Structure activity relationship studies on rhodanines and derived enethiol inhibitors of metallo-β-lactamases

Dong Zhang^a, Marios S. Markoulides^a, Dmitrijs Stepanovs^{a,1}, Anna M. Rydzik^a, Ahmed El-Hussein^{a,2} Corentin Bon^{a,3}, Jos J. A. G. Kamps^a, Klaus-Daniel Umland^{a,4}, Patrick M. Collins^b, Samuel T. Cahill^a, David Y. Wang^a, Frank von Delft^{b,d,e}, Timothy D. W. Claridge^a, Jürgen Brem^a, Michael A. McDonough^a, and Christopher J. Schofield^{a,*}

^a Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom

^b Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom

^c The National Institute of Laser Enhanced Science, Cairo University, Egypt

^d Structural Genomics Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK3

^e Department of Biochemistry, University of Johannesburg, Aukland Park, 2006, South Africa

^{*}To whom correspondence should be addressed. <u>Email: christopher.schofield@chem.ox.ac.uk</u> <u>Telephone:</u> +44 (0)1865 275 625. <u>Fax:</u> +44 (0)1865 285 002. <u>Address:</u> Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom

^{*} Corresponding author. Tel.: +44 (0)1865 285 000; fax: +44 (0)1865 285 002; e-mail: christopher.schofield@chem.ox.ac.uk

¹ Present address: Latvian Institute of Organic Synthesis, Aizkraukles Str. 21 Riga, LV-1006, Latvia.

² Present address: Boehringer Ingelheim Pharma GmbH & Co KG Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany.

³ Present address (on leave from): The National Institute of Laser Enhanced Science, Cairo University, Egypt.

⁴ Present address: École polytechnique université, Paris saclay Route de Saclay, 91128 Palaiseau.

⁵ Present address: Vifor Pharma, Flughofstrasse 61, 8152 Glattbrugg, Switzerland .

Table of Contents

1.	Extended materials and methods	S 3
2.	Compound characterisation	S4
3.	NMR ¹ H and ¹³ C spectra	S22
4.	Extended biochemical results and tables	S84
	Table S1 Residual activities 16, 17, 22, 26 against MBLs	S84
	Figure S1 SBL inhibition	S85
	Figure S2 BCII IC ₅₀ traces	58/
	Figure S3 IMP-1 IC ₅₀ traces	509 501
	Figure S5 SPM-1 IC to traces	S91
	Figure S6 VIM-2 IC_{50} traces	S95
	Figure S7 NMR reaction time course spectra	S93
	Figure S8 NMR reaction time course plot	S98
5.	Crystallography	S99
	Table S2 Crystallographic data processing and refinement statistics	S99
	Figure S9 Structure of BcII:6c	S100
	Figure S10 Structure of BcII:6k	S101
	Figures S11 Structure of BcII:61	S102
	Figure S12 Structure of VIM-2: ML302F	S103
	Figures S13 MBL product binding	S104
6.	Author contributions	S105
7.	References	S106

1. Extended Materials and Methods:

Reagents were obtained from commercial sources and either used as supplied or purified using appropriate standard procedures.

Solvents (including dry solvents) for chemical transformations, work-up and chromatography were from Sigma-Aldrich (Dorset, UK) at HPLC grade, and used without further purification.

Column chromatography was performed using prepacked SNAP columns on a Biotage SP1 Purification system (Uppsala, Sweden).

Thin-layer chromatography (TLC) was carried out using Merck aluminium plates coated with HF_{254/366} silica gel. Visualization was performed with a 254 nm ultraviolet (UV) light source and/or by immersion in potassium permanganate or phosphomolybdic acid (PMA) solutions.

Microwave assisted reactions were performed using a Biotage Initiator[™] microwave synthesizer in sealed vials.

Deuterated solvents were from Cambridge Isotopes, Apollo Scientific Ltd, and/or Sigma-Aldrich. ¹H and ¹³C NMR spectra were recorded either using a Bruker Avance III HD NanoBay 400 spectrometer, Bruker Avance III HD NanoBay 600 spectrometer, or using a Bruker Avance II 500 with 13C cryoprobe spectrometers. Residual non-deuterated solvent was used as the internal standard for ¹H NMR spectra, and a carbon signal of the solvent was used as the internal standard for ¹³C NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from tetramethylsilane (TMS). The resonance multiplicity patterns are described as singlet (s), broad singlet (br s), doublet (d), triplet (t), quartet (q), quintet (quin), multiplet (m), or a combination of these. Coupling constants (*f*) are quoted in hertz (Hz) to the nearest 0.5 Hz. Peak assignments were aided by COSY, HMQC, and/or HMBC whenever necessary.

High-resolution mass spectra were recorded either using a Bruker MicroTOF instrument using an ESI source and Time of Flight (TOF) analyser.

IR spectra were recorded on a Bruker Tensor 27 Attenuated Total Reflection (ATR) FT-IR spectrometer, and absorbance bands are quoted in cm⁻¹.

2. Compound Characterisation:

(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3a: isolated as a yellow solid (85%). mp 217-236 °C. $R_f = 0.60$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3160 (COO-H), 1731 (HOC=O), 1683 (NC=O), 1588 (SC=C). HRMS (ESI–): calculated for C₁₂H₈NO₃S₂ [M – H]⁻ requires 277.9951; found

277.9955. ¹**H NMR** (400 MHz, DMSO-d₆): $\delta_{\rm H}$ 7.89 (s, 1H), 7.68 (d, J = 7.0 Hz, 2H), 7.47-7.63 (m, 3H), 4.68 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.77, 167.81, 166.95, 134.11, 133.35, 131.63, 131.22, 130.03, 122.55, 46.14.

(5-(4-Methylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3b: isolated as a yellow solid (79%). mp 247-359 °C. $R_f = 0.55$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3095 (COO-H), 1699 (HOC=O), 1656 (NC=O), 1594 (SC=C). HRMS (ESI–): calculated for C₁₃H₁₀NO₃S₂ [M – H]⁻ requires

292.0108; found 292.0114. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.70 (s, 1H), 7.53 (d, J = 9.0 Hz, 2H), 7.23 (d, J = 9.0 Hz, 2H), 4.71 (s, 2H), 2.55 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.41, 166.42, 165.76, 163.00, 134.14, 132.93, 132.13, 125.89, 123.23, 55.81, 45.88.

(5-(4-Fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3c: isolated as a yellow solid (82%). mp 225-235 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3172 (COO-H), 1732 (HOC=O), 1676 (NC=O), 1581 (SC=C). HRMS (ESI–): calculated for C₁₂H₈FNO₃S₂ [M]⁻ requires

295.9857; found 295.9861. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.91 (s, 1 H), 7.77 (dd, J = 8.7, 5.0 Hz, 2H), 7.43 (t, J = 8.5 Hz, 2H), 4.68 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.59, 167.70, 166.90, 163.75 (d, J = 251.5 Hz), 133.79 (d, J = 9.0 Hz), 133.00, 130.07 (d, J = 3.0 Hz), 122.23, 117.24 (d, J = 22.0 Hz), 46.14.

(5-(4-Bromobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3d: isolated as a yellow solid (84%). mp 239-253 °C. $R_f = 0.50$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3090 (COO-H), 1709 (HOC=O), 1589 (NC=O), 1587 (SC=C). HRMS (ESI-): calculated for C₁₂H₇BrNO₃S₂ [M - H]⁻

requires 355.9056; found 355.9062. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.85 (s, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 4.72 (s, 2H); ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.38, 167.73, 166.81, 133.00, 132.94, 132.48, 125.37, 123.17, 45.75, 44.14.

(5-(4-Methoxybenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3e: isolated as a yellow solid (80%). mp 187-243 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2963 (COO-H), 1679 (HOC=O), 1586 (NC=O), 1564 (SC=C). HRMS (ESI–): calculated for C₁₃H₁₀NO₄S₂ [M – H]⁻ requires

308.0057; found 308.0062. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.82 (s, 1H), 7.63 (d, J = 9.0 Hz, 2H), 7.12 (d, J = 9.0 Hz, 2H), 4.68 (s, 2H), 3.85 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.54 167.86, 166.99, 162.15, 134.33, 133.53, 125.89, 119.10, 115.66, 56.08, 45.96.

(5-(2-Fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3f: isolated as an orange solid (76%). mp 230-249 °C. $R_f = 0.50$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2993 (COO-H), 1713 (HOC=O), 1604 (NC=O), 1397 (SC=C). HRMS (ESI-): calculated for C₁₂H₇FNO₃S₂ [M - H]⁻ requires

295.9857; found 295.9860.

¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.82 (s, 1 H), 7.60 (t, *J* = 7.0 Hz, 2H), 7.37-7.47 (m, 2H), 4.69 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.46, 167.70, 166.71, 161.12 (d, *J* = 253.0 Hz), 134.02 (d, *J* = 9.0 Hz), 130.19, 126.15 (d, *J* = 3.5 Hz), 125.72-124.28 (m), 121.19 (d, *J* = 12.0 Hz), 116.84 (d, *J* = 21.5 Hz), 46.09.

(5-(2-Chlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3g: isolated as a yellow solid (77%). mp 234-237 °C. $R_f = 0.55$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2926 (COO-H), 1708 (HOC=O), 1594 (NC=O), 1433 (SC=C). HRMS (ESI-): calcualted for C₁₂H₇ClNO₃S₂ [M - H]⁻ requires

311.9561; found 311.9567. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.95 (s, 1 H), 7.66 (dd, J = 6.0, 3.5 Hz, 1H), 7.58-7.62 (m, 1H), 7.52-7.57 (m, 1H), 4.72 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.54, 167.70, 166.58, 135.38, 132.99, 131.16, 130.99, 130.02, 128.83, 125.99, 45.86.

(5-(2-Bromobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3h: isolated as a yellow solid (83%). mp 235-249 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3028 (COO-H), 1706 (HOC=O), 1594 (NC=O), 1429 (SC=C). HRMS (ESI–) calculated for C₁₂H₇BrNO₃S₂ [M – H]⁻ requires

355.9056; found 355.9060.

¹**H** NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 8.00 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.33 (m, 3H), 4.27 (s, 2H). ¹³**C** NMR (100 MHz, DMSO-*d*₆) $\delta_{\rm C}$ 193.20, 167.94, 165.43, 141.02, 137.48, 136.99, 130.14, 130.55, 129.98, 126.23, 105.01, 45.73.

(5-(2-Iodobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3i: isolated as a yellow solid (75%). mp 229-240 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2938 (COO-H), 1703 (HOC=O), 1588 (NC=O), 1393 (SC=C). HRMS (ESI–): calculated for C₁₂H₇NO₃S₂ [M – H]⁻ requires 403.8918; found

403.8925. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 8.06 (d, J = 8.0 Hz, 1H), 7.82 (s, 1H), 7.51-7.62 (m, 2H), 7.20-7.28 (m, 1H), 4.71 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.69, 167.74, 166.43, 140.73, 136.71, 136.16, 132.87, 129.83, 129.49, 125.73, 104.00, 45.90.

(5-(2-Chloro-6-fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3j: isolated as a yellow solid (84%). mp 237-250 °C. $R_f = 0.50$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3026 (COO-H), 1717 (HOC=O), 1598 (NC=O), 1393 (SC=C). HRMS (ESI–): calculated for C₁₂H₆ClFNO₃S₂ [M – H]⁻ requires

329.9467; found 329.9473. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 13.54 (br s, 1H), 7.79 (s, 1H), 7.56-7.66 (m, 1H), 7.48-7.55 (m, 1H), 7.41 (t, J = 9.5 Hz, 1H), 4.74 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.38 (d, J = 6.5 Hz), 167.70, 165.99, 159.44 (d, J = 253.0 Hz), 134.86 (d, J = 5.0 Hz), 133.84 (d, J = 10.0 Hz), 129.74 (d, J = 1.5 Hz), 126.83 (d, J = 3.0 Hz), 125.18, 120.22 (d, J = 18.0 Hz), 115.94 (d, J = 22.0 Hz), 45.63.

(4-Oxo-2-thioxo-5-(2,3,6-trifluorobenzylidene)thiazolidin-3-yl)acetic acid 3k: isolated as an orange solid (78%). mp 195-228 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3212 (COO-H), 1709 (HOC=O), 1681 (NC=O), 1602 (SC=C). HRMS (ESI-): calculated for C₁₂H₅F₃NO₃S₂ [M -

H]⁻ requires 331.9668; found 331.9669. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.72 (s, 1H), 7.76 (m, 1H), 7.38 (m, 1H), 4.75 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.31, 167.71, 166.22, 155.25 (d, J = 249.5 Hz), 148.96-146.01 (m), 148.48-145.33 (m), 130.05, 120.83 (dd, J = 19.5, 10.5 Hz), 119.90, 112.91 (dd, J = 24.5, 4.0 Hz), 112.75-112.28 (m), 46.23.

(5-(Benzo[b]thiophen-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3yl)acetic acid 31: isolated as a yellow solid (76%). mp 242-266 °C. $R_f = 0.60$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3132 (COO-H), 1703 (HOC=O), 1702 (NC=O), 1587 (SC=C). HRMS (ESI–): calculated for C₁₄H₈NO₄S₂ [M –

H]⁻ requires 333.9672; found 333.9678. ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.95 (s, 1H), 7.49-7.71 (m, 4H), 7.55 (s, 1H), 4.72 (s, 2H). ¹³C NMR (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.54, 167.70, 166.58, 135.38, 132.99, 131.16, 130.99, 130.02, 128.83, 125.99, 45.86.

(5-(2,6-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3m: isolated as a yellow solid (83%). mp 235-237 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2931 (COO-H), 1710 (HOC=O), 1600 (NC=O), 1442 (SC=C).

HRMS (ESI+): calculated for $C_{12}H_7Cl_2NO_3S_2Na$ [M + Na]⁺ requires 369.9137; found 369.9137. ¹**H NMR** (400 MHz, DMSO-d₆) δ_H 7.86 (s, 1H), 7.71-7.60 (m, 2H), 7.54 (ddd, J = 9.0, 7.3, 0.7 Hz, 1H), 4.68 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) δ_C 193.23, 167.66, 165.45, 133.43, 132.74, 131.37, 131.20, 129.41, 129.32, 46.27.

(5-(2,3-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3n: isolated as a yellow solid (81%). mp 236-237 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2930 (COO-H), 1708 (HOC=O), 1598 (NC=O), 1440 (SC=C). HRMS (ESI–): calculated for C₁₂H₆Cl₂NO₃S₂ [M –

H]⁻ requires 345.9172; found 345.9167. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.83 (s, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.61 (dd, J = 8.5, 2.5 Hz, 1H), 7.55 (d, J = 2.5 Hz, 1H), 4.69 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.01, 167.63, 166.34, 133.67, 133.16, 132.52, 132.38, 129.02, 127.81, 127.47, 46.10.

(5-(2,5-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3o: isolated as a yellow solid (80%). mp 237-238 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2933 (COO-H), 1705 (HOC=O), 1595 (NC=O), 1447 (SC=C). HRMS (ESI–): calculated for C₁₂H₆Cl₂NO₃S₂ [M – H]⁻ requires

345.9172; found 345.9167. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 13.59 (br s, 1H), 7.92 (s, 1H), 7.78 (dd, J = 7.5, 2.0 Hz, 1H), 7.59-7.50 (m, 2H), 4.75 (s, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.35, 167.65, 166.35, 133.68, 133.59, 132.97, 132.90, 129.57, 128.84, 128.51, 127.27, 45.56.

(5-(2,6-Difluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3p: isolated as an orange solid (79%). mp 238-240 °C. R_f = 0.55 (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2924 (COO-H), 1700 (HOC=O), 1575 (NC=O), 1438 (SC=C). HRMS (ESI-): calculated for C₁₂H₆F₂NO₃S₂ [M - H]⁻ requires

313.9763; found 313.9760. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 7.71 (s, 1H), 7.66 (ddd, J = 8.5, 6.5, 2.0 Hz, 1H), 7.30 (t, J = 9.0 Hz, 2H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.58, 167.74, 166.32, 159.98 (d, J = 253.0 Hz), 158.60 (d, J = 252.5 Hz), 134.55 (t, J = 11.0 Hz), 128.64, 121.09, 113.37-112.76 (m), 110.69 (t, J = 17.5 Hz), 45.92.

(5-(2,6-Dimethylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3q: isolated as a pale yellow solid (82%). mp 240-242 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2932 (COO-H), 1710 (HOC=O), 1588 (NC=O), 1449 (SC=C). HRMS (ESI–): calculated for C₁₄H₁₂NO₃S₂ [M – H]⁻

requires 306.0264; found 306.0261. ¹**H NMR** (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 13.53 (br s, 1H), 8.03 (s, 1H), 7.25 (m, 1H), 7.14 (d, J = 7.5 Hz, 2H), 4.73 (s, 2H), 2.22 (s, 6H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 194.17, 167.79, 165.13, 135.69, 135.63, 133.39, 129.64, 129.03, 128.33, 45.54, 20.17.

2-(5-(anthracen-9-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid 3r: isolated as an orange solid (90%). **mp** 240-242 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). **IR** v_{max} (ATR)/cm⁻¹: 2967 (COO-H), 1707 (HOC=O), 1611(NC=O), 1401 (SC=C). ¹H NMR (400 MHz, DMSO- d_6) δ_{H} 8.81 (s, 2 H), 8.22 (d, J=7.65 Hz, 2 H), 8.05 (d, J=8.55 Hz, 2 H), 7.59

- 7.71 (m, 5 H), 4.74 (s, 2 H) ppm. ¹³C NMR (101 MHz, DMSO-*d*₆) δ_C 194.0, 167.8, 132.3, 131.5, 131.2, 129.7, 128.5, 127.9, 127.4, 126.4, 125.4.

2-(5-(2-(naphthalen-2-ylmethyl)benzylidene)-4-oxo-2-

thioxothiazolidin-3-yl)acetic acid 3s: isolated as an off white solid (88%). mp 251-259 °C. $R_f = 0.55$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2899 (COO-H), 1721 (HOC=O), 1600 (NC=O), 1476 (SC=C). HRMS (ESI–): calculated for C₂₃H₁₆NO₃S₂ [M – H]⁻ requires

418.0577; found 418.0570. ¹**H NMR** (400 MHz, DMSO- d_6) δ_H 13.46 (s, 1H), 8.09 (s, 1H), 7.88 – 7.74 (m, 3H), 7.64 – 7.26 (m, 8H), 4.69 (s, 2H), 4.36 (s, 2H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ_C 193.55, 167.21, 165.85, 141.94, 137.69, 133.06, 131.96, 131.79, 131.62, 131.43, 131.28, 128.28, 128.12, 127.66, 127.48, 127.39, 127.15, 126.59, 126.22, 125.59, 123.80, 44.95.

2-(2,4-Dioxo-5-(2,3,6-trichlorobenzylidene)thiazolidin-3-yl)acetic acid 9: isolated as a pale yellow solid (82%). mp 150-153 °C. $R_f = 0.50$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 2947 (COO-H), 1711 (HOC=O), 1600 (NC=O), 1458 (SC=C). HRMS (ESI+): calculated for C₁₂H₅Cl₃NO₄S [M –

H]⁻ requires 363.9010; found 363.9008. ¹**H NMR** (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.85 (s, 1H), 7.64 (dd, J = 9.0, 0.7 Hz, 1H), 7.52 (d, J = 9.0 Hz, 1H), 4.33 (s, 2H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 169.69, 167.53, 165.25, 134.62, 133.46, 133.30, 133.20, 132.90, 132.24, 130.50, 130.02, 43.21.

(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)-N-(4-methylpiperazin-1-yl)acetamide 5a: isolated as a yellow solid (35%). mp >255 °C (dec.). R_f = 0.40 (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3215 (NH), 1713 (HNC=O), 1671 (NC=O), 1597 (SC=C). HRMS (ESI+): calculated for

 $C_{17}H_{21}N_4O_2S_2 [M + H]^+$ requires 377.1100; found 377.1100. ¹H NMR (400 MHz, CDCl₃) δ_H 7.76 (s, 1H), 7.53 – 7.41 (m, 5H), 4.94 (s, 2H), 3.61 – 3.39 (m, 5H), 1.69 (5H). ¹³C NMR (100 MHz, CDCl₃) δ_C 193.80, 167.58, 162.23, 133.71, 133.43, 130.85, 130.71, 129.42, 123.12, 46.18, 45.07, 43.63, 26.42, 25.48, 24.49.

(5-(4-Methylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5b: isolated as a yellow solid (37%). mp >248 °C (dec.). $R_f = 0.40$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3209 (NH), 1712 (HNC=O), 1670 (NC=O), 1595 (SC=C). HRMS

(ESI+): calculated for C₁₈H₂₃N₄O₂S₂ [M + H]⁺ requires 391.1257; found 391.1256. ¹H NMR (600 MHz, DMSO-d₆) $\delta_{\rm H}$ 9.07 (s, 1H), 7.84 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 4.93 (s, 2H), 3.20-2.57 (m, 8H), 2.39 (s, 3H), 2.22 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.21, 167.03, 166.66, 141.70, 133.77, 133.59, 130.83, 130.78, 130.19, 129.29, 129.09, 54.97, 54.18, 45.18, 44.91, 21.16.

(4-Fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5c: isolated as an orange solid (35%). mp >266 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3213 (NH), 1712 (HNC=O), 1669 (NC=O), 1585 (SC=C).

HRMS (ESI+): calculated for C₁₇H₂₀FN₄O₂S₂ [M + H]⁺ requires 395.1006; found 395.1004. ¹H NMR (600 MHz, DMSO-d₆) $\delta_{\rm H}$ 9.06 (s, 1H), 7.89 (s, 1H), 7.79-7.75 (m, 2H), 7.46-7.40 (m, 2H), 4.93 (s, 2H), 3.12-2.30 (m, 8H), 2.18 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.83, 167.08, 166.56, 162.56 (d, *J* = 105.0 Hz), 133.73 (d, *J* = 9.0 Hz), 132.84, 130.11, 122.42 (d, *J* = 2.5 Hz), 117.25 (d, *J* = 22.0 Hz), 55.64, 54.80, 45.87, 45.45.

(5-(4-Bromobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5d: isolated as a pale yellow solid (36%). mp >267 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3212 (NH), 1712 (HNC=O), 1670 (NC=O), 1598 (SC=C).

HRMS (ESI+): calculated for $C_{17}H_{20}BrN_4O_2S_2$ [M + H]⁺ requires 455.0206; found 455.0202. ¹H NMR (600 MHz, CDCl₃) δ_H 7.69 (s, 1H), 7.62 (d, J = 8.5 Hz, 2H), 7.37 (d, J = 8.5 Hz, 2H), 6.36 (s, 1H), 5.08 (s, 2H), 3.27 – 2.55 (m, 8H), 2.32 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ_C 193.10, 167.54, 166.99, 132.82, 132.36, 132.25, 131.94, 125.61, 123.99, 56.56, 54.62, 45.77, 45.05.

(5-(4-Methoxybenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5e: isolated as a yellow solid (31%). mp >253 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3215 (NH), 1708 (HNC=O), 1667 (NC=O), 1583 (SC=C).

HRMS (ESI+): calculated for $C_{18}H_{23}N_4O_3S_2$ [M + H]⁺ requires 407.1206; found 407.1201. ¹H NMR (600 MHz, CD₂Cl₂) δ_H 7.71 (s, 1H), 7.49 (d, *J* = 9.0 Hz, 2H), 7.01 (d, *J* = 9.0 Hz, 2H), 5.03 (s, 2H), 3.86 (s, 3H), 3.11-2.58 (m, 8H), 2.24 (s, 3H). ¹³C NMR (150 MHz, CD₂Cl₂) δ_C 194.34, 168.03, 167.38, 162.43, 134.06, 133.29, 126.51, 120.37, 115.44, 56.65, 56.10, 55.09, 45.96, 45.53.

(5-(2-Fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5f: isolated as an orange solid (31%). mp >269 °C (dec.). $R_f = 0.35$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3211 (NH), 1717 (HNC=O), 1670 (NC=O), 1605 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{20}FN_4O_2S_2 [M + H]^+$ requires 395.1006; found 395.1003. ¹H NMR (600 MHz, DMSOd₆) δ_H 9.13 (s, 1H), 7.81 (s, 1H), 7.61 (ddt, J = 10.5, 6.0, 1.5 Hz, 2H), 7.42 (td, J = 8.5, 8.0, 3.0 Hz, 2H), 4.95 (s, 2H), 3.06-2.57 (m, 8H), 2.27 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ_C 193.22, 167.30, 166.08, 160.63 (d, J = 253.0 Hz), 133.52 (d, J = 9.0 Hz), 129.69, 125.68, 124.84 (d, J = 10.5 Hz), 124.42 (d, J = 6.0Hz), 120.75 (d, J = 12.0 Hz), 116.38 (d, J = 21.5 Hz), 54.58, 53.84, 46.28, 45.01.

(5-(2-Chlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5g: isolated as a yellow solid (36%). mp >267 °C (dec.). $R_f = 0.35$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3219 (NH), 1721 (HNC=O), 1672 (NC=O), 1600 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{20}CIN_4O_2S_2$ [M + H]⁺ requires 411.0711; found 411.0707. ¹H NMR (600 MHz, DMSOd₆) δ_H 9.10 (s, 1H), 7.96 (s, 1H), 7.71-7.66 (m, 1H), 7.65-7.60 (m, 1H), 7.59-7.53 (m, 2H), 4.94 (s, 2H), 3.01-2.63 (m, 8H), 2.21 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ_C 193.78, 166.79, 166.51, 135.27, 132.95, 131.24, 130.99, 129.99, 128.87, 128.58, 126.27, 55.49, 54.68, 45.70, 45.49.

(5-(2-Bromobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5h: isolated as a pale yellow solid (32%). mp >259 °C (dec.). $R_f = 0.40$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3210 (NH), 1710 (HNC=O), 1659 (NC=O), 1591 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{20}BrN_4O_2S_2 [M + H]^+$ requires 455.0206; found 455.0204. ¹**H NMR** (600 MHz, DMSOd₆) $\delta_H 9.64$ (s, 0H), 7.66 (d, J = 5.0 Hz, 1H), 7.60 (d, J = 7.4 Hz, 1H), 7.40 – 7.31 (m, 2H), 7.22 (d, J = 6.6 Hz, 1H), 4.77 (s, 1H), 3.46 – 2.62 (m, 11H), 2.26 (s, 2H). ¹³C NMR (150 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.32, 166.18, 162.07, 133.74, 132.37, 130.85, 129.55, 128.85, 125.84, 125.67, 125.62, 51.92, 50.66, 45.30, 44.83.

(5-(2-Iodobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5i: isolated as a yellow solid (39%). mp >250 °C (dec.). R_f = 0.40 (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3215 (NH), 1711 (HNC=O), 1672 (NC=O), 1592 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{20}IN_4O_2S_2$ [M + H]⁺ requires 503.0067; found 503.0062. ¹H NMR (600 MHz, DMSOd₆) δ_H 9.08 (s, 1H), 8.08 (t, J = 7.5 Hz, 1H), 7.76 (s, 1H), 7.64-7.51 (m, 1H), 7.26 (m, 2H), 4.94 (s, 2H), 3.02-2.58 (m, 8H), 2.18 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ_C 193.70, 166.83, 166.53, 140.68, 136.43, 135.35, 132.60, 129.81, 129.39, 126.64, 103.69, 55.63, 54.79, 45.86, 45.49.

(5-(2-Chloro-6-fluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5j: isolated as a yellow solid (35%). mp >261 °C (dec.). $R_f = 0.35$ (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3211 (NH), 1723 (HNC=O), 1675 (NC=O), 1599 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{19}CIFN_4O_2S_2$ [M + H]⁺ requires 429.0616; found 429.0610. ¹H NMR (600 MHz, DMSO-d₆) δ_H 9.09 (s, 1H), 7.78 (s, 1H), 7.59-7.65 (m, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 9.0 Hz, 1H), 4.92 (s, 2H), 2.91 (br s, 4H), 2.71 (br s, 4H), 2.18 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ_C 193.16 (d, J = 6.2 Hz), 166.03, 165.74, 160.75 (d, J = 287.4 Hz), 134.27 (d, J = 5.0 Hz), 133.32 (d, J = 10.1 Hz), 129.67, 126.37 (d, J = 3.1 Hz), 124.26, 119.88 (d, J = 18.0 Hz), 115.50 (d, J = 22.1 Hz), 55.13, 54.28, 45.35, 45.13.

(4-Methylpiperazin-1-yl)-2-(4-oxo-2-thioxo-5-(2,3,6trifluorobenzylidene)thiazolidin-3-yl)acetamide 5k: isolated as an orange solid (35%). mp >259 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3209 (NH), 1717 (HNC=O), 1668 (NC=O), 1596

(SC=C). **HRMS** (ESI+): calculated for C₁₇H₁₈F₃N₄O₂S₂ [M + H]⁺ requires 431.0818; found 431.0815. ¹**H NMR** (600 MHz, DMSO-d₆) $\delta_{\rm H}$ 9.10 (s, 1H), 7.75 (qd, *J* = 9.5, 5.0 Hz, 1H), 7.68 (s, 1H), 7.37 (tdd, *J* = 9.5, 4.0, 2.0 Hz, 1H), 4.93 (s, 2H), 3.00-2.33 (m, 8H), 2.19 (s, 3H). ¹³**C NMR** (150 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.56, 166.46, 162.15, 157.08-154.13 (m), 147.49 (ddd, *J* = 254.5, 15.5, 7.5 Hz), 147.12 (ddd, *J* = 243.5, 12.5, 3.5 Hz), 130.31, 120.80 (dd, *J* = 19.5, 10.5 Hz), 119.85, 112.91 (ddd, *J* = 24.0, 7.0, 4.0 Hz), 112.63 (dd, *J* = 20.0, 14.0 Hz), 55.56, 54.74, 45.78, 45.65.

5-(Benzo[b]thiophen-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4-methylpiperazin-1-yl)acetamide 51: isolated as a yellow solid (31%). mp >271 °C (dec.). $R_f = 0.40$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3216 (NH), 1708 (HNC=O), 1674 (NC=O), 1598 (SC=C).

HRMS (ESI+): calculated for $C_{19}H_{21}N_4O_2S_3$ [M + H]⁺ requires 433.0821; found 433.0815. ¹H NMR (600 MHz, DMSO-d₆) δ_H 9.08 (s, 1H), 8.28 (s, 1H), 8.24-8.20 (m, 1H), 8.16-8.12 (m, 1H), 8.11 (s, 1H), 7.58-7.50 (m, 2H), 4.96 (s, 2H), 3.04-2.59 (m, 8H), 2.20 (s, 3H). ¹³C NMR (150 MHz, DMSO-d₆) δ_C 193.66, 166.81, 166.63, 139.61, 138.09, 133.19, 129.68, 126.23, 125.93, 123.82, 123.74, 123.69, 122.30, 55.57, 54.75, 45.81, 45.45.

(5-(2,6-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5m: isolated as a yellow solid (33%). mp >267 °C (dec.). R_f = 0.35 (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3220 (NH), 1723 (HNC=O), 1675 (NC=O), 1603 (SC=C). HRMS (ESI+):

calculated for $C_{17}H_{19}Cl_2N_4O_2S_2$ [M + H]⁺ requires 445.0321; found 445.0315. ¹H NMR (400 MHz, DMSO-d₆) δ_H 9.38 (s, 1H), 7.83 (s, 1H), 7.65-7.60 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 9.0 Hz, 1H), 4.98 (s, 2H), 3.41-2.86 (m, 8H), 2.68 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ_C 193.47, 166.79, 165.68, 133.45, 132.72, 131.22, 129.41, 128.87, 120.67, 52.90, 51.53, 46.02, 45.49.

(5-(2,3-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5n: isolated as a yellow solid (37%). mp >260 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3225 (NH), 1720 (HNC=O), 1677 (NC=O), 1599 (SC=C).

HRMS (ESI+): calculated for $C_{17}H_{19}Cl_2N_4O_2S_2$ [M + H]⁺ requires 445.0321; found 445.0315. ¹H NMR (400 MHz, DMSO-d₆) δ_H 9.41 (s, 1H), 7.83 (s, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.62 (dd, J = 8.5, 2.5 Hz, 1H), 7.56 (d, J = 2.5 Hz, 1H), 5.02 (s, 2H), 3.27-2.95 (m, 8H), 2.77 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ_C 192.83, 166.11, 166.06, 162.20, 133.18, 132.72, 132.09, 131.95, 128.58, 127.62, 127.03, 120.72, 52.12, 50.77, 45.41, 44.95.

(5-(2,5-Dichlorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 50: isolated as a yellow solid (34%). mp >260 °C (dec.). R_f = 0.35 (CH₂Cl₂: MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3220 (NH), 1723 (HNC=O), 1681 (NC=O), 1597 (SC=C).

HRMS (ESI+): calculated for C₁₇H₁₉Cl₂N₄O₂S₂ [M + H]⁺ requires 445.0321; found 445.0315. ¹H NMR (400 MHz, DMSO-d₆) $\delta_{\rm H}$ 9.41 (s, 1H), 7.91 (s, 1H), 7.79 (d, *J* = 7.0 Hz, 1H), 7.61-7.50 (m, 2H), 5.02 (s,

2H), 3.19-2.91 (m, 8H), 2.78 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ_C 193.62, 166.75, 166.64, 162.73, 133.67, 132.90, 129.62, 128.56, 128.50, 127.74, 127.59, 53.10, 52.65, 45.85, 45.36.

(5-(2,6-Difluorobenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5p: isolated as an orange solid (35%). mp >268 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3229 (NH), 1731 (HNC=O), 1696 (NC=O), 1602(SC=C). HRMS (ESI+):

calculated for $C_{17}H_{19}F_2N_4O_2S_2$ [M + H]⁺ requires 413.0912; found 413.0907. ¹H NMR (400 MHz, DMSO-d₆) δ_H 9.87 (s, 1H), 7.72 (s, 1H), 7.71-7.62 (m, 1H), 7.32 (td, J = 9.0, 1.0 Hz, 2H), 4.99 (s, 2H), 3.49-2.89 (m, 8H), 2.69 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ_C 193.79, 166.81, 166.54, 160.67 (d, J = 393.0 Hz), 134.40, 129.03 (d, J = 19.0 Hz), 120.88 (d, J = 14.8 Hz), 113.03 (d, J = 24.5 Hz), 110.75, 52.53, 51.36, 45.95, 45.51.

(5-(2,6-Dimethylbenzylidene)-4-oxo-2-thioxothiazolidin-3-yl)-N-(4methylpiperazin-1-yl)acetamide 5q: isolated as a pale yellow solid (31%). mp >265 °C (dec.). $R_f = 0.40$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3218 (NH), 1715 (HNC=O), 1677 (NC=O), 1586 (SC=C). HRMS (ESI+):

calculated for C₁₉H₂₅N₄O₂S₂ [M + H]⁺ requires 405.1413; found 405.1410. ¹H NMR (400 MHz, DMSOd₆) $\delta_{\rm H}$ 9.30 (s, 1H), 8.00 (s, 1H), 7.25 (t, *J* = 7.5 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 2H), 4.98 (s, 2H), 3.27-2.73 (m, 8H), 2.55 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 194.43, 166.74, 165.40, 135.59, 135.08, 133.43, 129.53, 128.27, 120.66, 53.61, 52.93, 45.73, 45.32, 20.05.

N-(4-methylpiperazin-1-yl)-2-(5-(2-(naphthalen-2ylmethyl)benzylidene)-4-oxo-2-thioxothiazolidin-3-yl)acetamide 5s: isolated as a yellow solid (38%). mp >257 °C (dec.). $R_f = 0.40$ (CH₂Cl₂ : MeOH, 9 : 1). IR v_{max} (ATR)/cm⁻¹: 3228 (NH), 1726 (HNC=O), 1680 (NC=O), 1591 (SC=C). HRMS (ESI+): calculated

for C₂₈H₂₉N₄O₂S₂ [M + H]⁺ requires 517.1732; found 517.1740. ¹H NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$ 9.37 (s, 1H), 8.08 – 8.01 (m, 1H), 7.89 – 7.74 (m, 3H), 7.59 (d, *J* = 1.5 Hz, 1H), 7.54 – 7.41 (m, 6H), 7.32 (dd, *J* = 8.5, 1.5 Hz, 1H), 4.94 (s, 1H), 4.56 (s, 1H), 4.35 (s, 2H), 3.33 – 2.90 (m, 8H), 2.70 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta_{\rm C}$ 194.19, 171.51, 162.68, 142.34, 138.16, 133.53, 132.45, 132.09, 131.94, 131.81, 131.67, 128.72, 128.60, 128.16, 127.97, 127.87, 127.61, 127.05, 126.71, 126.08, 124.64, 124.48, 52.03, 51.17, 50.04, 42.24.

2-(2,4-Dioxo-5-(2,3,6-trichlorobenzylidene)thiazolidin-3-yl)-*N*-(**4-methylpiperazin-1-yl)acetamide 10:** isolated as a yellow solid (40%). **mp** >245 °C (dec.). $R_f = 0.35$ (CH₂Cl₂ : MeOH, 9 : 1). **IR** v_{max} (ATR)/cm⁻¹: 3220 (NH), 1712 (HNC=O), 1668 (NC=O), 1591 (SC=C).

HRMS (ESI+): calculated for C₁₉H₁₈Cl₃N₄O₃S [M + H]⁺ requires 463.0165; found 463.0173. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.85 (s, 1H), 7.64 (d, *J* = 9.0 Hz, 1H), 7.52 (d, *J* = 9.0 Hz, 1H), 4.72 (s, 1H), 4.35 (s, 1H), 3.31 (s, 2H), 3.22 – 2.59 (m, 8H), 2.51 (s, 3H). ¹³C NMR (101 MHz, CD₃OD) $\delta_{\rm C}$ 168.43, 166.49, 164.67, 133.38, 132.11, 131.96, 131.83, 131.58, 129.18, 128.64, 128.49, 54.00, 53.94, 53.52, 52.87, 43.42, 42.05.

 $\begin{array}{l} & \text{Mercapto-3-phenylacrylic acid 6a: isolated as off white crystals (79\%). mp >300} \\ & \bigcirc \\ & \odot \\ & \bigcirc \\ & \odot \\ & \bigcirc \\ & \odot \\ & \odot \\ & \bigcirc \\ & \odot \\ & \odot \\ & \odot \\ & \bigcirc \\ & \bigcirc \\ & \odot \\ & \bigcirc \\ & \bigcirc \\ & \bigcirc \\ & \odot \\ & \odot \\ & \bigcirc \\ & \bigcirc \\ & \bigcirc \\ & \odot \\ & \bigcirc \\ & \bigcirc \\ & \odot \\ &$

(4-Fluorophenyl)-2-mercaptoacrylic acid 6c: isolated as yellow crystals (82%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1601 (OC=O), 1364 (HSC=C). HRMS (ESI–): calculated for C₉H₆FO₂S [M – H]⁻ requires 197.0078; found 197.0075. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.68 (s, 1H), 7.64-7.56 (m, 2H),

7.13-7.04 (m, 2H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 168.03, 163.92 (d, J = 249.0 Hz), 134.24, 133.08 (d, J = 8.5 Hz), 124.88, 116.51 (d, J = 22.0 Hz).

(4-Bromophenyl)-2-mercaptoacrylic acid 6d: isolated as yellow crystals (76%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1589 (OC=O), 1383 (HSC=C). HRMS (ESI–): calculated for C₉H₆BrO₂S [M – H]⁻ requires 256.9277; found 256.9281. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 77.75 (s, 1H), 7.63-7.55 (m, 4H).

¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.46, 134.38, 132.59, 131.40, 131.14, 124.82, 122.29.

Mercapto-3-(4-methoxyphenyl)acrylic acid 6e: isolated as yellow crystals (81%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1589 (OC=O), 1389 (HSC=C). HRMS (ESI–): calculated for C₉H₉O₃S [M – H]⁻ requires 209.0278; found 209.0276. ¹H NMR (400 MHz, CD₃OD) δ_{H} 7.78 (s, 1H), 7.66 (d, J = 9.0 Hz,

2H), 7.01 (d, J = 9.0 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 167.07, 160.20, 134.14, 131.44, 127.78, 120.44, 113.63, 54.42.

F (2-Fluorophenyl)-2-mercaptoacrylic acid 6f: isolated as pale yellow crystals (76%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1619 (OC=O), 1330 (HSC=C). HRMS (ESI–): calculated for C₉H₆FO₂S [M – H][–] requires 197.0078; found 197.0081. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.91 (s, 1H), 7.89 (dd, J = 8.0, 1.5 Hz, 1H), 7.45-7.36 (m, 1H), 7.28 (td, J =7.5, 1.0 Hz, 1H), 7.18 (ddd, J = 10.5, 8.0, 1.0 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.28, 160.40 (d, J = 250.5 Hz), 130.50 (d, J = 8.5 Hz), 129.18 (d, J = 2.5 Hz), 126.45, 125.37 (d, J = 6.5 Hz), 123.86 (d, J =4.0 Hz), 123.17 (d, J = 12.5 Hz), 115.09 (d, J = 22.0 Hz).

CI (2-Chlorophenyl)-2-mercaptoacrylic acid 6g: isolated as pale yellow crystals (81%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1588 (OC=O), 1360 (HSC=C). HRMS (ESI-): calculated for C₉H₆ClO₂S [M – H]⁻ requires 212.9783; found 212.9781. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.84 (s, 1H), 7.72-7.61 (m, 1H), 7.38 (dd, J = 8.0, 1.5 Hz, 1H), 7.32-7.19 (m, 2H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.17, 133.80, 133.56, 130.42, 129.75, 129.47, 129.43, 127.04, 126.56.

Br (2-Bromophenyl)-2-mercaptoacrylic acid 6h: isolated as pale yellow crystals (75%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1575 (OC=O), 1358 (HSC=C). HRMS (ESI-): calculated for C₉H₆BrO₂S [M - H]⁻ requires 256.9277; found 256.9280. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.77 (s, 1H), 7.65 (dd, J = 7.8, 1.5 Hz, 1H), 7.58 (dd, J = 8.0, 1.0 Hz, 1H), 7.33 (td, J = 7.5, 1.0 Hz, 1H), 7.15 (td, J = 7.5, 1.5 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.12, 135.44, 133.04, 132.73, 129.91, 129.59, 127.15, 126.97, 123.94.

(2-Iodophenyl)-2-mercaptoacrylic acid 6i: isolated as light green crystals (78%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1577 (OC=O), 1385 (HSC=C). HRMS (ESI-): calculated for C₉H₆IO₂S [M - H]⁻ requires 304.9139; found 304.9143. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 9.60 7.85 (dd, J = 8.0, 1.0 Hz, 1H), 7.63 (d, J = 1.0 Hz, 1H), 7.56 (dd, J = 8.0, 1.5Hz, 1H), 7.35 (td, J = 7.5, 1.0 Hz, 1H), 6.97 (td, J = 7.5, 1.5 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.06, 139.33, 139.08, 137.74, 129.82, 128.97, 127.90, 126.77, 99.35.

(2-Chloro-6-fluorophenyl)-2-mercaptoacrylic acid 6j: isolated as a white solid (81%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1578 (OC=O), 1370 (HSC=C). HRMS (ESI–): calculated for C₉H₆FClO₂S [M – H]⁻ requires 230.9688; found 230.9690. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.53 (s, 1H), 7.40 (td, J = 8.0, 6.0 Hz, 1H), 7.33

(d, J = 8.0 Hz, 1H), 7.16 (t, J = 8.0 Hz, 1H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.26, 159.38 (d, J = 250.5 Hz), 133.86 (d, J = 5.0 Hz), 131.88, 130.52 (d, J = 9.5 Hz), 126.02, 125.11 (d, J = 3.5 Hz), 122.82 (d, J = 19.0 Hz), 114.21 (d, J = 22.5 Hz).

Mercapto-3-(2,3,6-trifluorophenyl)acrylic acid 6k: isolated as yellow crystals (79%). **mp** >300 °C. **IR** v_{max} (ATR)/cm⁻¹: 1622 (OC=O), 1371 (HSC=C). **HRMS** (ESI–): calculated for C₉H₄F₃O₂S [M – H]⁻ requires 232.9890; found 232.9892. ¹H NMR (400 MHz, CD₃OD) δ_{H} 7.69 (s, 1H), 7.34 (ddt, J = 9.5, 5.0,

2.5 Hz, 1H), 7.09 (dddd, J = 10.5, 8.0, 6.5, 3.0 Hz, 1H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 166.91, 160.15 (dd, J = 11.1, 3.4 Hz), 148.08 – 147.28 (m), 145.95 – 144.50 (m), 131.33, 127.83 – 126.93 (m), 124.11, 111.66 (dd, J = 25.7, 3.6 Hz), 106.68 (dd, J = 28.4, 21.6 Hz).

(Benzo[b]thiophen-3-yl)-2-mercaptoacrylic acid 61: isolated as a yellow solid (75%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1672 (OC=O), 1381 (HSC=C). HRMS (ESI–): calculated for C₁₁H₇O₂S [M – H]⁻ requires 234.9893; found 234.9893. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 9.60 (s, 1H), 7.95 (s, 1H), 7.92 (dd,

J =7.5 Hz, 2H), 7.27-7.52 (m, 2H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 169.03, 14.38, 139.63, 139.02, 134.70, 124.73, 124.46, 123.46, 123.30, 121.23, 115.15.

(2,6-Dichlorophenyl)-2-mercaptoacrylic acid 6m: isolated as yellow crystals (80%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1593 (OC=O), 1368 (HSC=C). HRMS (ESI–): calculated for C₉H₆Cl₂O₂S [M – H][–] requires 246.9393; found 246.9392. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.44 (s, 1H), 7.39-7.32 (m, 2H), 7.28-7.20 (m, 1H).

¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.23, 133.74, 133.36, 131.56, 130.08, 129.93, 128.00.

(2,3-Dichlorophenyl)-2-mercaptoacrylic acid 6n: isolated as yellow crystals (77%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1594 (OC=O), 1364 (HSC=C). HRMS (ESI–): calculated for C₉H₅Cl₂O₂S [M – H]⁻ requires 246.9393; found

246.9394. ¹**H NMR** (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.74 (s, 1H), 7.70 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.27 (dd, J = 8.5, 2.5 Hz, 1H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.83, 135.22, 132.40, 132.18, 130.80, 129.45, 128.99, 128.88, 128.77.

(2,5-Dichlorophenyl)-2-mercaptoacrylic acid 60: isolated as yellow crystals (75%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1582 (OC=O), 1367 (HSC=C). HRMS (ESI–): calculated for C₉H₆Cl₂O₂S [M – H]⁻ requires 246.9393; found 246.9393. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.79 (s, 1H), 7.62 (dd, J = 8.0, 1.5 Hz, 1H), 7.45 (dd,

J = 8.0, 1.5 Hz, 1H), 7.29 (t, J = 8.0 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.96, 136.08, 133.12, 131.51, 128.66, 127.86, 127.33.

(2,6-Difluorophenyl)-2-mercaptoacrylic acid 6p: isolated as yellow crystals (82%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1580 (OC=O), 1355 (HSC=C). HRMS (ESI–): calculated for C₉H₆F₂O₂S [M – H][–] requires 214.9984; found 214.9984. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.43 (s, 1H), 7.34 (tt, *J* = 8.5, 6.5 Hz, 1H), 6.94 (t, *J* =

8.0 Hz, 2H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.35, 159.67 (d, J = 250.5 Hz), 132.04, 130.75 (t, J = 10.5 Hz), 122.21, 112.65 (m), 111.26 (m).

(2,6-Dimethylphenyl)-2-mercaptoacrylic acid 6q: isolated as pale yellow crystals (79%). mp >300 °C. IR v_{max} (ATR)/cm⁻¹: 1599 (OC=O), 1370 (HSC=C). HRMS (ESI-): calculated for C₁₁H₁₁O₂S [M - H]⁻ requires 207.0485; found 207.0484. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.60 (s, 1H), 7.04 (dd, J = 8.5, 6.5 Hz, 1H), 6.97 (d, J = 7.0 Hz, 2H), 2.10 (s, 6H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$ 165.84, 135.08, 134.95, 134.55, 128.49, 127.79, 127.29, 18.52.

3-(anthracen-9-yl)-2-mercaptoacrylic acid 6r: isolated as yellow solid (33%). mp 252-254 °C. IR v_{max} (ATR)/cm⁻¹: 1676 (OC=O), 1223 (HSC=C). HRMS (ESI–): calculated for C₁₇H₁₂O₂NaS [M + Na]⁺: 303.0450, found: 303.0452. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 8.63 (s, 1 H), 8.29 (s, 1 H), 8.12 - 8.18 (m, 2 H), 7.95 - 8.02 (m, 2 H), 7.52 - 7.59 (m, 4 H). ¹³C NMR (100 MHz, CD₃OD) $\delta_{\rm C}$

180.7, 137.7, 132.9, 131.5, 129.2, 128.9, 128.3, 126.4, 126.0, 124.4.

2-mercapto-3-(2-(naphthalen-2-ylmethyl)phenyl)acrylic acid 6s: isolated as white solid ().**mp** 250-256 °C. **IR** v_{max} (ATR)/cm⁻¹: 1690 (OC=O), 1245 (HSC=C). **HRMS** (ESI–): calculated for C₂₀H₁₅O₂S [M – H]⁻: 320.0871, found: 320.0866. ¹H NMR (400 MHz, CD₃OD) $\delta_{\rm H}$ 7.90 (s, 1H), 7.83 – 7.66

(m, 3H), 7.61 – 7.51 (m, 2H), 7.46 – 7.21 (m, 6H), 4.15 (s, 2H). ¹³**C NMR** (100 MHz, CD₃OD) $\delta_{\rm C}$ 167.75, 140.98, 139.03, 136.34, 135.02, 134.91, 133.57, 131.66, 129.96, 129.64, 128.95, 128.54, 128.28, 128.07, 127.64, 127.53, 126.95, 126.36, 101.38, 40.63.

2-(Acetylthio)-2-phenylacetic acid 12a: isolated as an off white solid (80%). **mp** 136-139 °C. $R_f = 0.45$ (C₆H₁₂/EtOAc 6:4). **IR** v_{max} (ATR)/cm⁻¹: 2946 (COO-H), 1711 (HOC=O), 1650 (SC=O). **HRMS** (ESI+): calculated for C₁₀H₁₀O₃SNa [M + Na]⁺ requires 233.0243; found 233.0244. ¹**H NMR**(400 MHz, DMSO-d₆) $\delta_{\rm H}$ 13.16 (br., s, 1H), 7.57-7.11 (m, 5H), 5.20 (s, 1H), 2.36 (s, 3H). ¹³C **NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$

194.40, 170.98, 135.90, 129.29, 128.69, 51.41, 30.36.

2-(Acetylthio)-3-phenylpropanoic acid 12b: isolated as pale yellow oil (85%). R_f = 0.50 (C₆H₁₂/EtOAc 6:4). **IR** v_{max} (ATR)/cm⁻¹: 295 (COO-H), 1710 (HOC=O), OH 1648 (SC=O). **HRMS** (ESI+): calculated for C₁₁H₁₂O₃SNa [M + Na]⁺ requires 247.0399; found 247.0400. ¹**H NMR**(400 MHz, DMSO-d₆) $\delta_{\rm H}$ 12.96 (s, 1H), 7.33-

7.27 (m, 2H), 7.23 (td, J = 6.0, 1.5 Hz, 3H), 4.25 (t, J = 8.0, 1H), 3.18 (dd, J = 14.0, 8.0 Hz, 1H), 2.94 (dd, J = 14.0, 7.5 Hz, 1H), 2.33 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 193.97, 172.07, 138.05, 129.45, 128.78, 127.23, 47.46, 37.68, 30.66.

SH 2-Mercapto-2-phenylacetic acid 13a: isolated as pale yellow oil (89%). IR v_{max} OH (ATR)/cm⁻¹: 2946 (COO-H), 1711 (HOC=O). HRMS (ESI+): calculated for C₈H₇O₂S [M - H]⁻ requires 167.0172; found 167.0163. ¹H NMR(400 MHz, DMSO-d₆) $\delta_{\rm H}$ 13.00 (br., s, 1H), 7.47-7.25 (m, 5H), 4.80 (d, J = 7.5 Hz, 1H), 3.52 (d, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) $\delta_{\rm C}$ 172.92, 140.00, 128.89, 128.31, 128.06, 45.44.

2-Mercapto-3-phenylpropanoic acid 13b: isolated as pale yellow oil (92%). IR v_{max} (ATR)/cm⁻¹: 2952 (COO-H), 1719 (HOC=O). HRMS (ESI+): calculated for $C_9H_9O_2S$ [M - Na]⁻ requires 181.0329; found 181.0325. ¹H NMR(400 MHz, DMSO-d₆) δ_H 12.68 (s, 1H), 7.58-7.01 (m, 5H), 3.62 (td, J = 9.0, 6.5 Hz, 1H), 3.13 (dd, J = 14.0, 8.5 Hz, 1H), 3.12 (d, J = 9.0 Hz, 1H), 2.91 (dd, J = 14.0, 6.5 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ_C 174.16, 138.81, 129.49, 128.69, 127.00, 41.92, 41.45.

4-(4-Fluorobenzylidene)-2-methyloxazol-5(*4H***)-one 16**: isolated as a yellow solid (65%). **mp** 147-150 °C (from *i*PrOH). $R_f = 0.35$ (7 : 3, hexane : EtOAc). **IR**, v_{max} (ATR)/cm⁻¹: 2360 (s), 2341 (s), 1802 (s), 1773 (s), 1661 (s), 1630 (s), 1595

(s), 1586 (s), 1445 (s), 1427 (s), 1392 (s), 1232 (s), 1161 (s). **HRMS** (ESI+): calculated for C₁₁H₉O₂NF $[M + H]^+$ requires 206.06118; found: 206.06137. ¹H NMR (400 MHz, CDCl₃): δ_H 8.12-8.09 (2H, m, CH ar.), 7.15-7.11 (2H, m, CH ar.), 7.13 (1H, s, =CH), 2.41 (3H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ_C 167.85, 166.35, 165.62, 163.09, 134.52 (d, *J* = 9.0 Hz), 132.30, 130.17, 129.66 (d, *J* = 3.0 Hz), 116.30 (d, *J* = 22.0 Hz), 15.83. ¹⁹F NMR (376 MHz, CDCl₃): δ_F –106.87 (Far.).

3-(4-Fluorophenyl)-2-hydroxyacrylic acid 17: isolated as a white solid (90%). **mp** 174-178 °C. **IR**, v_{max} (ATR)/cm⁻¹: 2360 (s), 2341 (s), 1733 (w), 1717 (w), 1646 (w), 1603 (w), 1238 (w), 1144 (w). **HRMS** (ESI–): calculated for C₉H₆O₃F [M – H]⁻ requires 181.03065; found: 181.03047. ¹H **NMR** (400 MHz,

CD₃OD): $\delta_{\rm H}$ 7.84-7.81 (2H, m, CH ar.), 7.09-7.05 (2H, m, CH ar.), 6.50 (1H, s, =CH). ¹³C NMR (100 MHz, CD₃OD): $\delta_{\rm C}$ 168.20, 164.43, 161.99, 142.03 (d, J = 3.0 Hz), 132.84 (d, J = 3.0 Hz), 132.57 (d, J = 8.0 Hz), 115.97 (d, J = 21.0 Hz), 110.29. ¹⁹F NMR (376 MHz, CD₃OD): $\delta_{\rm F}$ –116.13 (*F*ar.).

Diisopropyl ((4-bromo-2-fluorophenyl)(hydroxy)methyl)phosphonate 20: isolated as a white solid (90%). mp 67-70 °C. $R_f = 0.25$ (9.5 : 0.5, CHCl₃ : MeOH). IR, v_{max} (ATR)/cm⁻¹: 3226 (w), 2918 (s), 1468 (m), 1376 (w), 1191 (m, P=O), 1113 (m), 1041 (m, P-O-C), 844 and 802 (w, P-O-C), 722 (w,

CH₂). **HRMS** (ESI+): calculated for C₁₃H₁₉BrFO₄PNa [M + Na]⁺ requires 391.00806; found: 391.00800. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.57 (1H, tdd, J = 7.5, 2.5, 0.5 Hz, CH ar.), 7.35 (1H, ddt, J = 8.0, 2.0, 0.5 Hz, CH ar.), 7.25 (1H, ddd, J = 9.5, 2.0, 1.0 Hz, CH ar.), 5.26 (1H, dd, J = 11.5, 6.0 Hz, PCH), 4.72 (2H, dddt, J = 27.0, 12.0, 7.0, 6.0 Hz, CH), 4.03 (1H, dd, J = 8.0, 6.0 Hz, OH), 1.47-1.25 (12H, m, 4x CH₃). ¹³C **NMR** (100 MHz, CDCl₃): $\delta_{\rm C}$ 160.49 (d, J = 7.0 Hz), 158.49 (d, J = 7.0 Hz), 130.23 (apparent t, J = 4.0 Hz), 127.49 (apparent t, J = 3.0 Hz), 124.14 (dd, J = 14.0, 2.0 Hz), 121.88 (dd, J = 9.5, 4.0 Hz), 118.57 (dd, J = 25.5, 2.5 Hz), 72.25 (dd, J = 41.0, 7.5 Hz), 63.92 (dd, J = 165.0, 2.5 Hz), 24.08 (dd, J = 19.0, 3.5 Hz), 23.71 (dd, J = 29.5, 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm F}$ -114.10 (d, J = 7.5 Hz). ³¹P NMR (162 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm P}$ 18.31 (d, J = 7.0 Hz).

((4-Bromo-2-fluorophenyl)(hydroxy)methyl)phosphonic acid 22: isolated as a white solid (90%). mp >200 °C (dec.). IR, v_{max} (ATR)/cm⁻¹: 3244 (br), 2980 (s), 2954 (s), 2291 (m), 1592 (s), 1483 (s), 1380 (m), 1190 (m); 1100 (m), 991 (m), 845 (w). HRMS (ESI+): calculated for C₇H₆BrFO₄P [M – H]⁻ requires 282.9171;

found: 282.9173. ¹**H** NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 7.61 (1H, td, J = 8.0, 2.5 Hz, CH ar.), 7.45-7.09 (2H, m, CH ar.), 5.19 (1H, d, J = 14.0 Hz, CH). ¹³C NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 161.06 (dd, J = 250.5, 6.0 Hz), 131.96, 128.41, 127.81 (d, J = 14.0 Hz), 122.21 (d, J = 9.0 Hz), 119.33 (d, J = 26.0 Hz), 64.88 (d, J = 14.0 Hz)

163.5 Hz). ¹⁹**F** NMR (376 MHz, CD₃OD, ¹H-decoupled): $\delta_{\rm F}$ –116.35 (*Far.*). ³¹**P** NMR (162 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm P}$ 18.62 (d, *J* = 6.0 Hz).

(4-Bromo-2-fluorophenyl)(diisopropoxyphosphoryl)methyl 4-

nitrobenzene-sulfonate 23: isolated as a white solid (94%). **mp** 93-96 °C. $R_f = 0.30 (99 : 1, \text{CHCl}_3 : \text{MeOH})$. **IR**, $v_{\text{max}} (\text{ATR})/\text{cm}^{-1}$: 2975 (s), 1515 (s), 1376 (s), 1210 (m, P=O), 1170 (m), 1011 (m), 870 and 855 (w), 810 (w), 787 (m), 745 (w). **HRMS** (ESI+): calculated for C₁₉H₂₂O₈NBrFPSNa [M + Na]⁺ requires 575.98634; found: 575.98578. ¹H NMR (400 MHz,

CDCl₃): $\delta_{\rm H}$ 8.32-8.16 (2H, m, CH ar.), 8.06-7.83 (2H, m, CH ar.), 7.34 (1H, ddd, J = 9.0, 7.5, 2.0 Hz, CH ar.), 7.16 (2H, dt, J = 9.5, 1.5 Hz, CH ar.), 5.92 (1H, d, J = 16.0 Hz, PCH), 4.80 (1H, dp, J = 7.0, 6.0 Hz, CH₃CH), 4.57 (1H, dp, J = 7.0, 6.0 Hz, CH₃CH), 1.33 (6H, dd, J = 6.0, 5.0 Hz, 2x CH₃), 1.17 (6H, dd, J = 76.0, 6.0 Hz, 2x CH₃). ¹³C NMR (100 MHz, CDCl₃): $\delta_{\rm C}$ 160.61, 158.12 (d, J = 7.0 Hz), 150.63, 141.99, 131.15 (apparent t, J = 3.0 Hz), 129.29, 127.93 (apparent t, J = 3.0 Hz), 124.33 (dd, J = 9.5, 3.0 Hz), 124.11, 118.89 (d, J = 25.0 Hz), 118.68, 73.43 (dd, J = 33.0, 7.0 Hz), 70.63 (dd, J = 178.0, 2.5 Hz), 24.10 (dd, J = 4.5, 4.0 Hz), 23.55 (dd, J = 35.0, 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm F}$ -113.59 (d, J = 5.5 Hz). ³¹P NMR (162 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm P}$ 10.77 (d, J = 5.5 Hz).

Diisopropyl ((4-bromo-2-fluorophenyl)(thiocyanato)methyl)phosphonate 24: isolated as a colourless oil (77%). IR, v_{max} (ATR)/cm⁻¹: 2988 (s), 2170 (s), 1595 (s), 1460 (s), 1355 (m), 1259 (s), 1090 (m), 982 (w). HRMS (ESI+): calculated for C₁₄H₁₈O₃NBrFPSNa [M + Na]⁺ requires 431.98046; found:

431.98062. ¹**H NMR** (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.63 (1H, td, J = 8.0, 2.0 Hz, CH ar.), 7.37 (1H, dd, J = 8.5, 2.0 Hz, CH ar.), 7.30 (1H, ddd, J = 9.0, 2.0, 1.0 Hz, CH ar.), 5.01-4.72 (2H, m), 4.59 (1H, dp, J = 7.5, 6.0 Hz, CH₃CH), 1.36 (6H, dd, J = 6.0, 1.5 Hz, 2x CH₃), 1.17 (6H, dd, J = 81.5, 6.0, 2x CH₃). ¹³C **NMR** (100 MHz, CDCl₃): $\delta_{\rm C}$ 159.88 (dd, J = 254.0, 8.0 Hz,), 132.45, 128.38 (dd, J = 4.0, 2.1 Hz), 123.85 (dd, J = 9.5, 2.5 Hz), 119.70 (dd, J = 14.0, 3.0 Hz), 119.42 (d, J = 25.0 Hz), 110.02 (d, J = 10.0 Hz), 73.66 (dd, J = 24.0, 7.5 Hz), 39.29 (dd, J = 152.0, 2.5 Hz), 24.07 (apparent t, J = 3.5 Hz), 23.53 (dd, J = 58.5, 5.5 Hz). ¹⁹F **NMR** (376 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm F}$ -113.95 (d, J = 4.0 Hz). ³¹P **NMR** (162 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm F}$ 13.98 (d, J = 3.5 Hz).

Diisopropyl ((4-bromo-2-fluorophenyl)(mercapto)methyl)phosphonate 25: isolated as a colourless oil (67%). $R_f = 0.35$ (9.5 : 0.5, CHCl₃ : MeOH). IR, v_{max} (ATR)/cm⁻¹: 2984 (m), 2940 (s), 2510 (m), 1585 (s), 1474 (s), 1380 (m), 1245 (m), 1109 (m), 980 (m), 780 (m). HRMS (ESI+): calculated for C₁₃H₂₀O₃BrFPS [M + H]⁺ requires 385.00327; found: 385.00339. ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.56 (1H, td, J = 8.0, 2.0 Hz, CH ar.), 7.34-7.27 (1H, m, CH ar.), 7.21 (1H, ddd, J = 9.5, 2.0, 1.0 Hz, CH ar.), 4.81 (1H, dp, J = 7.5, 6.0 Hz, CH₃CH), 4.55 (1H, dp, J = 7.5, 6.0 Hz, CH₃CH), 4.34 (1 H, dd, J = 20.0, 9.0 Hz, SHCH), 2.64 (1H, dd, J = 11.0, 9.0 Hz, SH), 1.36 (3H, d, J = 6.0 Hz, CH₃), 1.29 (6H, dd, J = 34.0, 6.0 Hz, 2x CH₃), 1.04 (3H, d, J = 6.0 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃): $\delta_{\rm C}$ 161.19 (dd, J = 36.0, 8.0 Hz), 159.55 (dd, J = 252.0, 8.0 Hz), 159.19 (dd, J = 36.0, 8.0 Hz), 132.27 (d, J = 50.0 Hz), 131.54 (t, J = 3.5 Hz), 128.00 (t, J = 3.0 Hz), 127.83 (d, J = 3.0 Hz), 124.44 (dd, J = 14.5, 3.0 Hz), 122.85-121.53 (m), 119.73-118.70 (m), 118.63, 72.79 (d, J = 7.5 Hz), 72.56 (d, J = 7.5 Hz), 45.47 (dd, J = 145.0, 119.0 Hz), 30.15 (dd, J = 152.5, 3.0 Hz), 24.55-24.10 (m), 23.67 (ddd, J = 54.0, 5.5, 3.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm F}$ -114.84 (d, J = 4.5 Hz). ³¹P NMR (162 MHz, CDCl₃, ¹H-decoupled): $\delta_{\rm P}$ 19.72 (d, J = 4.5 Hz).

((4-Bromo-2-fluorophenyl)(mercapto)methyl)phosphonic acid 26: isolated as a white solid (92%). mp >190 °C (dec.). IR, v_{max} (ATR)/cm⁻¹: 3234 (br), 2983 (s), 2941 (s), 2520 (m), 2292 (m), 1588 (s), 1473 (s), 1383 (m), 1192 (m); 1106 (m), 992 (m). HRMS (ESI+): calculated for C₇H₈O₃BrFPS [M + H]⁺ requires

300.90937; found: 300.90955. ¹**H** NMR (400 MHz, CD₃OD): $\delta_{\rm H}$ 7.47 (1H, qd, J = 8.0, 2.0 Hz, CH ar.), 7.32 (1H, d, J = 8.5 Hz, CH ar.), 7.18 (1H, dd, J = 9.5, 2.0 Hz, CH ar.), 4.42 (1H, dd, J = 22.5, 20.5 Hz, PCH). ¹³C NMR (125 MHz, CD₃OD): $\delta_{\rm C}$ 163.63-161.91 (m), 160.59 (dd, J = 36.5, 7.5 Hz, 123.61-121.87 (m), 121.38 (dd, J = 14.0, 2.5 Hz), 120.56 (d, J = 25.5 Hz), 119.70 (dd, J = 26.0, 12.0 Hz), 111.11 (d, J = 9.0 Hz), 75.47 (dd, J = 13.5, 7.5 Hz). ¹⁹F NMR (376 MHz, CD₃OD, ¹H-decoupled): $\delta_{\rm F}$ –115.64 (rotamer A), –115.87 (rotamer B). ³¹P NMR (162 MHz, CD₃OD, ¹H-decoupled): $\delta_{\rm P}$ 15.38 (conformational isomer A), 15.25 (conformational isomer B).

3. ¹H and ¹³C NMR spectra:

S33

S35

S55

S61

S72

S79

4. Extended biochemical results and tables:

Table S1. Residual activities of metallo- β -lactamases (MBLs) upon inhibition by selected rhodanine/thioenol derivatives at 100 μ M.

F → N= (16	F 17	о но ро	OH F O Br 22	HO POF Br				
% Residual activity versus								
Compound	SPM-1	BcII	IMP-1	VIM-2	NDM-1			
16	87 ± 1	92 ± 2	100	100	97 ± 2			
17	93 ± 2	90 ± 3	100	100	97 ± 4			
22	92 ± 5	98 ± 2	100	100	100			
26	95 ± 6	100	100	100	96 ± 3			

BcII, *Bacillus cereus* II MBL; IMP-1, Imipenemase MBL-1; NDM-1,New Delhi MBL-1; SPM-1, São Paulo MBL-1; VIM-2, Verona integron-encoded MBL-2

Figure S1. Residual activities of serine- β -lactamases (SBLs) upon inhibition by rhodanines and enethiols at 200 μ M.

Inhibition of intact rhodanine on a panel of SBLs

Inhibition of intact rhodanine amide on a panel of SBLs

Inhibition of enethiols on a panel of SBLs

AmpC, Ampicillin resistant β-lactamase class C; CTX-M-15, Cefotaxime hydrolysing β-lactamase from Munich 15; OXA-10, Oxacillinase-10; TEM-1, Temoneira β-lactamase-1

Figure S2: IC_{50} curves for BcII inhibition time courses. Residual activities were calculated from the initial rate of FC5 hydrolysis after incubation of the enzyme with the inhibitor for 10 minutes.

Figure S2 continued

Figure S3: IC_{50} curves for IMP-1 inhibition time courses. Residual activities were calculated from the initial rate of FC5 hydrolysis after incubation of the enzyme with the inhibitor for 10 minutes.

Figure S3 continued

Figure S4: IC_{50} curves for NDM-1 inhibition time courses. Residual activities were calculated from the initial rate of FC5 hydrolysis after incubation of the enzyme with the inhibitor for 10 minutes.

Figure S5: IC_{50} curves for SPM-1 inhibition time courses. Residual activities were calculated from the initial rate of FC5 hydrolysis after incubation of the enzyme with the inhibitor for 10 minutes.

Figure S5 continued

Figure S6: IC_{50} curves for VIM-2 inhibition time courses. Residual activities were calculated from the initial rate of FC5 hydrolysis after incubation of the enzyme with the inhibitor for 10 minutes.

Figure S6 continued

Figure S7. ¹H NMR (700MHz) stability test for compound **10**. *A*, **10** (200 μ M) in NH₄HCO₃ (50 mM, pH 7.5 in D₂O) in the absence of NDM-1, ¹H NMR time course over 18 hours; *B*, **10** (200 μ M) in NH₄HCO₃ (50 mM, pH 7.5 in D₂O) in the presence of NDM-1 (1 μ M), ¹H NMR time course over 18 hours; *C*, **10** (200 μ M) in Tris-d₁₁ (50 mM, pH 7.5 in D₂O) in the absence of NDM-1, ¹H NMR time course over 18 hours; *D*, **10** (200 μ M) in Tris-d₁₁ (50 mM, pH 7.5 in D₂O) and in the presence of NDM-1 (1 μ M), ¹H NMR time course over 18 hours; *D*, **10** (200 μ M) in Tris-d₁₁ (50 mM, pH 7.5 in D₂O) and in the presence of NDM-1 (1 μ M), ¹H NMR time course over 18 hours; *D*, **10** (200 μ M) in Tris-d₁₁ (50 mM, pH 7.5 in D₂O) and in the presence of NDM-1 (1 μ M), ¹H NMR time course over 18 hours; *D*, **10** (200 μ M) in Tris-d₁₁ (50 mM, pH 7.5 in D₂O) and in the presence of NDM-1 (1 μ M), ¹H

			В			
······		18 h				18 h
~~~~~		16 h				16 h
		14 h				14 h
······		12 h				12 h
		10 h				10 h
A		8 h	·····	^		8 h
		7 h	^			7 h
A	M	6 h	······································			6 h
A		5 h				5 h
A	MM	4 h		M		4 h
^		3 h	······		_^	3 h
^ <u></u>		2 h	^			2 h
-1	M	1 h				1 h
7.9 7.8 7.7	7.6 7.5 δ (ppm) ^{2,4} 7.3 7.2	5 min	J  D	7.6 7.5 7.4	7.3 7.2	5 min
7.9 7.8 7.7		5 min 7.1 7.0 6.9 8.0  18 h		7.6 7.5 7.4	- <u>M</u>	5 min 7.1 18
7.9 7.8 7.7		5 min 7.1 7.0 6.9 8.0  18 h 16 h	 79 78 77 D		-M	5 min 7.1 18
7.9 7.8 7.7	M     M       7.6     7.5     6 (cpm) ^{7,4} 7.3     7.2	5 min 7.1 7.0 6.9 80  18.h 15.h 14.h	 79 78 77 D			5 min 7.1 18 16 16
7.9 7.8 7.7	M     M       7.6     7.5     0 (000)       7.4     7.3     7.2	5 min 7.1 7.0 6.9 8.0 18 h 16 h 14 h, 12 h	 79 78 77 D			5 min 7.1 188 16 16 14 4 4 4 12
7.9 7.8 7.7	M     M       7.6     7.5     5 (000) ^{7,4} 7.3     7.2	5 min 7.1 7.0 6.9 8.0 18 h 16 h 12 h 12 h 10 h		7.6     2.5 8 (ppm)     7.4       7.6     2.5 8 (ppm)     7.4		5 min 7.1 18 16 14 12 12 10
7.9 7.8 7.7	M     M       76     7.5     0.00007     7.3     7.2	5 min 7.1 7.0 6.9 8.0  18 h 16 h 14 h 12 h 10 h 8 h		7.6     2.5 8 (ppm)     7.4       7.6     2.5 8 (ppm)     7.4		5 min 7.1 18 16 16 14 12 12 10 10 8 h
	M     M       76     7.5     5 (000) ²⁴ 7.3     7.2       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M	5 min 7.1 7.0 6.9 8.0 18 h 16 h 12 h 10 h 8 h 7 h				5 min 7.1 18 16 16 14 14 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14
79 78 77	M     M       76     7.5     5 (000) ^{2,4} 7.3     7.2       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M	5 min 7.1 7.0 6.9 8.0 18 h 16 h 12 h 12 h 10 h 7 h 6 h		<u>7.6</u> <u>25</u> <u>25</u> <u>55</u> <u>55</u> <u>55</u> <u>55</u> <u>55</u> <u>55</u>		5 min 7.1 18 16 16 14 14 12 10 00 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
	M     M       76     7.5     5 (000) ²⁴ 7.3     7.2       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M       M     M     M     M     M	5 min 7.1 7.0 6.9 8.0 18 h 16 h 12 h 10 h 7 h 6 h 5 h		<u>7.6</u> <u>7.5</u> <u>7.4</u> <u>7.6</u> <u>7.5</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u>		5 min 7.1 18 16 16 14 14 12 10 0 0 8 h 7 h 6 h 5 h
	M M   76 75 3 (opt)   74 73 72	5 min 7.1 7.0 6.9 8.0 18 h 16 h 14 h 10 h 8 h 7 h 6 h 5 h 4 h		<u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u> <u>7.6</u>		5 min 7.1 18 ( 16 ( 14 ( 14 ( 12 ( 10 ( 10 ( 8 h 7 h 6 h 6 h 6 h 6 h 4 h
		5 min 7.1 7.0 6.9 8.0 18 h 16 h 14 h 10 h 8 h 7 h 6 h 5 h 4 h 3 h		M       7.6     7.5       0.5 (com)     7.4       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M		5 min 7.1 18 1 16 1 14 1 12 1 10 1 10 1 10 1 10 1 10 1 10 1 10
		5 min 7.1 7.0 6.9 8.0 18 h 16 h 14 h 12 h 10 h 8 h 7 h 6 h 5 h 4 h 3 h 2 h		M       7.6     7.5       0.6 (point)     7.4       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M       M     M		5 min 7:1 18 16 16 14 12 10 8 h 14 12 10 0 8 h 5 h 5 h 4 h 3 h 2 h
		5 min 7.1 7.0 6.9 8.0 18 h 16 h 14 h 12 h 10 h 8 h 7 h 6 h 5 h 4 h 2 h 1 h		M       7.6     7.5 6 (com)     7.4       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M       M     M     M		5 min 7.1 18.1 16.1 14.1 10.1 10.1 10.1 10.1 10.1 10.1 10

**Figure S8**. Reaction of compound **10** (200  $\mu$ M initial concentration) monitored over 18 hours by ¹H NMR (600/700MHz) in: (A) in NH₄HCO₃ (50 mM, pH 7.5, D₂O solution) in the absence of NDM-1 (**10** purple diamonds, **10F/ML302F** grey triangles); (B) in NH₄HCO₃ (50 mM, pH 7.5, D₂O solution) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles, **ML302F** blue hexagons); (C) in Tris-d₁₁ (50 mM, pH 7.5, D₂O solution) in the absence of NDM-1 (**10** red squares, **10F/ML302F** blue circles); and (D) in Tris-d₁₁ (50 mM, pH 7.5, D₂O solution) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles) in the presence of NDM-1 (1  $\mu$ M) (**10** pink triangles).



## 5. Crystallography

### Table S2. Data collection and refinement statistics.

Dataset (PDB ID)	BCII (6c) 305 (5IMX)	BCII (6k) 307 (6FUM)	BCII (6I) 308 (6FWF)	BCII (6s) KDU197 (6F2N)	VIM2 ML302F (6EW3)
Beamline	DI S 103	DI S 102	DIS 103		DI \$ 104-1
Wavelenath	0.97625	0.95000	0.97625	0.97625	0.92819
Resolution range [§]	68.95 - 1.44 (1.48	19.53 - 1.18 (1.21 -	35.31 - 1.46 (1.50 -	26.87 - 1.15 (1.19 -	51.27 - 2.14 (2.22 -
5	- 1.44)	1.18)	1.46)	1.15)	2.14)
Space group	C 2 ₁	C 2 ₁	C 2 ₁	C 2 ₁	C 2 ₁
Unit cell	53.25 61.24	53.18 61.44 70.18	53.19 61.01 69.54	53.17 61.67 69.68 90	102.48 78.91 67.46
	69.05 90 93.09	90 93.2 90	90 92.99 90	93.132 90	90 130.48 90
5	90				
Unique reflections ³	40059 (2931)	71979 (5168)	38243 (2839)	77778 (7357)	22190 (2217)
Multiplicity	6.6 (6.4)	16.5 (17)	6.6 (6.3)	6.6 (6.3)	3.4 (3.4)
Completeness (%) ³	99.9 (100.0)	97.23 (94.63)	99.2 (98.6)	97.33 (92.15)	98.01 (98.27)
Mean I/σ(I) [°]	10.1 (1.1)	14.1 (1.1)	9.7 (1.1)	14.2	8.7 (2.1)
Wilson B-factor	19.35	15.48	20.07	11.70	22.50
R _{merge} ³	0.083 (1.567)	0.090 (2.490)	0.089 (1.544)	ND	0.112 (0.517)
R _{meas} ³	0.104 (1.189)	0.101 (2.642)	0.109 (0.724)	0.069	ND
R _{pim} [°]	0.041 (0.738)	0.025 (0.631)	0.043 (1.845)	ND	ND
	0.998 (0.487)	0.999 (0.563)	0.998 (0.440)	0.998(0.753)	ND
Reflections used in refinement [§]	40041 (2906)	71973 (5146)	38231 (2830)	77738 (7345)	22187 (2217)
Reflections used for R _{free} [§]	2008 (219)	3416 (343)	1938 (232)	2002 (191)	1107 (138)
R _{work} ^{††§}	0.1525 (0.3239)	0.1391 (0.2796)	0.1477 (0.2787)	0.1462 (0.3009)	0.1691 (0.2267)
R _{free} ^{††§}	0.1859 (0.3490)	0.1574 (0.2938)	0.1739 (0.3186)	0.1637 (0.3189)	0.2096 (0.2745)
# non-hydrogen atoms	1929	2120	1941	2126	3933
macromolecules	1698	1838	1738	1756	3612
ligands	38	34	34	30	65
solvent	193	248	169	340	256
Protein residues	219	222	218	221	463
RMS (bonds) "	0.012	0.019	0.013	0.019	0.003
RMS (angles) "	1.38	1.81	1.53	1.55	0.55
Ramachanaran favored (%)	97.17	97.24	97.20	97.21	96.94
Ramachandran	2.83	2.76	2.80	2.79	2.84
allowed (%)					
Ramachandran	0.00	0.00	0.00	0.00	0.22
outliers (%)				-	
Rotamer outliers (%)	1.08	0.99	1.06	1.05	1.57
Clashscore	1.72	2.65	3.11	2.25	1.80
Average B-factor (Å ² )	29.13	24.24	29.36	19.72	26.79
Macromolecules (Å ² )	27.32	22.46	27.78	17.31	26.31
Ligands (Å ² )	41.30	33.32	47.33	27.27	33.08
Solvent (Å ² )	42.65	36.22	41.99	31.50	31.95
Number of TLS groups	9	NA	NA	NA	17

§ Parentheses indicate high resolution shell

§§  $R_{merge} = \sum_{j} \sum_{h} |I_{hj} - \langle I_{h} \rangle |/\sum_{j} \sum_{h} \langle I_{h} \rangle \times 100$ 

 $\dagger \dagger R_{\text{work}} = \sum ||Fobs| - |Fcalc||/|Fobs| \times 100$ 

 $+ R_{free}$ , based on 2-5% of the total reflections

[¶] RMS deviation from ideality.

Statistics for the highest-resolution shell are shown in parentheses.

**Figure S9.** View from a crystal structure of BcII (turquoise) in complex with **6c** (yellow) (PDB ID: 5JMX). Active site residues shown as ball-and-stick with atoms coloured C (white), O (red), N (blue), Zn (grey spheres), water (red spheres). Ligand interactions are indicated with black dashed lines. Ligand mFo-DFc OMIT maps contoured to  $3.0 \sigma$  are shown as light grey mesh. Bottom figure wall eye stereo.



**Figure S10.** View from a crystal structure of BcII (turquoise) in complex with **6k** (salmon) (PDB ID: 6EUM). Active site residues shown as ball-and-stick with atoms coloured C (white), O (red), N (blue), Zn (grey spheres), water (red spheres). Ligand interactions are indicated with black dashed lines. Ligand mFo-DFc OMIT maps contoured to  $3.0 \sigma$  are shown as light grey mesh. Bottom figure wall eye stereo.



**Figure S11.** View from a crystal structure of BcII (turquoise) in complex with **61** (purple) (PDB ID: 6EWE). Active site residues shown as ball-and-stick with atoms coloured C (white), O (red), N (blue), Zn (grey spheres), water (red spheres). Ligand interactions are indicated with black dashed lines. Ligand mFo-DFc OMIT maps contoured to  $3.0 \sigma$  are shown as light grey mesh. Bottom figure wall eye stereo.



**Figure S12.** View from a crystal structure of VIM-2 (pink) in complex with **ML302F** (wheat) (PDB ID: 6EW3). Active site residues shown as ball-and-stick with atoms coloured C (white), O (red), N (blue), Zn (grey spheres), water (red spheres). Ligand interactions are indicated with black dashed lines. Ligand mFo-DFc OMIT maps contoured to  $3.0 \sigma$  are shown as light grey mesh. Bottom figure wall eye stereo.



**Figure S13. Crystallographic analysis reveals that the binding modes of enethiol carboxylate are similar to those of the MBL β-lactam antibiotic hydrolysis products**. **a.** Binding mode of hydrolysed benzylpenicillin (penicillin G, cyan) with NDM-1 (PDB code: 4EYF)¹, **b.** Binding mode of **6s** (green) obtained by co-crystallization of **6s** with BcII (PDB ID:6F2N).



### 6. Author contributions

Dong Zhang, Marios S. Markoulides, Anna M. Rydzik, Klaus-Daniel Umland and Corentin Bon carried out synthesis. Marios S. Markoulides assisted with supervision.

Jürgen Brem carried out protein purifications.

Jürgen Brem, Michael A. McDonough, Patrick Collins, Samuel T. Cahill, Dmitrijs Stepanovs, and Ahmed El-Hussein carried out crystallography, with supervision by Frank von Delft, Jürgen Brem and Michael A. McDonough.

Assays were carried out by Dong Zhang, David Wang, and Samuel T. Cahill.

NMR experiments were carried out by Jos J. A. G. Kamps, with supervision by Timothy D. W. Claridge.

Christopher J. Schofield conceived the study and supervised the work.

The manuscript was written by Christopher J. Schofield, Michael A. McDonough and Dong Zhang with help from all the authors.

## 7. References:

(1) King DT, Worrall LJ, Gruninger R, Strynadka NC. J.Am. Chem. Soc. 2012, 134, 11362-11365