emphasize on the neural network theory rather than
focusing on the contributions of the paper. The authors should focus more about the fabrication and
process of the memristor array and PCB in use since the design and structure are not clearly
described. A schematic of the 1T1R arrays should be provided, including showing how the same
memristive array is used for different structures of neural networks (how a 128x64 array becomes
64x54x10 two layer MNN?). Fig. 2 shows pure crossbars that are very different than the real
architecture used in this work. Fig. 5 in supp. also seems to present only part of the story. Also the
linear programming approach should be better explained. Specifically, how many levels can be
achieved? (from Fig. 1, ~100 levels are shown).

It will be worthwhile to provide the code for the software implementation of the training and the
missing circuit units.

The presented learning scheme with fixed pulses across the memristor and with varying pulse
magnitude on the gate of the transistor is similar to a stochastic gradient descent training technique
presented in Soudry et al., " Memristor-based Multilayer Neural Networks with Online Gradient
Descent Training," TNNLS 2015. It worth mentioning the differences and similarities. They also
provided the circuits for the training in Rosenthal et al., "A Fully Analog Memristor-Based Multilayer
Neural Network with Online Backpropagation Training", ISCAS 2016.

While some of the results are trivial (the influence of stuck at ON is more significant than stuck at
OFF for example is intuitive), others are interesting. The authors should emphasize what are the
important insights and what is only a demonstration of known insights.

The comparison to ex-situ can be explained better. Also, note that there are work arounds that can
improve the vulnerability of ex-situ training to the memristive system faults.

Method 6- “With integrated hardware neurons, we estimate that the time needed for each layer of
neurons to stabilize can be brought as low as 10 ns” need to justify this claim.

Method 6+7- comparison to execution time of TPU and GPU, increasing the size of the layers till you
meet the point where the suggested work outperform GPU\TPU is “artificial”, consider checking the
performance for well-known networks such as AlexNet, VGG, ResNet (even only- compare execution
of “partial” net).

The energy comparison is not convincing. It seems that the authors ignore the energy of the
periphery including costly ADCs and voltage/current sources. A real comparison would be comparing
the energy per image, but it requires the entire implementations.

Reviewer #3 (Remarks to the Author):

The paper “Efficient and self-adaptive in-situ learning in multilayer memristor neural networks” by
Can Li et al. shows a backpropagation implementation on software-hardware implementation.
Although interesting, the paper does not show enough novelty to be published in Nature
Communications.

1- Please clearly state in the main paper the device programming speed (500us and 5us, as I
believe is described in the Supplementary Info), which definitely seems very long for promising very
fast training speed.

2- In the entire paper, many crucial aspects are explained by saying that there will be efficient
circuitry able to perform such aspects. Authors should explain how they actually think to implement
such aspects, if A/D D/A converters are used, if operation is performed in parallel or serially, since
using such high-density arrays pose severe silicon area constraints, and therefore implementable
CMOS functionalities.

3- The training is performed using mini-batches. How can the different delta and x values be
memorized, before applying the weight update? Also Fig. 2c does not mention this. Where these
values will be memorized in circuitry?

4- Weight update is performed row by row in the scheme in Fig. S5, which slows down
programming operation by orders of magnitude (considering the worst case of 500us per line with a
1024x1024 array, this means 500ms, definitely not useful). In addition, Fig. S1 shows that different
conductance levels are obtained by programming different gate voltages, which means that the
circuit overhead is unacceptably large.

5- I don’t understand how the programming scheme works: if I program a device into a
particular conductance, and then, i.e., I ask to reduce it, do I need to read the device conductance
between the two operations to calculate the exact voltage pulse to be applied?

6- Regarding the obtained accuracy of 91.71% (which actually shows values fluctuating below
90% in Fig. 3c), how it is compared with an equivalent size software network? Because the Ideal
Software simulation in Fig. 3c is misleading, since it corresponds to a memristor network with no
dead or stuck-on devices, not a software (i.e. Tensorflow) simulation.

7- The conductance values shown are very large, hundreds or thousands of uS. This leads to a
huge power consumption during programming operation. Did authors consider this in their power
estimates?

8- Please clearly state that Fig. 4 are simulations. What is the real random variation during
programming operation of real memristors used in this paper? I think is much more than the
optimum 1%.

9- Calculations for power consumption completely neglect CMOS circuitry, which can be a large
error in case A/D D/A converters are used. Calculations should be redone considering circuitry. In
addition, here memristor power consumption is not based on the memristors of the papers, but on
the best obtained in the literature. What is the linearity of this cited device, which is the main
advantage of the present manuscript memristor?

10- How is the 20ns estimate calculated for read time for CMOS circuitry?

1

We thank all the reviewers for their precious time and constructive comments on our manuscript.
We revised both the main text and the supplementary information (SI) accordingly. The changes
we made are summarized as follows:

1. Removed quantitative comparison on power consumption between different architectures
on page 13-14 of the revised main text.

2. Added comparison between our experimental data, simulation data and software data
trained with TensorFlow, and projected that a larger network would lead to classification
accuracy over 97%. The new paragraphs are added on pages 10-12 in the revised main
text and the network is shown in Supplementary Fig. 14 in the revised SI.

3. Added more analyses on the automatic compensation/adaption of hardware drift by the
in-situ training, as shown in the Supplementary Figure 13 in the revised SI.

4. Added details about device fabrication as Method on Page 15 of the revised main text;
PCB board design as Supplementary Figure 4 in the revised SI.

5. Added code snippet showing the high-level training algorithm as Supplementary Note 1
in the revised SI.

In the following point-to-point response, the original reviewers’ comments are in black fonts, our
responses are in blue fonts. Changes in the revised main text and SI are also highlighted in blue
colored italic font.

Response to Reviewers' comments:

Reviewer #1 (Remarks to the Author):

The article “Efficient and self-adaptive in-situ learning in multilayer memristor neural networks”
is a- compelling illustration of one of the most elusive challenges to using memristor technology
in machine learning applications – getting learning “on the chip”.
This is an important finding, and one that the authors should be commended for.
That said, the authors tend to rely on scientific exaggeration in several areas of this manuscript;
somewhat unnecessarily so. This both serves to inappropriately emphasize the maturity of these
findings to those unfamiliar with this field and will be off putting to others in the field; and in the
end this will diminish the impact of this paper.

Response: We thank the reviewer for commending our contribution and pointing out the
significance of our experimental demonstration of the “on the chip” learning with memristor
technology. We also very much appreciate the reviewer’s suggestions to improve our manuscript
by making more objective statements.

Specifically, with regard to the strength of the claims:
1) The title says “self-adaptive.” While I’m not sure what the authors specifically mean by this
term, the system described in the paper is clearly not stand-alone, requiring many of the
computations to be performed off the memristor chip in software. That these steps could in
principle be hardware accelerated with simple circuits is good to point out, but the system being
described in this paper does not appear to be stand-alone.

At minimum, the authors should be explicit about what “self-adaptive” means.

2

Response: We thank the reviewer for this comment. It is true that our current hardware is not a
standalone system. The memristor neural network is supported by peripheral driving/control
circuits and software neurons. By stating “self-adaptive” we mean that no prior knowledge of the
hardware imperfections (e.g., memristor defect, peripheral asymmetry, etc.) is required during
the on-line training process. The algorithm (in this case, SGD) corrects the hardware
imperfections, or in other words, “self-adapts” to them. This is actually an important point with
significant implications. As our experiment results suggest, even if an emerging device (such as a
metal-oxide memristor) is not optimized for digital/memory applications, it still can be a good
candidate for constructing analog neural networks.

To make this point clearer, we made the following revisions in the revised main text.

1. In the abstract, we added:

“We experimentally demonstrate in-situ learning capability and achieve competitive
classification accuracy (91.71%) on a standard machine learning dataset (MNIST), and
confirm the self-adaption of the training algorithm to hardware imperfections.”

2. In paragraph 1 of the introduction (page 3), we added:
“This level of performance is obtained with 11% devices in the crossbar unresponsive to
programming pulses and the training algorithm blind to the defectivity, demonstrating the
self-adapting capability of the in-situ learning to hardware imperfections.”

3. Revised the following sentence in page 6 to make it clearer that some parts of the calculation
are performed in software.
“The hidden neurons after each layer apply a nonlinear activation (in this work, a rectified-
linear function in software) to the weighted sums computed in the crossbar. The desired
weight update (ΔW) for each layer was calculated in software using Eq. 1, then applied to the
crossbar by the measurement system.”

2) The abstract and subsequent descriptions suggest that they are performing “Bayesian
Inference.” While in a broad sense of the word this could be said to be the case (most neural
networks can be described through a Bayesian perspective), the authors appear to be simply
implementing a standard 3 layer neural network (or 2 layers, depending how you count) with a
software log-likelihood softmax as the output and input to the training signal. It isn’t
immediately obvious that this analysis is strictly Bayesian, aside from their probabilistic
normalization in equation 5. At least the way described in the paper, it comes off as standard
neural network training with a fancy name. If the authors have a stronger Bayesian rationale or
justification, they should be explicit about it.

Response: We agree with the reviewer. In the revised manuscript, we removed the term
“Bayesian inference” in order to avoid confusion. Instead, we only use “Bayesian probability” to
introduce some calculations (e.g., equation 5).

3

3) 91.71% accuracy on MNIST is fairly horrible by computer vision standards. Yes, the images
were reduced in size to 8x8 to fit on the crossbar; but a generic machine learning researcher will
see that number and dismiss the paper. The authors need to acknowledge this discrepancy and
address how larger hardware will likely do better.

Response: We thank the reviewer for pointing this out. It reminds us that different communities
have different perspectives on MNIST classification accuracy. We understand that the 91.71%
accuracy is not on par with a much larger and fully-connected multilayer neural network
implemented with mature CMOS technology. However, our work is the first experimental
demonstration of emerging-device-based neural network that is much smaller than the CMOS
counterparts. The key contribution of this work is the function demo rather than performance
optimization of a memristor neural network. We believe that once all key engineering challenges
are fully addressed, larger memristor networks that can implement more sophisticated algorithms
are feasible. Consequently, a classification accuracy comparable with traditional hardware can be
achieved with other benefits such as energy efficiency.

To understand the potential of the memristor array, we developed a simulation model based on
measured data (11% unresponsive devices, 2% random variation during blind conductance
update, limited conductance dynamic range, etc.) and conducted several simulations. With a
128×64 array (64 inputs, 54 hidden units), the classification accuracy (91.4±1.2%) during the
training is very close to experimental data (91.71%). For a much larger network (1024×512 array,
484 inputs, 502 hidden units), our simulation yields an accuracy of 97.3±0.4%. We added the
following paragraph in the main text (Pages 10-12) to explain the effects of defectivity, variation
and array size:

“To understand the potential of the memristor array, we developed a simulation model
(see Supplementary Fig. 7 for detailed architecture) based on measured parameters such as the
unresponsive rate, conductance update error, and limited memristor conductance dynamic range.
We found that the simulated accuracy agrees well with the experimentally achieved one (Fig. 4a),
validating the simulation model. A further simulation on a defect-free network shows that the
MNIST classification accuracy is similar to that of the same network architecture trained in
TensorFlow46 that uses 32-bit floating point numbers. This result suggests that even though the
analogue memristor network has limited precision due to conductance variation, they do not
have a significant impact on MNIST classification accuracy (more analysis on conductance
update variation is shown in Supplementary Fig. 11). Our finding is consistent with previous
theoretical and simulation studies on more sophisticated problems20,24,47-51. The analogue
precision could potentially be improved, if needed for other applications, by device engineering
for better IV linearity37,38, or using pulse width instead of amplitude to represent analogue input
(with increased time overhead)27,28,37, or employing multiple memristors to represent one
synaptic weight (at the expense of chip area)52, etc.

A multilayer neural network trained with online algorithm is more tolerant to hardware
imperfections. The experimental accuracy of 91.71% in this work was achieved with 11%
devices unresponsive to conductance updates. Our simulation showed that even with 50% of the
memristors stuck in a low-conductance state, a 70% classification accuracy is still possible
through online training (Fig. 4b), although the accuracy is much more sensitive to shorted
devices (Supplementary Fig. 12). On the other hand, if pre-trained weights are loaded to the
memristor crossbar (i.e., ex-situ training), the classification accuracy decreases quickly with the

4

defect rate (Fig. 4b)). There are approaches to improve the robustness of ex-situ training19,38, but
most of them require that the parameters be tuned based on specific knowledge of the hardware
(e.g. peripheral circuitry) and memristor array (e.g. device defects, wire resistance, etc.), while
the in-situ training adapts the weights and compensates them automatically. The self-adaption is
more powerful in a deeper network in which the hidden neurons are able to minimize the impact
of defects, as suggested by the higher classification accuracy from a two-layer network than that
from a single-layer one on the same images (Fig. 4c). The online training is also able to update
the weights to compensate for possible hardware and memristor conductance drift over time (see
Supplementary Fig. 13).

We expect that the classification accuracy can be improved substantially with a larger
network that has more hidden units and/or more inputs to support images with higher resolution.
We performed a simulation with our model on a 1024×512 memristor array, which is likely to be
available in the near future, to recognize images of 22×22 pixels cropped from the MNIST
dataset. The network consists of 484 input neurons, 502 hidden neurons, 10 output neurons, and
a total of 495,976 memristors in the two layers to represent the synaptic weights (see
Supplementary Fig. 14). After training on 1,200,000 images (20 epochs), a 97.3±0.4%
classification accuracy is achieved on the test set even with 11% stuck devices, approaching that
demonstrated with traditional hardware.

”

5

Fig. 4 Analyses based on experimental-calibrated simulation. a The experimental classification error (accuracy
shown in Supplementary Fig. 10) matches the simulated accuracy. The simulation considers experiment parameters
including 11% devices stuck at 10 μS, 2% conductance update variation, limited conductance dynamic range, etc.
The simulation on defect-free assumption shows an accuracy approaching to that from TensorFlow. Each data point
is the classification error rate on the complete testing set (10,000 images) after 500 images (simulation or
TensorFlow) or 5,000 images (experiment). b The impact of non-responsive devices on the inference accuracy with
in-situ and ex-situ training approach. The non-responsive device was stuck in a very low conductance state (10 µS),
which is the typical defect device value observed in the experiment. The result shows that the in-situ training process
adapts to the defects, providing a much higher defect tolerance compared with pre-loading ex-situ training weights
into the network. With 50% stuck OFF devices, the network can still achieve 60% accuracy. c The multilayer
network also helps with the defect tolerance. If one device is stuck, the associated hidden neuron will adjust the
connections accordingly. d The simulation of a larger network constructed on a larger memristor crossbar (1024×
512) with experimental parameters (e.g. 11% defect rate) could achieve accuracy above 97%, which suggests a
large memristor network could narrow the accuracy performance gap from the conventional CMOS hardware. The
network architecture is shown in Supplementary Fig. 14.

a. Related, there is a clear precision concern around memristors and similar devices for analog
computing of neural networks There is a growing literature around this subject (hardware papers
by Burr and Agarwal and others; machine learning papers by Bengio and others regarding low-
precision networks). The authors should include deeper discussions about precision and machine
learning
Response: This is a very good point, and we agree that the precision issue deserves more
discussions. Unlike digital neural networks, analog computing in emerging-device-based neural
networks is generally of low precision, for both synaptic weight representation and matrix
multiplication. As the reviewer pointed out, there is a growing literature on low precision
networks. Most agrees that low precision networks (and even binary networks) can, under certain
conditions, achieve performance comparable to that of a high-precision counterpart.

While CMOS-based accelerators have already started reducing precisions to save chip area and
decrease energy consumption, there have been no previous reports of a successful experimental
demonstration using emerging devices organized into large arrays. In a pioneering work by Burr
et al (cited as ref. 24 in the revised manuscript), researchers built a network using phase change
memory (PCM) to store the synaptic weights, with weighted sums performed in software. They
discussed the impact of the limited precision of PCM which represents synaptic weight, and
concluded the nonlinearity and asymmetry in G-response are the most important factors that
limit the maximum possible accuracy to about 85%. Agarwal et al (cited as refs. 50, 51 in the
revised manuscript) studied specific requirements for the memristors neural accelerator,
including read noise, write noise, asymmetric nonlinearity in the conductance change response to
electrical pulses. Our work focusses on the experimental demonstration, and our results agree
with their discussions in principle. Specifically we realized a more practical weight update
scheme to significantly improve the linearity and symmetry in G-response, and, more
importantly, perform the weighted summation (matrix multiplication) experimentally in crossbar.
Our experimental result takes into account various factors that diminish precision, including not
only the limited precision of weights represented by analog memristors, but also inaccuracies in
multiplication due to device IV nonlinearity, wire resistance, thermal noise, etc.

It is also worth noting that, although low precision seems to be sufficient for some networks (e.g.
two-layer fully connected layer for MNIST classification), there are approaches to higher

6

precision if needed. These include engineering memristor devices for a better IV linearity, or
using pulse width instead of amplitude to represent analog input (at the expense of increased
time and circuitry overhead), or combining several memristors to represent one synaptic weight
(at expense of increased chip area), etc. These might be of interest for future work.

In the revised manuscript, we added more discussion as described in Response to Comment 3).

4) The energy analysis in both the paper and methods reads a bit like a sales brochure. First, I
don’t understand why they ae comparing the cost of an analog operation to a FLOP, when clearly
the analog operation is not at the same precision. Whatever alteration (more memristors?) has to
be made to the circuit to achieve comparable digital precision will likely increase cost. There is a
literature around this precision consideration that the authors should cite. Further, the
conventional CMOS operations are generic, so the extra circuitry that seems to be ignored in the
analysis of their own system probably should be accounted for as well (if it is not already, it was
not completely clear). I’m also not entirely sure, but is not the number quoted for TrueNorth
(>20pJ per operation) for spike events? The whole point of TrueNorth is that it is event driven,
thus proportionally a lot more computation occurs with each spike than in a conventional
operation.

Again, the value of analog computing is well established if systems can be efficiently trained and
scaled using the technology described here. The authors do not need to use poorly set up apples-
to-oranges comparisons to make their technology look better than competitors. At least not in an
academic publication.
Response: We thank the reviewer for acknowledging the value of memristor based analog
computing system, and we respect the reviewer for pointing out the comparisons we make are
not entirely fair. We agree that the analog operation has lower precision than a 32-bit FLOP, but
in many neural network applications, higher precision could be redundant since it will not
necessarily lead to much improved performance. That is why we compared our analog operation
with an equitant operation in digital system (FLOP). Probably for the same reason, TrueNorth,
an event-based system, compares its low-precision event-base “synaptic operation (SOP)” with
FLOP of conventional architecture supercomputers in the sensational publicationR1. However,
we do agree that the differences in the system architectures make a fair comparison impossible.
We therefore replace the controversial comparisons with some qualitative discussion of the
advantages of memristive neural networks in the revised manuscript (Pages 13-14).

“A further potential benefit of utilizing analogue computation in a memristor-based
neural network is a substantial improvement in speed-energy efficiency. The advantages mainly
come from the fact that the computation is performed in the same location used to store the
network data, which minimizes the time and energy cost of accessing the network parameters
required by the conventional von-Neumann architecture. The analogue memristor network is
also capable of handling analogue data acquired directly from sensors, which further reduces
the energy overhead from analogue-to-digital conversion. The memristors we used maintain a
highly linear IV relationship, allowing for the use of voltage-amplitude as the analog input for
each layer. This also minimizes circuits complexity and hence energy consumption for future
hardware hidden neurons and output current readout. While the external control electronics we
use in this work is not optimized for fast speed and low power consumption yet, previous

7

literatures on circuit design45,51 and architecture53,54 suggest an on-chip integrated system would
yield significant advantages in speed-energy efficiency”

We also added the literature on the precision consideration as the reviewer suggested,
please see Response to Comment 3a) for details.

References
R1 Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 345, 668-673 (2014).

5) The time analysis suffers from a similar problem. They treat the crossbar as a parallel
architecture uniquely, but of course GPUs and CPUs can also be parallelized. The low-level mat-
vec kernels are not as easy to split up in conventional treatments, but training batches are
routinely distributed over many cores and results then brought back together. It is a different
parallel model to be sure, but to say that a GPU can be matched by a 512x256 array ignores the
fact that I could theoretically string together many GPUs to parallelize my training over a very
large data set, which is not that immediately feasible for the analog system.
Response: We agree that training of neural networks on conventional hardware can be highly
optimized/parallelized and it is not reasonable to compare the analog memristor accelerator with
a non-optimized assumption. Therefore, we removed the corresponding quantitative comparison
in the revised manuscript, as has been discussed in Response to Comment 4).

a. Related, most state-of-the-art neural networks are convolutional (at least in part) or involve
more sophisticated micro-networks, like LSTMs. The simplest way to think of these for the
analysis here is that these algorithms leverage sparse matrices; which presumably the
conventional hardware can take advantage of, while the physical crossbars would benefit
minimally from (at least in terms of time).
Response: We agree that our current memristor crossbar structure is most suited to fully
connected layers, and this is what we demonstrated in this manuscript. It is certainly possible to
implement CNNs and LSTMs on a memristive platform, but the advantages over traditional
hardware are likely to be diminished. CNNs, LSTMs, and related systems are useful only for
datasets with meaningful spatial organization of the elements of the feature vector, such as image
processing and time series analysis. It is possible that CNNs can be implemented with
memristors, as have been demonstrated earlier in image convolution with multiple convolutional
kernelsR2,37. Fully-connected networks, on the other hand, are more useful for the broad class of
problems which lack such a spatial structure, and are hence worth studying as well.

References
R2 Gao, L., Chen, P.-Y. & Yu, S., Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array.
IEEE Electron Device Letters 7, 870-873 (2016)
37 Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics 1, 52-59
(2018).

All of these points are not to question the overall value of the study. Clearly, the efficient
training of analog memristor accelerators for neural networks is a huge and important win. But
the authors do not need to oversell this by framing comparative analyses in such a way as to

8

make best case assumptions for their own technology and worst case for alternatives. It is kind of
like putting cheap chrome on a Ferrari. From a distance it may look impressive, but up close it is
a waste and distraction.
Response: We thank the reviewer again for pointing out the importance of our work. We hope
the revisions we made have satisfactorily addressed the major concerns.

Some minor questions / points:
6) Of the 36 citations, the vast majority are to memristor papers, with 28 in the first three lines of
the abstract; whereas there are almost no citations for the algorithm they’re using and minimal to
the broader machine learning applications (ignoring the growing literature around low-precision
ANNs) that could be impacted. For a Nature Communications article, I’d suggest a subset of
references suitable for a broad audience, not a narrow community of device researchers. I’d
restrict the memristor citations to those that are specifically relevant for the work being described
here.
Response: It is a great suggestion to add more citations from machine learning community to
address the broader audience of the paper. Specifically, we added the following references, with
majority of them from machine learning community. The numbering of the references is updated
accordingly in the revised manuscript.

7 Krizhevsky, A., Sutskever, I. & Hinton, G. E. in 2012 Advances in neural information processing systems.

1097-1105.
8 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556 (2014).
9 He, K., Zhang, X., Ren, S. & Sun, J. in 2016 Proceedings of the IEEE conference on computer vision and

pattern recognition. 770-778.
39 Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors.

nature 323, 533 (1986).
40 LeCun, Y., Touresky, D., Hinton, G. & Sejnowski, T. in Proceedings of the 1988 connectionist models

summer school. 21-28 (CMU, Pittsburgh, Pa: Morgan Kaufmann).
41 Zhang, Y., Wang, X. & Friedman, E. G. Memristor-Based Circuit Design for Multilayer Neural Networks.

IEEE Transactions on Circuits and Systems I: Regular Papers 65, 677-686 (2018).
42 Rosenthal, E., Greshnikov, S., Soudry, D. & Kvatinsky, S. in 2016 IEEE International Symposium on

Circuits and Systems (ISCAS). 1394-1397.
43 Soudry, D., Castro, D. D., Gal, A., Kolodny, A. & Kvatinsky, S. Memristor-Based Multilayer Neural

Networks With Online Gradient Descent Training. IEEE Transactions on Neural Networks and Learning
Systems 26, 2408-2421 (2015).

44 Hasan, R. & Taha, T. M. in 2014 International Joint Conference on Neural Networks (IJCNN). 21-28.
45 Gokmen, T., Onen, M. & Haensch, W. Training Deep Convolutional Neural Networks with Resistive

Cross-Point Devices. Frontiers in neuroscience 11, 538 (2017).
46 Abadi, M. et al. in 2016 Proceedings of the 12th USENIX conference on Operating Systems Design and

Implementation. 265-283 (ACM).
47 Courbariaux, M., Bengio, Y. & David, J.-P. Training deep neural networks with low precision

multiplications. arXiv preprint arXiv:1412.7024 (2014).
48 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. Quantized neural networks: Training

neural networks with low precision weights and activations. arXiv preprint arXiv:1609.07061 (2016).
49 Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. in 2015 International Conference on Machine

Learning. 1737-1746.
50 Agarwal, S. et al. in 2016 International Joint Conference on Neural Networks (IJCNN). 929-938 (IEEE).
51 Marinella, M. J. et al. Multiscale Co-Design Analysis of Energy, Latency, Area, and Accuracy of a

ReRAM Analog Neural Training Accelerator. arXiv preprint arXiv:1707.09952 (2017).

9

52 Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. arXiv preprint
arXiv:1711.06507 (2017).

53 Gokmen, T. & Vlasov, Y. Acceleration of Deep Neural Network Training with Resistive Cross-Point
Devices: Design Considerations. Frontiers in Neuroscience 10 (2016).

54 Zidan, M. et al. Field-Programmable Crossbar Array (FPCA) for Reconfigurable Computing. IEEE
Transactions on Multi-Scale Computing Systems PP, 1-1 (2017).

7) On the algorithm implementation (Figure 2), how are the errors from each sample
accumulated or stored prior to the update weights (once per batch) on hardware? This
accumulation is in software, right?
Response: Yes, we used mini-batches for the training on the MNIST dataset. In the present
implementation, we calculate the weight gradient using the current delta and x values and
accumulate the weight gradient in software (MCU or PC). We are now in the process of
designing on-chip integrated peripherals to perform the gradient accumulation in hardware,
which we believe is beyond the scope of the present work.

For a smaller dataset, we could get rid of mini-batches, and update the memristor conductance
online after each training image. Once we are able to implement sub-microsecond weight
updates, minibatches of size 1 will become practical on datasets of size comparable to MNIST.
However, in our present peripheral implementation it is more efficient to do inference on
multiple images at once, so the mini-batch implementation will speed up the training
significantly. To make this point clearer and avoid confusion, we revised the following sentence
in Page 6:

“The desired weight update (ΔW) for each layer was calculated in software using Eq. 1, then
applied to the crossbar by the measurement system”

8) The ideal algorithm is the exact same network from layer 2A, but performed in floating point
in simulation? Or with approximate analog precision minus the defect noise? Did the authors try
a state-of-the-art computer vision algorithm (e.g., deep convolutional net) on the lower-
resolution images to quantify the impact of the low-res?
Response: The “ideal algorithm” indicates a simulation of an exactly the same network with no
defective devices. The inaccuracy of blind conductance updates (which lead to reduced analog
precision) and the limitations of memristor dynamic range are both included in this simulation.
The purpose of this simulation is only to demonstrate the defect-tolerance of our system. We
revised the label in Fig. 3c in the main text and its corresponding figure legend from “ideal
algorithm” to “defect-free” simulation.

Following the reviewer’s suggestion, we tried to train the same size of network with TensorFlow
(32-bit floating point for internal data, no random variation in weight updates, essentially
unbounded dynamic range). We found that classification accuracy during the online training
from a defect-free simulation is fairly close to training on TensorFlow. We also conducted
simulations on higher-resolution images (22×22) with larger networks in a 1024×512 memristor
crossbar (484 input neuron, 502 hidden neurons, 10 output neurons, and 495,976 memristors
represents synaptic weights). Even with 11% of devices unresponsive and the same limitations
imposed on dynamic range and update precision, the simulation delivers 97.3±0.4% accuracy on
MNIST.

10

Please see our Response to Comment 3 for the simulation results and our corresponding revisions.

9) I’m not sure the confusion matrix (table 1) adds anything here, though it may be interesting if
the software-“ideal” case yielded a qualitatively different confusion matrix
Response: Thanks for the comment. We intended to highlight the large amount of experimental
data, but we agree it does not tell us anything unexpected, so we have moved the table into
Supplementary Information as Supplementary Table 1

10) Top of page 10, the authors state “an advantage of online training is the ability to update the
weights continuously during use, to compensate for conductance drift over time and changes in
the input data distribution”. This is true; however, the authors should point out that neural
networks suitable for transfer learning / adapting to concept drift are still very preliminary.

The case they point out about using this online training to compensate for hardware drift is a
very important observation, and probably merits more discussion.
Response: We thank the reviewer for the suggestion. In the revised manuscript, we did further
simulation to discuss how the training adapts to hardware drift, including hardware peripheral
and memristor conductance. We realize an in-depth discussion may be of interest for future work.
Therefore, we modified the corresponding sentence in Pages 11-12 of revised main text as
follows:

“On the other hand, if pre-trained weights are loaded to the memristor crossbar (i.e., ex-situ
training), the classification accuracy decreases quickly with the defect rate (Fig. 4b)). There are
approaches to improve the robustness of ex-situ training19,38, but most of them require that the
parameters be tuned based on specific knowledge of the hardware (e.g. peripheral circuitry) and
memristor array (e.g. device defects, wire resistance, etc.), while the in-situ training adapts the
weights and compensates them automatically. ”

“The online training is also able to update the weights to compensate for possible hardware and
memristor conductance drift over time (see Supplementary Fig. 13)”

11

Supplementary Figure 13. Simulated self-adaption to hardware and memristor conductance drift. a, The in-situ
training of the memristor network adapts a simulated change in current sensing. We changed a different scaling
factor with mean of 1.0 and s.d. of 0.3 on each dimension of the output vector, to simulate a possible hardware drift
of the transimpedance amplifier (TIA). The 100-repeated simulation result shows the training algorithm adapts the
peripheral asymmetry after training on several samples. The cyan dashed line shows the accuracy before the
hardware drift. b, The in-situ training of the network adapts the memristor conductance drift. The simulated array
was constructed using the same parameters from the experiments, and before the conductance drift the network
accuracy is indicated by the cyan dashed line. After the conductance changes by the factor with mean of 0.8
(red)/1.1 (blue) and standard deviation (s.d.) of 0.2 (to simulate a pretty bad case), the in-situ training of the
network quickly adapts after training a few samples (plot shows 100 repeated simulation). It is noteworthy that the
amount of the simulated conductance drift is unlikely in an experimental array, but we simulated a worse case to
make the self-adaption process more noticeable.

11) Page 11 (And in methods) As mentioned above, TrueNorth’s power consumption is ~22pJ
per spike event, not per algorithmic operation (the event-driven nature of the chip means that
they pay ~0pJ when nothing is communicated). This is a subtle but very important distinction – it
shifts the burden of energy use onto the algorithm; but it is not fair to imply that TrueNorth is
1000 times more power hungry per operation.
Response: We thank the reviewer for the comments. We agree that TrueNorth is an event-based
system, but they themselves compared their low-precision event-base “synaptic operation (SOP)”
with FLOP of conventional architecture supercomputers in their publication1. Nevertheless, we
agree that our power consumption is not complete given we could not include an accurate
estimation of power consumption in the peripheral circuits yet. Therefore, we replaced the
corresponding comparison with qualitative discussion in the revised manuscript (Pages 13-14).

Reference:
1 Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network
and interface. Science 345, 668-673 (2014).

12) It is probably more fair to communicate “error rate” on MNIST as opposed to “accuracy”
Response: Thank the reviewer for the suggestion. We believe the accuracy is a more straight-
forward measure for a broad audience, but we agree that the error rate delivers more technical
information. In the further analysis we added in the revised manuscript, we used the error rate in
a log-log plot in Fig. 4a in the revised manuscript to compare the experiment data with various
simulations and software.

12

Reviewer #2 (Remarks to the Author):

1. The paper presents a memristive neural network with linear relation between the votage and
the memristor conductance and therefore it can be trained in-situ reliably.

Overall, the paper is well-written and the results are interesting and important. The reviewer
thinks that this work is with high quality and deserves publication.
Response: We thank the reviewer for the positive comments and recommendation.

2. The reviewer feels that there is too much emphasize on the neural network theory rather than
focusing on the contributions of the paper. The authors should focus more about the fabrication
and process of the memristor array and PCB in use since the design and structure are not clearly
described.
Response: We thank the reviewer for the useful suggestions. We added the detailed fabrication
process as Method 1 in the revised main text. We also added the following schematic for the
design of measurement system to the SI as Supplementary Fig. 4.

“1. Device fabrication and array integration

The transistor array and interconnection between cells are taped out from a commercial foundry
with 2 μm technology node to achieve low wire resistance. We monolithically integrate
memristors on top of as-received chip in house. Pd/Ag contact metals are firstly deposited on
both vias after argon plasma treatment to remove the native oxide. The chip is then annealed at
300 oC for 30 min in 20 s.c.c.m nitrogen flow to achieve good electrical contact. The memristor
bottom electrode is deposited by evaporating 20 nm Pt on top of a 2 nm thick Ta adhesive layer
and patterned by photolithography and lift-off in acetone. A switching layer of 5 nm thick HfO2
is deposited by atomic layer deposition using water and tetrakis(dimethylamido)hafnium as
precursors at 250 °C, and then patterned by photolithography and reactive ion etch (RIE).
Finally, the top electrode of 50 nm thick Ta is deposited by sputtering and liftoff, followed by
sputtering of a 10 nm thick Pd protection layer.”

13

Supplementary Figure 4. Circuit diagram of the measurement system. MATLAB script with graphic user interface (GUI) running on a
general-purpose computer is used to communicate with the microcontroller through a serial port for various applications. The
microcontroller controls all the circuit components on the measurement system, such as DACs (Digital-Analog Converters) for
generating driving pulses and ADCs (Analog-Digital Converters) for collecting the measurement data. Note that voltages applied on
either rows or columns on the memristors crossbar, or gates on the transistors are generated in parallel by different DACs that located
on the rows and columns boards. Four transimpedance amplifiers (TIAs) with different gains are attached to each column to cover 4
orders of magnitude current ranges, but only one TIA is chosen during the operation depending on the output current level. During a
read or vector-matrix multiplication (VMM) operation, small voltages (representing input vectors) are applied on the corresponding
rows (marked as BEs) by the DACs. Currents (representing output vectors) are read out by the TIAs and ADCs on columns (marked as
TEs). The readout currents are processed in the microcontroller, and/or sent back to the general-purpose computer. The write operation
is similar to the reading. Positive voltages can be applied on selected rows for reset or selected columns for set, while all other
unselected terminals can be grounded, floated or biased with an arbitrary voltage value.

A schematic of the 1T1R arrays should be provided, including showing how the same
memristive array is used for different structures of neural networks (how a 128x64 array
becomes 64x54x10 two layer MNN?). Fig. 2 shows pure crossbars that are very different than
the real architecture used in this work. Fig. 5 in supp. also seems to present only part of the story.
Response: We provide an additional schematic of the 1T1R array as Supplementary Fig. 4 (see
previous response above). We revised the main text in Page 9 and Fig. 3b to make it clearer how
a 128×64 array was partitioned for 64-54-10 two-layer network:

“The two-layer network used 7,992 memristors (see Fig. 3b for the partition on a 128×64 array),
each of which was initialized with a single pulse with a 1.0 V gate voltage from a low
conductance state.”

We also added schematic to show how to perform inference (matrix multiplication) in the
crossbar, as new panel a in the revised Supplementary Fig. 5.

14

Supplementary Figure 5. Illustration of proposed 1T1R operation by electrical pulses. a, The matrix multiplication is performed by
applying the input voltages (the amplitude of them represents the vector values) on the row wires, and reading the current on the column
wires representing the output current. All the transistors are turned on by applying synchronized pulses on the word-line wires, making
the 1T1R array a pseudo-crossbar. b, Parallel-reset scheme. A reset pulse is applied to the bottom electrodes of an entire column
simultaneously, while the top-electrode voltages are used to control which devices are reset. c, Parallel-set scheme. Pulses are applied
to the top electrodes of an entire row simultaneously, while the gate voltages vary along the row.

Also the linear programming approach should be better explained. Specifically, how many levels
can be achieved? (from Fig. 1, ~100 levels are shown).
Response: We thank the reviewer for suggesting that we further explain of the weight update
mechanism. Linear programming is critical to the successful demonstration of memristor neural
network. In the main text (Page 4), we have the following sentences to explain how the linear
programming approach works:

“To increase the conductance of a given cross point, we applied synchronized positive voltage
pulses from a driving circuit board to the memristor top electrode and the gate of the series
transistor. The gate voltage, which specifies a compliance current, determines the resulting
memristor conductance. We decreased the conductance by first applying a sufficient positive
pulse to the memristor bottom electrode to initialize the state, and then used the conductance
increase scheme to set the memristor to the desired level (illustrated in Supplementary Fig. 1).
With this scheme, we achieved linear and symmetric conductance increase and decrease with
minimal cycle-to-cycle (Figs. 1f, 1g) and device-to-device (Figs. 1f, 1h) variations.”

We also would like to point out that it is an analog system, so in practice we do not use discrete
conductance levels. Also, because during training each weight is adjusted many times, much
higher effective precision can be achieved. The ultimate limitation of the precision of the
memristor-based synapse is determined by the stability of the device conductance. Our previous
study on the same device suggests a 7 bit/128 levels precision, as shown in the following figure.
This value could be potentially further improved with novel devices / materials.

15

Fig. R1 | g, Room-temperature state retention and read disturb of the device states. The d.c. conductance states of all devices

were measured with a 0.2 V bias for 1,000 cycles, or a total of 6.4 h, showing no discernible drift in the plots. h, Histogram of the

normalized standard deviation (s.d.), defined as the s.d. per conductance range (100–900 μS), for all measured states, which was

fitted to a lognormal distribution. This shows that there are fluctuations during the read operation that can occasionally degrade

the effective precision of an individual memristor, but 90% of the device states have a normalized s.d. less than 0.39%. (Taken

from ref. 37)

Reference:

37 Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics 1, 52-59
(2018).

3. It will be worthwhile to provide the code for the software implementation of the training and
the missing circuit units.
Response: Thank the reviewer for the comment. We added the following code snippet in the
revised Supplementary Note 1

Main loop of the training algorithm:
 % The main training loop:
 for j = 1:n_batches % For each batch

 % Perform inference in the crossbar
 batch = data(:,(j-1)*batch_size+1:j*batch_size);
 [outs, voltages] = obj.test(batch);

 grad = z; % Initialize cumulative gradient to all zeros

 for k=1:batch_size

 %For each example, compute the gradient estimate by backpropagation in software:
 I_out = outs(:,k);
 indx = (j-1)*batch_size+k; % Compute index of this training example

 % Get voltages for this example
 V = cellfun(@(x) x(:,k), voltages, 'UniformOutput', false);
 % Get gradient based on this example
 temp = obj.calculate_update(V, I_out, labels(indx), w);
 % Add it to the cumulative batch gradient
 grad = cellfun(@plus, grad, temp,'UniformOutput',false);
 end

 % Apply the weight update in crossbar:
 obj.update_weights(grad, rate/batch_size, j);
 [w, rawG] = obj.get_weights('mode','fast'); % Read new weights
 end

hg

C
on

d
u

ct
a

nc
e

(μ
S

)

Time (s)

0
100

200

1000

900

800

700

600

500

400

300

1×104 2×104

Standard Deviation / Conductance range (%)

C
ou

nt

>90%

0
0

100

200

300

400

500

600

700

0.2 0.4 0.6 0.8 1

16

Forward pass:
 for i=1:obj.n_layers % For each layer

 if any(abs(voltages{i}(:)) > obj.V_read)
 % Clipping signals to protect the array operation
 voltages{i}(voltages{i} > obj.V_read) = obj.V_read;
 end

 [currents{i},raw_out{i}] = obj.array.subs{i}.read_current([voltages{i}; -voltages{i}]);
 voltages{i+1} = obj.activation(currents{i});
 end
 I_out = currents{end};

The software implementation of ReLU and its derivative:

c = 200; % The scaling factor that convert a current to a voltage
activation = @(x) c*max(0, x); % ReLU
aderiv = @(x) c*(x>0); % derivative of ReLU

Backward pass:
 p = zeros(1,length(I_out));
 for i=1:length(I_out)
 p(i) = 1./sum(exp(k*(I_out-I_out(i)))); % Softmax
 end

 deltas{end} = -p;
 deltas{end}(label) = (1-p(label));

 for i=numel(deltas):-1:1
 grad{i} = (voltages{i}*deltas{i})'; % Transpose to line up with weights
 if i>1
 deltas{i-1} = ((deltas{i} * weights{i}) .* obj.aderiv(voltages{i}'));
 end
 end

4. The presented learning scheme with fixed pulses across the memristor and with varying pulse
magnitude on the gate of the transistor is similar to a stochastic gradient descent training
technique presented in Soudry et al., " Memristor-based Multilayer Neural Networks with Online
Gradient Descent Training," TNNLS 2015. It worth mentioning the differences and similarities.
They also provided the circuits for the training in Rosenthal et al., "A Fully Analog Memristor-
Based Multilayer Neural Network with Online Backpropagation Training", ISCAS 2016.
Response: We thank the reviewer for providing these two important papers. In the revised
manuscript, we cite the two papers (Soudry et al, TNNLS 2015 and Rosenthal et al, ISCAS 2016)
as ref. 42 and ref. 43 in the revised manuscript. The two papers report a complete circuit design
for training a fully analog memristor based multiplayer neural network. In their work, a
memristor that connected to two transistors (one n-channel and the other p-channel) and use
duration of the applied programming pulse to enable the analog conductance change. We, on the
other hand, employ one-transistor one-memristor synapse cells, and gate voltage amplitude to
control the conductance. In addition to the differences in specific circuit design, the two reports
provides feasible approaches to train a multilayer neural network, with emphasis on algorithm
development and circuit design. While our current work, on the other hand, focuses more on the
experimental implementation.

In the revised manuscript, we added one sentence in the end of the following passage in Page 7.

“The error backpropagation39,40 in this work is calculated in software from the values of
the readout weights (see Method: 6). In the future, backpropagation can be implemented within
the memristor crossbar by applying a voltage vector representing the current-layer error to the

17

bottom electrodes of the crossbar and reading out the current vector from the top electrodes for
the previous-layer error. An on-chip integrated peripheral for full hardware implemented
functionality is under development, which has been discussed and simulated in literatures as
well41-45. ”

5. While some of the results are trivial (the influence of stuck at ON is more significant than
stuck at OFF for example is intuitive), others are interesting. The authors should emphasize what
are the important insights and what is only a demonstration of known insights.
Response: We thank the reviewer for the constructive suggestion to improve the quality of the
manuscript. We rewrote the discussion session in the main text to make the manuscript more
focused on the important insights, and here is a summary:

Important insights:

1. Experimentally demonstrated in-situ training of a multiplayer memristor neural network
can achieve good accuracy, even in the presence of various non-ideal factors, e.g. limited
precision of memristor conductance and matrix multiplication, limited dynamic range of
memristor conductance, wire resistance, and asymmetric peripheral circuit, etc.
2. An experimentally-validated simulation suggests a larger network in the near future will
close much of the gap with conventional CMOS hardware.

Demonstration of known insights with our experimental-validated simulation:
1. The training algorithm is tolerant of defects including the stuck devices, and the influence

of stuck ON device is more significant than the stuck OFF devices; The comparison
between the influence of stuck ON and stuck OFF devices is moved to the Supplementary
Information;

2. The multilayer network is better able to compensate for defects than the single layer
network;

3. Small weight update noise helps the training converge, while large noise has an adverse
impact. We moved the discussion on weight update noise to the Supplementary
Information as Supplementary Figure 11.

6. The comparison to ex-situ can be explained better. Also, note that there are work arounds that
can improve the vulnerabiity of ex-situ training to the memristive system faults.
Response: Thanks for the reviewer for reminding us there are work arounds that improve the
vulnerability of ex-situ training. We were aware of them and discussed our approach in previous
work on ex-situ training, but it requires the knowledge of specific hardware and memristor array.
We agree it is a good point worth further discussion, and thus we added more details about the
ex-situ discussion in the revised main text on Pages 11-12, as shown below:

“On the other hand, if pre-trained weights are loaded to the memristor crossbar (i.e., ex-
situ training), the classification accuracy decreases quickly with the defect rate (Fig. 4b)). There
are approaches to improve the robustness of ex-situ training19,38, but most of them require that
the parameters be tuned based on specific knowledge of the hardware (e.g. peripheral circuitry)
and memristor array (e.g. device defects, wire resistance, etc.), while the in-situ training adapts
the weights and compensates them automatically. ”

18

7. Method 6- “With integrated hardware neurons, we estimate that the time needed for each layer
of neurons to stabilize can be brought as low as 10 ns” need to justify this claim.
Response: We thank the reviewer for the comment. We measured the speed of the operation in
the presence of all the parasitic on chip, as shown in the Supplementary Fig. 16 of ref. 37 (shown
as Figure R2 here). The intrinsic read operation time of the chip is faster than the 125 ns settling
time of the equipment. We expect that with integrated driving peripheral circuits built with a more
advanced technology node the readout time would be much faster. We understand designing fast
on-chip integrated CMOS circuity will involve a significant amount of work, which is beyond
the scope of this work. Therefore, we removed the comparison based on the 10 ns read time in
the revised manuscript.

Figure R2. Speed of the read operation of memristor in the 128×64 array. a, The read speed of the memristor in the far end corner of a 128×64
array when the transistor is on (this is what limits the VMM operation speed). The onset oscillations within 100 ns is not caused by the chip, but
rather the measurement setup, because the settling time of the equipment (Keysight B1530), according to its specification, is 125 ns. (Adapted
from ref. 37)

The revised discussion paragraph on pages 11-12 is as follows:

“A further potential benefit of utilizing analogue computation in a memristor-based
neural network is a substantial improvement in speed-energy efficiency. The advantages mainly
come from the fact that the computation is performed in the same location used to store the
network data, which minimizes the time and energy cost of accessing the network parameters
required by the conventional von-Neumann architecture. The analogue memristor network is
also capable of handling analogue data acquired directly from sensors, which further reduces
the energy overhead from analogue-to-digital conversion. The memristors we used maintain a
highly linear IV relationship, allowing for the use of voltage-amplitude as the analog input for
each layer. This also minimizes circuits complexity and hence energy consumption for future
hardware hidden neurons and output current readout. While the external control electronics we
use in this work is not optimized for fast speed and low power consumption yet, previous
literatures on circuit design45,51 and architecture53,54 suggest an on-chip integrated system would
yield significant advantages in speed-energy efficiency”

Reference

37 Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics 1, 52-59
(2018).

19

8. Method 6+7- comparison to execution time of TPU and GPU, increasing the size of the layers
till you meet the point where the suggested work outperform GPU\TPU is “artificial”, consider
checking the performance for well-known networks such as AlexNet, VGG, ResNet (even only-
compare execution of “partial” net).
Response: We thank the reviewer for the suggestions. We agree that the performance
comparison is preliminary. And in order to construct very large networks such as AlexNet, VGG,
ResNet, etc., we will probably need a complete design which includes significantly larger arrays
that communicate with each other. However, it is beyond the capability of our current setup. We
therefore removed all the quantitative comparison in the revised manuscript.

We believe that once all key engineering challenges described in this work are fully addressed, it
will be straightforward to scale the technologies we develop to larger networks and more
sophisticated algorithms to achieve a classification accuracy comparable with traditional
hardware with other benefits such as energy efficiency. We added the references to AlexNet,
VGG, and ResNet as refs. 7-9 in the revised manuscript.

9. The energy comparison is not convincing. It seems that the authors ignore the energy of the
periphery including costly ADCs and voltage/current sources. A real comparison would be
comparing the energy per image, but it requires the entire implementations.
Response: We thank the reviewer for the suggestions. It is a legitimate concern that various
peripherals such as A/D, D/A converters, voltage/current sources consume a major portion of the
power used in a mixed digital-analog signal system. We are working on the design of on-chip
integrated peripherals, and once these designs are complete we will be able to test power-
consumption predictions experimentally. We also note that in principle, an analog memristive
neural network could handle analog data from sensors directly, as we stated on Page 13-14. This
full analog system does not need the A/D and D/A circuitry at all. In addition, although beyond
the scope of this work, the future peripheral circuits are not limited to CMOS technology only.
For example, there were reports that use memristor as neurons to facilitate inference/trainingR1,R2
for a fully analog network, and to construct memristor-based A/D and D/A for mixed-signal
networksR3. On the other hand, we agree with the reviewer that the energy comparison without
the peripheral circuits is not fair, we have taken this part out of the revised manuscript.

References:
R1 Tuma, T. et al, “Stochastic phase-change neurons”, Nature Nanotechnology, 11, 693–699 (2016)
R2 Wang, Z. et al, “Fully memristive neural networks for pattern classification with unsupervised learning”, Nature
Electronics, 1, 137–145 (2018)
R3 Gao, L. et al, “Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low
power computing”, NANOARCH 2013

20

Reviewer #3 (Remarks to the Author):

The paper “Efficient and self-adaptive in-situ learning in multilayer memristor neural networks”
by Can Li et al. shows a backpropagation implementation on software-hardware implementation.
Although interesting, the paper does not show enough novelty to be published in Nature
Communications.
Response: We appreciate the reviewer’s time in reviewing the manuscript. In this work, we
implemented backpropagation in emerging device hardware with some control peripherals
communicating with a general-purpose computer. The significance of memristor-based analog
in-memory computing is well established in previous literature, and is recapped here as follows.
Metal-oxide memristors and charge-based transistors work under fundamentally different
mechanisms. The former is a promising beyond-CMOS device with excellent scalability and 3-
dimensional stackability that make it possible to store the massive number of deep neural
network parameters in dense arrays. The tunable resistance states can be used not only to store
information, but also to perform computation at the same location, circumventing the so called
‘von-Neumann bottleneck’. Matrix multiplication in a crossbar is performed in the analog
domain following physical laws, such as Ohm’s law for multiplication and Kirchhoff’s current
law for summation in a parallel fashion. The analog computing capability of the memristor
allows it to handle analog signals directly without digital conversion and suggests further
increase in speed-energy efficiency.

There is no doubt the concept of memristor-based analog in-memory computing is still in early
stage of development. Implementing a fairly large multilayer memristor neural network for
computing is hence a significant step forward, as commented by the first two reviewers.
Specifically, our contribution in this manuscript include:

1. We demonstrated a linear and symmetric programming of memristor conductance, which
is critical to simplifying training of a neural network with general algorithms.

2. We experimentally demonstrated a multiple fully-connected layers in a 128x64 array
with in-situ learning capability, while previous implementations are limited to small
arrays and single layers.

3. For the first time, we demonstrated the emerging-device-based realization of a modern
machine learning algorithm (SGD) for a large standard dataset (MNIST).

1- Please clearly state in the main paper the device programming speed (500us and 5us, as I
believe is described in the Supplementary Info), which definitely seems very long for promising
very fast training speed.
Response: Thank the reviewer for the comments. We understand that the programming pulse
width is long for the current work. This is limited by the current version of our off-chip PCB
board-based measurement system, which is designed for great flexibility and large dynamic
range often needed in demonstrating different computing functions but not optimized for
performance yet. The programming speed of individual devices connected with a series transistor
on the chip can be programmed with pulse with below 100 ns (see Supplementary Fig. 16 in ref.
37), and the same discrete device can be programmed within 5 ns (see ref. 36).

We are well aware of the speed limitations of the current measurement system and are
currently designing and developing application-specific on-chip integrated peripherals that will
deliver much faster programming pulses. The focus of the current work is to experimentally

21

demonstrate the feasibility of an emerging device based analog neural network; performance
optimization is a goal for future work.

Figure R2. Speed of the read operation of memristor in the 128×64 array. a, The read speed of the memristor in the far end corner of a
128×64 array when the transistor is on (this is what limits the VMM operation speed). The onset oscillations within 100 ns is not caused by the
chip, but rather the measurement setup, because the settling time of the equipment (Keysight B1530), according to its specification, is 125 ns.
(Adapted from ref. 37)

Figure R3 (c) The device can be repeatedly switched between HRS and LRS with 5ns pulses (SET: 2.2V; RESET: −4V) indicating faster than
5ns switching speed. (Adapted from ref. 36)

Reference

36 Jiang, H. et al. Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor. Sci Rep 6,
28525 (2016).
37 Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nature Electronics 1, 52-59
(2018).

In order to make the point clearer, we made revisions as follows in Page 14:
“While the external control electronics we use in this work is not optimized for fast speed and
low power consumption yet, previous literatures on circuit design45,51 and architecture53,54
suggest an on-chip integrated system would yield significant advantages in speed-energy
efficiency”

22

2- In the entire paper, many crucial aspects are explained by saying that there will be efficient
circuitry able to perform such aspects. Authors should explain how they actually think to
implement such aspects, if A/D D/A converters are used, if operation is performed in parallel or
serially, since using such high-density arrays pose severe silicon area constraints, and therefore
implementable CMOS functionalities.
Response: We thank the reviewer for the suggestions. It is a legitimate concern that a parallel
A/D, D/A converter implementation will be too expensive in terms of power consumption and
chip area for a mixed digital-analog signal system. Actually there are a number of viable
solutions proposed in previous publicationsR1 (e.g. reduce bit precision, share some A/D to make
pseudo reduce the degree of parallelization, etc.) to address this issue. We are working on the
design of on-chip integrated peripherals, and once these designs are complete we will be able to
test power-consumption predictions experimentally. We also note that in principle, an analog
memristive neural network could handle analog data from sensors directly, as we stated in Page
13-14. This full analog system would not need the A/D and D/A circuitry at all. In addition,
although beyond the scope of this work, the future peripheral circuits are not limited to CMOS
technology only. For example, there were reports that use memristor as neurons to facilitate
inference/trainingR2,R3 for a fully analog network, and to construct memristor-based A/D and
D/A for mixed-signal networksR4. On the other hand, we agree with the reviewer that the energy
comparison without the peripheral circuits is not fair, we have taken this part out of the revised
manuscript.

References:
R1 Gokmen, T. et al, “Training Deep Convolutional Neural Networks with Resistive Cross-Point Devices”, Front.
Neurosci., 11, 538 (2017)
R2 Tuma, T. et al, “Stochastic phase-change neurons”, Nature Nanotechnology, 11, 693–699 (2016)
R3 Wang, Z. et al, “Fully memristive neural networks for pattern classification with unsupervised learning”, Nature
Electronics, 1, 137–145 (2018)
R4 Gao, L. et al, “Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low
power computing”, NANOARCH 2013

3- The training is performed using mini-batches. How can the different delta and x values be
memorized, before applying the weight update? Also Fig. 2c does not mention this. Where these
values will be memorized in circuitry?
Response: Yes, we used mini-batches for the training on the MNIST dataset. The present
implementation is to calculate the weight gradient with the current delta and x values and
accumulate the weight gradient in software (MCU or PC). The on-chip integrated peripherals we
are currently working on would be able to perform the gradient accumulation in hardware.

For a smaller dataset, we could get rid of mini-batches, and update the memristor conductance
online after each training image. Once we are able to implement sub-microsecond weight
updates, minibatches of size 1 will become practical on datasets of size comparable to MNIST.
However, in our present peripheral implementation it is more efficient to do inference on
multiple images at once, so the mini-batch implementation will speed up the training
significantly. To make this point clearer and avoid confusion, we revised the following sentence
on Page 6:

23

“The desired weight update (ΔW) for each layer was calculated in software using Eq. 1, then
applied to the crossbar by the measurement system”

4- Weight update is performed row by row in the scheme in Fig. S5, which slows down
programming operation by orders of magnitude (considering the worst case of 500us per line
with a 1024x1024 array, this means 500ms, definitely not useful). In addition, Fig. S1 shows that
different conductance levels are obtained by programming different gate voltages, which means
that the circuit overhead is unacceptably large.
Response: We agree that weight update with 500 us pulse in a final product would be
unacceptable. But as we explained previously, the long programming time is limited by the off-
chip measurement system that is not optimized for speed. The devices/arrays are capable of
much faster operation. It is also noteworthy that we used analog memristor conductance, so each
memristor could store 5-6 bit information as suggested in our previous study, which means one
conductance update is equivalent to toggling multiple digital cells.
 We also agree that the programming method we proposed in this work will increase the
circuit overhead in a generic design. An application-specific design to minimize the circuit
overhead will be of interest for the future work. We want to mention again that the future
peripheral circuits are not limited to CMOS technology only, as we stated in the response to
comment 3.

To make the claim clearer and avoid confusion, we have revised the manuscript as
described in Reponses to Comment 1 and Comment 3.

5- I don’t understand how the programming scheme works: if I program a device into a particular
conductance, and then, i.e., I ask to reduce it, do I need to read the device conductance between
the two operations to calculate the exact voltage pulse to be applied?
Response: No, we do not read the device conductance during the training, i.e. what we proposed
is different from a write-and-verify scheme. During the online training, the algorithm only
instructs the hardware of the direction and the amount of the conductance change. The
conductance update scheme is described in Method 5 (specifically in Eq. 8). So, if a device
conductance needs to be increased, we will add the calculated gate voltage change (ΔVgate) to the
last applied gate voltage, and apply the synchronized gate voltage and write/reset voltage to the
crossbar.

6- Regarding the obtained accuracy of 91.71% (which actually shows values fluctuating below
90% in Fig. 3c), how it is compared with an equivalent size software network? Because the Ideal
Software simulation in Fig. 3c is misleading, since it corresponds to a memristor network with
no dead or stuck-on devices, not a software (i.e. Tensorflow) simulation.
Response: We thank the reviewer’s suggestion to make comparison with software. First, the
accuracy shown in Fig. 3c is the smoothed (rlowess methods using span of 10% of the total
number of data points) mini-batch accuracy, and we have the test accuracy after training on
every 5,000 images in the Supplementary Fig. 9, which clearly shows the accuracy is above 91%
after 60k training images.

24

Supplementary Figure 9. Classification test on the entire separate testing set after training on every 5,000
samples. The testing accuracy increases as the number of training samples increases, saturating at around 91%.

As suggested by the reviewer, we changed the legend of “ideal software” in the Fig. 3c to
“defect-free simulation”. We further extend our experimentally-validated simulation to higher-
resolution images (22×22) and larger network in a 1024×512 memristor crossbar (484 input
neuron, 502 hidden neurons, 10 output neurons, and 495,976 memristors represents synaptic
weights). With device behavior parameters matched to our experiment, the simulation delivers
97.3±0.4% accuracy on MNSIT.

We revised the manuscript with the new simulation data, as shown on pages 11-12 in the main
text.

7- The conductance values shown are very large, hundreds or thousands of uS. This leads to a
huge power consumption during programming operation. Did authors consider this in their
power estimates?
Response: Our original quantitative power estimation is based on the energy used per inference
operation. Those numbers are based on the measured conductance values of the memristors after
training. We did not attempt to calculate the power consumption during training, since the power
consumed by the programming operation is heavily dependent on the switching speed. Since the
memristor we used has demonstrated fast switching, the power consumption during the
programming will be significantly reduced with an on-chip integrated peripheral optimized for
fast-speed. Nevertheless, we have removed our quantitative comparison in the revised version of
main text to avoid confusion. The revised discussion (in Page 13-14 of the revised manuscript) is
shown as follows:

“A further potential benefit of utilizing analogue computation in a memristor-based
neural network is a substantial improvement in speed-energy efficiency. The advantages mainly
come from the fact that the computation is performed in the same location used to store the
network data, which minimizes the time and energy cost of accessing the network parameters
required by the conventional von-Neumann architecture. The analogue memristor network is
also capable of handling analogue data acquired directly from sensors, which further reduces
the energy overhead from analogue-to-digital conversion. The memristors we used maintain a
highly linear IV relationship, allowing for the use of voltage-amplitude as the analog input for

25

each layer. This also minimizes circuits complexity and hence energy consumption for future
hardware hidden neurons and output current readout. While the external control electronics we
use in this work is not optimized for fast speed and low power consumption yet, previous
literatures on circuit design45,51 and architecture53,54 suggest an on-chip integrated system would
yield significant advantages in speed-energy efficiency”

8- Please clearly state that Fig. 4 are simulations. What is the real random variation during
programming operation of real memristors used in this paper? I think is much more than the
optimum 1%.
Response: We thank the reviewer’s comment. To avoid confusion, if any, we added legend of
“simulation” to the original figure. In the text, we have already stated the analysis is through
simulation.
 The random variation during programming of the memristors used in this paper, as
analyzed from the data presented in Fig. 1f of the main text, is plotted in the following figure.
The s.d. of weight update variation over the conductance range is mainly within 1-3%,
depending on the targeted conductance (a higher conductance range yields a narrow distribution).
However, the experimentally achieved results agrees well with the simulation using a 2%
variation. This result suggests that MNIST classification accuracy is not as sensitive to the real
variation as we thought. Future work with optimized devices and systems with well-defined
variations, is needed to calibrate the experimental and simulation results.

Figure R4. Random variation during the blind weight update. The analysis is conducted on the data shown in Fig. 1f (main text)
for all the devices in the array.

9- Calculations for power consumption completely neglect CMOS circuitry, which can be a large
error in case A/D D/A converters are used. Calculations should be redone considering circuitry.
In addition, here memristor power consumption is not based on the memristors of the papers, but
on the best obtained in the literature. What is the linearity of this cited device, which is the main
advantage of the present manuscript memristor?

Response: As we pointed out in the Response to Comment 2, the analog memristive neural
network could handle analog data directly without digital conversion, and the peripheral could be
based on emerging device and not limited to CMOS technology. The contribution of this work is
to experimentally demonstrate the feasibility of core computation in the memristor crossbar. It

26

includes performing inference (matrix multiplication) in a massive parallel way and updating
weights that self-adapts the various kind of defects.

The estimated energy cost for weight update in the original manuscript was based on the
most energy-efficient memristor with good linearity from literature (ref. 34), although its analog
switching potential is unclear yet. The power consumption for inference operation was based on
our own measured data. Nonetheless, we agree with the reviewer that without a complete
peripheral circuitry the comparison is not totally fair. Therefore, we have removed the
quantitative comparison in the revised manuscript.

References
27 Yao, P. et al. Face classification using electronic synapses. Nat Commun 8, 15199 (2017).
28 Sheridan, P. M. et al. Sparse coding with memristor networks. Nature Nanotechnology 12, 784-789 (2017).
34 Choi, B. J. et al. High-Speed and Low-Energy Nitride Memristors. Advanced Functional Materials 26,

5290-5296 (2016).

10- How is the 20ns estimate calculated for read time for CMOS circuitry?
Response: Thank the reviewer for the comment. We measured the speed of the operation in the
presence of all the parasitic on chip, as shown in the Figure R1 in Response to Comment 1). The
intrinsic read operation time of the chip is faster than the 125 ns settling time of the equipment.
We estimate with integrated driving peripheral circuits in a more advanced technology node the
readout time would be much faster. Nonetheless, we removed the calculation based on the 20 ns
read time in the revised manuscript to avoid confusion.

REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

I think this manuscript is improved from the last version and I appreciate the authors responsiveness
to my concerns about the the neural network approach and the apples-to-applies comparison to
alternative technologies.

The paper is well-suited for publication in my opinion. My one request would be that the authors
include their answer to my comment 5a in the main text of the manuscript. Briefly, the authors look
here at neural networks with fully-connected layers, and thus their potential benefit to
convolutional and locally recurrent networks (such as LSTMs) are less obvious. That is fine for the
state of this research and the finding (I can imagine a cleverly shaped memristor xbar configuration
nicely suited for convolutions, for instance); however it is important that the general reader
recognizes the difference. Most state-of-the-art neural network applications use these more
sophisticated architectures; only a small number of the final layers in large networks like VGG or
AlexNet are typically fully connected.

In addition, I think it may behoove the authors to mention that many of the algorithmic design
choices for ANNs are determined in part by what is efficient on hardware. And if crossbars are
fundamentally different than architectures that benefit from sparse matrix multiplications, that may
change what configurations make sense (say, larger convolutional kernels?)

This does not diminish the impact of the paper, but does communicate its potential impact more
appropriately to the broader readership of this journal.

Reviewer #2 (Remarks to the Author):

The authors have answered all of my concerns and made a comprehensive revision.

Reviewer #3 (Remarks to the Author):

1- I understand the authors’ point of view regarding device programming speed, however they
show 10 cycles at 5 ns, while the device would undergo millions of cycles during Neural Network
Training, with endurance issues not clear yet.

2- Authors state that x and delta values are stored in software. I understand that this approach
is easier for implementing the actual experiment, however it is not practical with the actual chip,
since it would unacceptably slow down the overall operation. How the authors in practice think to
implement this operation in chip? Saving the values in capacitors, with the risk of leakage, or using
ADCs to store x and delta in a near-located digital memory?

3- Programming scheme seems very slow (one row each time step). I fear this can be a
conceptual problem, since this slows down the speed of training. My question to authors is: what is
the possible commercial purpose of this memristor chip? To compete with GPUs or to focus on
different applications? Authors should clearly state this, since they claim for “high speed-energy
efficiency”. I fear is not simple to overcome GPUs with row by row programming.

4- Fig. 4a is very useful, thank you for providing it. Experimental accuracy is around 5% below
the corresponding TensorFlow accuracy, which seems a large gap, however.

Based on these issues, I cannot recommend this paper for publication in Nature Communications,
since the programming scheme seems very difficult to accelerate, experimental accuracy is too far
from software and there is no clear power analysis.

Point-to-point response:

REVIEWERS' COMMENTS:

Reviewer #1 (Remarks to the Author):

I think this manuscript is improved from the last version and I appreciate the authors
responsiveness to my concerns about the neural network approach and the apples-to-apples
comparison to alternative technologies.

The paper is well-suited for publication in my opinion. My one request would be that the authors
include their answer to my comment 5a in the main text of the manuscript. Briefly, the authors
look here at neural networks with fully-connected layers, and thus their potential benefit to
convolutional and locally recurrent networks (such as LSTMs) are less obvious. That is fine for
the state of this research and the finding (I can imagine a cleverly shaped memristor xbar
configuration nicely suited for convolutions, for instance); however it is important that the
general reader recognizes the difference. Most state-of-the-art neural network applications use
these more sophisticated architectures; only a small number of the final layers in large networks
like VGG or AlexNet are typically fully connected.

In addition, I think it may behoove the authors to mention that many of the algorithmic design
choices for ANNs are determined in part by what is efficient on hardware. And if crossbars are
fundamentally different than architectures that benefit from sparse matrix multiplications, that
may change what configurations make sense (say, larger convolutional kernels?)

This does not diminish the impact of the paper, but does communicate its potential impact more
appropriately to the broader readership of this journal.

-- Response: We sincerely thank the reviewer for the suggestions, and we agree that such
analyses will boost the quality of our manuscript. In the final manuscript, we have added the
following sentences on Page 12 to incorporate the additional discussion.

.

“It will be straightforward to build deeper fully-connected neural networks on an integrated chip
with multiple large arrays in the near future, for even better accuracy and application to more
complicated tasks. It is also noteworthy that most state-of-the-art deep neural networks involve
sophisticated microstructures, e.g. convolutional neural networks (CNNs) or long short-term
memory units (LSTMs). It may be worth investigating how to implement CNNs37 or LSTMs
efficiently on memristor crossbars in the future. But on the other hand, such microstructure-
based algorithms have been developed for use on conventional hardware, on which it is more
efficient to process sparse matrices. Since the advantages of using sparse matrices in a
memristor crossbar are minimal, the optimal architectures for sophisticated tasks may look
different.”

Reviewer #2 (Remarks to the Author):

The authors have answered all of my concerns and made a comprehensive revision.

Reviewer #3 (Remarks to the Author):

1 - I understand the authors’ point of view regarding device programming speed, however they
show 10 cycles at 5 ns, while the device would undergo millions of cycles during Neural
Network Training, with endurance issues not clear yet.

-- Response: We agree that the endurance performance is very critical for the training of a
memristor neural network. We have demonstrated that the same device can be switched for more
than 120 billion cycles (far more than millions of cycles) even without the feedback circuits in
the previous study (ref. 36), which is also reproduced here for your convenience.

Figure R1. 120 billion switching cycles have been demonstrated with pulses of 1.3 V/100 ns for SET and −3.05 V/100 ns for
RESET. (Adapted from ref. 36).

2 - Authors state that x and delta values are stored in software. I understand that this approach is
easier for implementing the actual experiment, however it is not practical with the actual chip,
since it would unacceptably slow down the overall operation. How the authors in practice think
to implement this operation in chip? Saving the values in capacitors, with the risk of leakage, or
using ADCs to store x and delta in a near-located digital memory?

-- Response: We thank the reviewer for the comment. While we believe the focus of this paper is
the demonstration of the feasibility of an emerging device based analog neural network by
experiments rather than the circuit design, we also believe a complete implementation in an
actual chip will become practical in the near future. Yes, it is true that we need to store the x
values for each layer during the training, but the delta values can be calculated by

backpropagation (as described in Page 7 in the main text) right before the weight update
operation. The amount of data needs to be saved is proportional to the input dimension of the
layer (O(N)), which is much less than that of the weight values (O(N2)). The value can be
saved either in capacitors or in an optimized sample and hold (S/H) circuit, depending on the
required x accuracy given an expected weight update frequency for an application-specific
scenario. We believe this will be an interesting research topic for future works.

3 - Programming scheme seems very slow (one row each time step). I fear this can be a
conceptual problem, since this slows down the speed of training. My question to authors is: what
is the possible commercial purpose of this memristor chip? To compete with GPUs or to focus
on different applications? Authors should clearly state this, since they claim for “high speed-
energy efficiency”. I fear is not simple to overcome GPUs with row by row programming.

-- Response: Thank the reviewer for the comments. Although still at early stage, it is true that the
possible commercial purpose of the memristor chip is to compete with other machine learning
accelerators based on silicon technologies. Specifically for GPU, weight values are stored in
DRAM, and the update of them is performed word line by word line, which is exactly the same
as our proposed approach. But the memristor consumes less dynamic energy per update, and zero
static energy due to its non-volatility. More importantly, other benefits of using memristor based
computing system come from the fact that the computation takes place in-situ in the memory,
removing the need to transfer the data between memory and computing unit entirely. The
benefits of analog in-memory computing have been well established in previous literatures, as
we discussed in Page 14.

4 - Fig. 4a is very useful, thank you for providing it. Experimental accuracy is around 5% below
the corresponding TensorFlow accuracy, which seems a large gap, however.

-- Response: We thank the reviewer to acknowledge our effort in providing Fig. 4a. We would
like to point out that the accuracy gap between our experiment and TensorFlow is 3.6% instead
of 5% (and 2.4% between the experiment and a defect-free simulation). More importantly, our
simulation on a larger memristor array (1024×512) with a defect rate of 11%, which is the same
as that observed in our experiment, yields an accuracy of 97.3%±0.4% on the MNIST
classification test, approaching that demonstrated with traditional hardware.

	Xia01
	Xia02
	Xia03
	Xia04

