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Supplementary Figure.1 Transmission electron microscopy (TEM) images of SNH (a) and
four types of nanotubes ((b) and (c)) in cultural medium. Red arrows indicated the
cone-like structures of SNH. The cross-section diameters of CNT were measured and

shown in red color. Scale bar in (a): 100 nm. Scale bar in (b) and (c): 50 nm.
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Supplementary Figure.2 TEM images with high magnifications of SNT1 and SNT2,
showing the parallel assembly of nanotubes in medium. The corresponding grayscale
intensity distributions exhibited that about 10-30 single nanotubes attracted each other in
parallel to become bigger nanotube bundles. Scale bar: 50 nm.
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Supplementary Figure.3 (a) Distributional histograms of the cross-section diameters of

nanocarbons based on transmission electron microscopy investigations. (b) Distributional
histograms of the lengths of CNT based on transmission electron microscopy
investigations. (c) Aspect ratio comparison of different nanocarbons. In (a) to (c), at least
30 individual nanocarbons were measured according to transmission electron microscopy

results. The mean values in (a) to (c) were presented as means * s.d.

a b S c
Size Disfributionby DLS SIze Dlstrlbullﬂn by Num ber
" ~-MNT1 150 1.0
£ —-unT2 & M <200nm @ >200nm
830 ] —-snm n < 0.83 v Ay
E —SNT2 H © -
— 1 — d
%20 ] SNH i > E 0.6 EE %'
g I A = 0.4 aper
£ ] g 0.24
5 5 o
) o 0.0
1 10 100 1000 10000 N 2 N U
5 > N YV N 2 & & & &
Sizee.nm F & &S & & & &£

Supplementary Figure.4 (a) Size distributions of nanocarbons in cultural medium
measured by dynamic light scattering (DLS) technique based on number percentage. (b)
The size distribution characteristics of five types of nanocarbons based on quantity
occupation.(c) The polydispersity index (PDI) of five types of nhanocarbons in aqueous
medium detected by DLS technique. In (b) and (c), six independent experiments were

performed and the data were presented as means * s.d.
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Supplementary Figure.5 Schematic of nanoscale comparison of different nanocarbons
based on structure units and aggregation forms in cultural medium. Five nanocarbons
showed similar distribution features on the cross-section diameters (D). SNH, MNT2 and
SNT1 further exhibited aggregative characteristics with close size range (Du:

hydrodynamic diameter) based on FWHM (full width at half maximum) measurement.
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Supplementary Figure.6 Raman spectrums of different nanocarbons.
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Supplementary Figure.7 Infrared spectrums of different nanocarbons based on Fourier

transform infrared spectroscopy (FTIR).
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Supplementary Figure.8 Thermogravimetric (TGA) analysis of nanocarbons. The weight

losses of SNH and nanotubes under air atmosphere were all above 93%, indicating the

high purity for all five nanocarbons.
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Supplementary Figure.9 Elemental analysis of nanocarbons based on X-ray

photoelectron spectroscopy (XPS).
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Supplementary Figure.10 Residual metal catalyst detection (Fe, Ni, Zn) of nanocarbons

based on X-ray photoelectron spectroscopy (XPS).
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Supplementary Figure.11 Inductively coupled plasma mass spectrometry (ICP-MS) for

metal catalyst detection. The mass ratios of usual metal catalyst components (Zn, Cu, Ni,

Co, Fe) in SNH and nanotubes were all below 1%., some were even below 0.1%o.
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Supplementary Figure.12 The dispersity and stability analyses of nanocarbons in mouse

plasma. (a) The particle size distributions of nanocarbons in mouse plasma detected by

DLS at room temperature for 7 days. (b) TEM images of different nanocarbons dispersed

in plasma for 7 days. The nanocarbon dispersions in BSA/H>O were monitored as control
by TEM. Scale bar in SNH and SNT1 groups: 100 nm (red color). Scale bar in MNT1 and
MNT2 groups: 500 nm (white color). Scale bar in SNT2 groups: 200 nm (yellow color). (c)
The Raman spectrums of different nanocarbons in mouse plasma detected by CLRM at
room temperature for 7 days. The characteristic peaks (D and G bands) of nanocarbons

were shown in dotted line diagrams.



Supplementary Figure.13 SEM images of the surface adsorptions of different

nanocarbons on cell membrane. Yellow arrows in images showed that all five
nanocarbons adhered to cell membrane and assembled to form aggregations. Scale bar
(black color): 1 pm.
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Supplementary Figure.14 Flow cytometry analysis of cells after nanocarbon incubations
based on scattering light signal detection, indicating the cellular entry capabilities of

nanocarbons.
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Supplementary Figure.15 Schematic of laser reflection (LR) technology based on CLSM
for the detection of intracellular nanocarbons.
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Supplementary Figure.16 Confocal images of intracellular nanocarbons based on LR
detection. Intracellular nanocarbons were marked with green pseudo color. Scale bar
(white color): 25 um. The intensity distributions along the vector lines showed that LR
signals exhibited good consistency with the corresponding gray scale intensities of

nanocarbons, demonstrating the feasibility of LR technology.
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Supplementary Figure.17 Schematic of the linear correlation of LR signals with the real
mass concentrations. Nanocarbons with different concentrations were fixed in
polyacrylamide gel. LR signal intensities were detected meanwhile and compared with

corresponding mass concentrations.
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Supplementary Figure.18 The correlation analysis of LR intensity with the concentration of
different nanocarbons in acellular model. (a) LR images of different nanocarbons with
various concentrations immobilized in polyacrylamide gel. Scale bar: 25 pm. (b) The
correlation diagrams of LR intensity per unit area of different nanocarbons with
concentration. (c) The correlation diagrams of LR intensity of different nanocarbons with
concentration. In (b) and (c), at least 25 independent fields (25 ym X 25 pm) in CLSM
detection were randomly selected for LR intensity measurement. Data were presented as
means = s.d. (d) The linear correlations between the mean intensity of laser reflection
and the incubation concentration of different nanocarbons via the linear regression

method based on the mean value determination in (c).
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Supplementary Figure.19 The correlation analysis of LR intensity with the concentration of
different nanocarbons in J774A.1 cell model. (a) LR images of J774A.1 cells detected by
CLSM after the incubation of nanocarbons with different concentrations. Scale bar: 25 p
m. Scale bar: 25 pym. (b) The comparison of LR intensity per unit area of nanocarbons
between acellular and cellular models in the case of 100 pg ml-! incubation. (c) The
correlation diagrams of LR intensity of different nanocarbons with the incubation
concentration. In (b) and (c), at least 25 independent fields (25 pm X 25 pm) in CLSM
detection or over 100 cells were randomly selected for LR intensity measurement. Data
were presented as means * s.d. (d) The linear correlations between the mean intensity
of laser reflection and the incubation concentration of different nanocarbons via the linear

regression method based on the mean value determination in (c).
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Supplementary Figure.20 TEM images of cells with low magnification after nanocarbon
incubations. Scale bar: 5 pm. The internalizations of nanocarbons caused the obvious
increases of intracellular vesicles and the deformation of cell membranes, indicating the

phagocytosis mechanism for SNH and nanotubes.
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Supplementary Figure.21 Confocal images of cellular uptakes in different incubation
temperatures. Scale bar: 25 pm. When nanocarbons were incubated with cells at 4 °C
for 24 h, it was obviously to find the decreases of intracellular materials (LR signals, green
pseudo color) compared to 37 °C incubation groups. Nuclei were stained with Hoechst

33258 in the investigation.
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Supplementary Figure.22 The confocal images of Caco-2, MDA-MB-231, Hela and

SN

I

J774A.1 cell lines after treatment with different nanocarbons, with or without different
endocytosis inhibitors. Cell nuclei were labeled with Hoechst 33258, and the
microfilaments were stained with rhodamine-phalloidine (red pseudo color). Intracellular
nanocarbons were detected via LR technology and shown with green pseudo color. Scale

bar: 25 pm.
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Supplementary Figure.23 The quantitative cell uptake analysis of different nanocarbons
based on laser reflection imaging in (a) J774A.1, (b) Caco-2, (c) MDA-MB-231 and (d)
Hela cell lines, with or without different endocytosis inhibitors. In (a) to (d), over 100 cells
in CLSM detection were randomly selected for LR intensity measurement. Data were
presented as means t s.d. Statistical significances were compared with control group in
each experiment and calculated by Student’s t-test: * p<0.05, ** p<0.01, # p<0.005, ##
p<0.001. (e) The heat maps based on the differences in pathway and mechanism of
endocytosis between SNH and CNT in four types of cells. The percentages presented the
inhibition ratios of different endocytosis inhibitors for the cellular uptakes of five

nanocarbons compared to control group in four types of cells.
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Supplementary Figure.24 Single cell gel-electrophoresis (comet assay) based on
fluorescence microscopy. SNH incubation did not change the DNA distribution feature
compared to Ctrl group. However, all nanotube treatments triggered the obvious comet
characteristics (white arrows), which meant the productions of gene fragments. Scale bar:

10 pm.
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Supplementary Figure.25 (a) Confocal images of cells after nanocarbon incubations with
and without Cyto D addition. Intracellular nanocarbons were detected by laser reflection
(LR) technology and shown with pseudo green color. Scale bar: 10 uym. (b) Cytotoxic
analysis of different nanocarbons based on LDH release assay with and without Cyto D
addition (n=4). Data were presented as means + s.d. Statistical significances were

calculated by Student’s t-test: * p<0.05, # p<0.005, ## p<0.001.
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Supplementary Figure.26 The evaluations of cytotoxicity and cell death mechanism
induced by different nanocarbons on the basis of normalization of cell uptake level. (a)
Microscopy images of dead cells labeled by propidium iodide (PI) after treatment of
different nanocarbons. Cells were also detected via microscopy in blank field model and
labeled with Hoechst 33258 as reference. Scale bar: 50 ym. (b) The proportional
comparison between necrosis and apoptosis after the cellular incubation with different
nanocarbons via the apoptosis/necrosis assay detection (n=4). (c) The relative cell
viability after treatment of nanocarbons detected by the MTT assay (n=3). (d) The relative
LDH release after treatment of nanocarbons detected by LDH assay (n=3). In (c) and (d),
data were compared with control group in each experiment and presented as means *

s.d. Statistical significances were calculated by Student'’s t-test, # p<0.005, ## p<0.001.
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Supplementary Figure.27 The mechanism analysis on nanocarbon-induced cell death
through apoptosis related pharmacological inhibition strategy detected by LDH release
assay on the basis of normalization of uptake level of nanocabons. (a) Z-VAD-FMK as the
pan-caspase inhibitor and (b) Z-DEVD-FMK as the specific caspase-3 inhibitor were
selected to evaluate the death mechanism caused by nanocarbons. Data were compared
with no inhibitor adding groups for each type of nanocarbons and presented as means +
s.d (n=3). Statistical significances were calculated by Student’s t-test: # p<0.005; ##
p<0.001.
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Supplementary Figure.28 Confocal images of intracellular HMGB1 after nanocarbon
incubations. Scale bar: 10 pm. Notably, the fluorescence intensities of HMGB1 in cell
nuclei were apparently decreased. Nuclei were also stained with Hoechst 33258 as

reference in the investigation.
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Supplementary Figure.29 Fluorescence micrographs of cells after nanocarbon

incubations detected by apoptosis/necrosis assay kit. Cells were stained with Hoechst

Digital image enhancement

33342 and Pl respectively. The obtained graphs were digital enhanced by IPP software to

highlight the necrosis and apoptosis cells. Scale bar: 50 pm.
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Supplementary Figure.30 The total protein proteomic analysis on the basis of
normalization of cell uptakes for different nanocarbons. (a) Hierarchical clustering analysis
on the changes of cellular proteins investigated by LFQ proteomics after incubation of
nanocarbons with cells based on the uptake normalization (b) The Venn diagrams of
cellular proteins with more than 40% expression change over control group after
treatment of nanocarbons. (c,d) The gene functional annotation clustering of (c)
up-regulated and (d) down-regulated proteins based on enrichment analysis after the
incubation of different nanocarbons (e) The heat maps on the expression comparison of
changed proteins that involved in part of key cellular processes after the incubation of

nanocarbons. The values in heat maps represented the expression ratios of identified



proteins compared to control group.
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Supplementary Figure.31 Cytotoxicity detections of different nanocarbons with and
without NEC-1incubation on the basis of normalization of uptake level of nanocabons.
Data were compared with no inhibitor adding groups for each type of nanocarbons and
presented as means = s.d (n=3). Statistical significances were calculated by Student’s
t-test.
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Supplementary Figure.32 Cytotoxicity detections of different nanocarbons with and
without (a) glycine and (b) KCI as the inhibitors of pyroptosis on the basis of normalization
of uptake level of nanocabons. Data were compared with no inhibitor adding groups for
each type of nanocarbons and presented as means + s.d (n=3). Statistical significances
were calculated by Student’s t-test: * p<0.05, ## p<0.001.
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Supplementary Figure.33 Confocal images of intracellular Iysosomes labeled with

Ctrl

SNH

MNT1

FITC-Dextran (FD) after nanocarbon incubations. Compared to the spot-like distribution of
lysosomes (red pseudo color) for Ctrl and SNH group, CNT incubations caused the

obvious leakages and cytoplasmic diffusion of FD (yellow arrows). Scale bar: 25 pm.
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Supplementary Figure.34 Cytotoxicity evaluation of different nanocarbons after the
treatment of specific ROS inhibitor NAC. Data were compared with no inhibitor adding

groups for each type of nanocarbons and expressed as mean * s.d. (n=3).
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Supplementary Figure.35 Confocal images of autophagy after nanocarbon incubations.

LC-3B (red color) as the marker of autophagosomes was labeled with specific antibody.
Intracellular nanocarbons (green color) were detected by LR technology. No obvious

co-localization feature was observed for five nanocarbon groups. Scale bar: 5 pm.
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Supplementary Figure.36 Fluorescence spectrums of different nanocarbons under nile

red (a, EX 552nm) and pryene (b, EX 334nm) detection conditions.
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Supplementary Figure.37 Autocorrelation fitting of light scattering intensities of

nanocarbons in aqueous medium detected by DLS. Two different deconvolution
algorithms, including cumulants analysis and non-negatively constrained least squares

(NNLS) fitting algorithm, were performed in study to calculate the hydrodynamic diameters.
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Supplementary Figure.38 Fluorescence spectrums of ALMs labeled with nile red (a) and
pyrene (b) respectively after nanocarbon incubations. The concentations of different
nanocarbons were adjusted based on NNLS algorithm data conversion to assure different
nanocarbons possessed the identical apparent contact areas with ALMs during the

investigation.
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Supplementary Figure.39 Polarization (P) measurements of ALMs labeled with DPH after

Polarization (P)

the incubations of nanocarbons, exhibiting the obvious changes of membrane fluidity
caused by nanotubes. The concentations of different nanocarbons were adjusted based
on NNLS algorithm data conversion to assure different nanocarbons possessed the
identical apparent contact areas with ALMs during the investigation. Data are expressed
as mean = s.d. (n=3) and compared with Ctrl. #p<0.005; ##p<0.001.
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Supplementary Figure.40 Schematic diagrams of fluorescence correlation spectroscopy
(FCS). (a) Monodispersed fluorescent ALMs were incubated with different nanocarbons in
capillary. If ALMs had affinity with nanocarbons, they would bind on the material surface
and assemble in aggregative forms, which could be detected by FCS based on the
difference of diffusions. (b) Confocal images of the mixed dispersions that contained

fluorescent ALMs and nanocarbons in the FCS detection. Scale bar: 100 pm.
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Supplementary Figure.41 Schematic of nanocarbon-protein interaction analysis. The flow
chart show the separation and extraction process of high affinitive proteins with

nanocarbons.
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Supplementary Figure.42 Molecular weight distributions of affinitive protein with

nanocarbons detected by SDS-PAGE. The intensity histograms based on gel strips were
obtained via Image Lab software. Black arrows indicated that some stripes of bonded

proteins in SNH group were different from CNT groups in distributions and intensities.
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Supplementary Figure.43 The correlation analysis of two biological duplicative mass
spectrometry (MS) experiments based on label-free quantification (LFQ) proteomics

technology.
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Supplementary Figure.44 Gene ontology (GO) analysis of affinitive proteins for different

nanocarbon groups. The pie charts showed similar and distinct proportions of proteins

based on (a) molecular function, (b) biological process and (c) cellular component

classifications.
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Supplementary Figure.45 Overrepresentation (OR) test of the affinitive proteins based on
biological process (BP) classification. Black arrows showed the obvious distinctions in

protein functions for SNH group compared to nanotubes.
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Supplementary Figure.46 Overrepresentation (OR) test of the affinitive proteins based on

molecular function (MF) classification. Black arrows showed the obvious distinctions in

protein functions for SNH group compared to nanotubes.
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Supplementary Figure.47 Overrepresentation (OR) test of the affinitive proteins based on
cellular component (CC) classification. Black arrows showed the obvious distinctions in

protein locations for SNH group compared to nanotubes.
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Supplementary Figure.48 Overrepresentation (OR) test of the affinitive proteins based on
protein class (PC) classification. Black arrows showed the obvious distinctions in protein

functions for SNH group compared to nanotubes.
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Supplementary Figure.49 Overrepresentation (OR) test of the affinitive proteins based on

reactome pathway classification. Black arrows showed the obvious distinctions in protein

functions for SNH group compared to nanotubes.
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Supplementary Figure.50 Pre-treatment of trypsin decreased the internalizations of

nanocarbons detected by LR technology via CLSM. Three independent CLSM detections
were performed in study. The mean LR intensities of cells were recorded and compared
with no trypsin adding groups for each type of nanocarbons. The values in brackets
denoted the reduced percentages of cellular uptake for different nanocarbons. Data were
expressed as mean * s.d. (n=3) and the statistical significances were calculated by
Student’st-test. * p<0.05.
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Supplementary Figure.51 Microscopy images of intracellular nanocarbons after trypsin
treatment. Scale bar: 5 pm. The surface plots were obtained by IPP software to highlight
the intracellular nanocarbons (red color), showing the slight decreases of nanocarbon

internalizations caused by trypsin.



Supplementary Table.1 The normalization of cellular uptakes for different nanocarbon

incubations
Incubative
Celis) in the case .
concentration
I R@medium) I R(cets) Ccells) of  nanocarbon _
regulation for

= fI(C(medium)) =f, (C(medium)) = f3(C(m“~‘di“m)) incubation with

normalized cellular

100 pg ml-!
Ho uptake
1=262.57C =474 .46C Cc=1.81Cnm
SNH 211.54 pg mi-! 100 pg ml-!
-1394.2 +6703.4 +30.84
[=218.42C 1=445.14C Cc=2.04 Cn
MNT1 301.97 pg ml-! 55.63 pg ml-!
+1323.6 +22765 +98.17
1=198.64C 1=402.31C Cc=2.03 Cnm
MNT2 244.00 pg mli- 83.97 pg ml-!
+1944 +20181 +41.47
1=92.5C 1=348.73C Cc=3.77 Cm
SNT1 530.24 pg ml- 15.46 pg ml!
+1618.5 +15793 +153.24
[=113.99C I=372.16C C:=3.26Cnm
SNT2 415.58 pg ml! 37.50 pg ml-

+3374.3 +13530 +89.09




Supplementary Table.2 Mass ratios of nanocarbons that used for ALM interaction

analysis. The converted mass ratios of five nanocarbons could assure the basically

identical apparent contact area for five nanocarbons with ALMs

Fitting based on Cumulants algorithm

Fitting based on NNLS algorithm

Ratio of specific surface area
(compared to SNH as 1.00)

Mass ratio based on equal
surface area
(compared to 100 pg SNH)

Ratio of specific surface area
(compared to SNH as 1.00)

Mass ratio based on equal
surface area
(compared to 100 pg SNH)

MNT1 1.35 74 0.93 108
MNT2 0.92 109 0.85 118
SNT1 0.60 166 0.59 170
SNT2 0.19 519 0.22 457
SNH 1.00 100 1.00 100




Supplementary Note 1

The normalization of intracellular nanocarbon concentrations during the

cellular incubation

Briefly, the first related issue is the quantitative determination of these nanocarbons
inside of cells. We think that the classical fluorescence labeling strategy is not a good
choice here because of the influence of chemical modification and possible fluorescence
interference from intracellular substances and so on. So a label-free laser reflection (LR)
technology based on confocal laser scanning microscopy (CLSM) was utilized in study to
evaluate the intracellular nanocarbons. In the manuscript, we had demonstrated that LR
signals co-localized well with intracellular nanocarbons (Supplementary Figure.16). Here,
our additional tests further demonstrated that there were good correlations between LR
signal and nanocarbon concentration in acellular (Supplementary Figure.18) and cellular
models (Supplementary Figure.19). For five types of nanocarbons, LR intensities
increased with the concentration, and the data regressions all manifested the good linear
dependences (Supplementary Figure.18d and 19d). The regression functions in two
models could be described as follow:

Acellular model: ILR(medium) = %ACedium + ¥ (1)

Cellular model: I r(cells) = BCmedium + 6 (2)

Where a and g represented the slopes of regression lines, y and & represented
the intercepts. I r(medium) Was the LR intensities of nanocarbons in medium, while
I r(censy Was the LR intensities of nanocarbons in cells. Cyeqium Was the concentration of
nanocarbons in medium.

Notably, as shown in Supplementary Figure.18b and 19b, the LR intensities per unit
area for five nanocarbons were nearly invariable, no matter with the changes of
concentration or environment (acellular vs cellular models). So it could be rational to
deduce that the correlation between LR signals and intracellular nanocarbons conformed
to function (1), which was described as follow:

ILr(cens) = ACcens +v (3)

According to function (1) to (3), the correlation between Cmegium and Ceeiis could be
obtained based on the linear conversion.

So Ceetls = & Cmedium + 5 4)

It was then established the linear correlation of intracellular concentration with
extracellular incubative concentration.

Namely, our investigations confirmed the feasibility of our established quantitative



assay of laser refection technology. Then, we found the special incubating concentration
for each of the five nanocarbons via uptake study, and under such concentration the five
nanocarbons could achieve almost the same level of macrophage uptake (Supplementary
Table 1). Namely, we normalized nanocarbon concentrations per cell according to

reviewer's comment.



